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Introduction

We show that a discretization of the supersymmetric 2d gauge theory
can be constructed on generic graphs (polygons) = a generalization of
the supersymmetric lattice gauge theory (the so-called Sugino model)

The graph theory is useful for formulating and manipulating
this kind of the discretized gauge theory
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Introduction

We show:

* Graph theory is useful to formulate and analyze the model
* The zero mode and anomaly play important roles on the graph

* The integrable structure (localization property) still holds in the
discretized theory

Today, I will explain how to apply localization method to the discretized
gauge theories and give some exact results.

Quiver matrix model of the generic graph
2] &L
= gauge theory on the discretized space-time



What is graph theory?

* The graph I' consists of vertices (sites) and edges (links)

* We consider connected graphs with oriented edges (quiver diagram)

V(') = {v1,v2,v3,v4} : a set of the vertices

E(T) ={e1,ea,e3,e4,e5} : a set of the edges
(ny = [V(I')| and ne = |E(T)|)

vertices < gauge groups

edges < bi-fundamental matters

* Adjacency matrix
Structure of the graph * Incidence matrix

- Laplacian matrix



Adjacency matrix

* Adjacency matrix A: V(I') — V(') (n,xn, matrix)

1 of edges from v; to v;

0 otherwise




Incidence matrix

* Incidence matrix L: V(I') = E(I') (n.xn, matrix)

+1 if s(e;) = v;
Lli — —1 if t(el) — U;
0 others

Known as charge matrix (toric data) for the bi-fundamental matters



Laplacian matrix

+ Laplacian matrix A(I'): V(I') — V(I') (n.xn, matrix) A
deg(v;) ifi=j
Aj; =1 —1 if 4 # j and v; is adjacent to v; U
0 otherwise
BT — (s, e ) deg(v) =5

2nd order difference op.
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Examples: square lattice (torus)

— )
S @ —@
QO QO p
N
(| Vo) a\| (qe)
D) QO \D) VJ
Y0
42
N < N o
~ < > o~ - Q.
QO O o
)
L 1O ™ e
U U U m
(qv)
N
D
- D> 2
S - > d S 3
) )
\22)
3= —~
_— —~— 2o o~ @ X
& = ] @ | |
s il ; 00401410 s =
[T A
™ |
AN QN
ey o o e et B e Tl
St D
| ] |
< ~ <]



Examples: tetrahedron (sphere)
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Relation of the matrices

* The adjacency, incidence and Laplacian matrices are related with each
other by

degree matrix

A=D-A-—AT

/ adjacency matrix

Laplacian matrix

—g‘\i
Nu=—"1c]
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incidence matrix




Abelian gauge theory

Let us now consider a simple Abelian gauge theory on the graph I.
We define the following bosonic and fermionic vectors:

* Bosons on V(I')
¢T ) (¢17¢27"'7¢nv)
&T s (&17&27"'7@57%))
* Bosons on E(I)
AT Ta (A17A27"'7Ane)

* Fermions on V(I')

T,T T (77177727 v i 77771@)
* Fermions on E(I')

AT:()\la)\Qa"'?)\ne) ¢37$37773




lfaces and Plaquettes

We also need variables associated with faces (cycles, loops) F(I'):

F) ={fu,fas- s fns

* Bosons on F(I
() Plaquette variables

PT = (P, P,,...,P,,)

§

b S TR AL Gl
Lagrange multipliers (— D-term field)

= 1€1,€2,€

* Fermions on F(T') f {i 2,€3}
XT:(X17X27'°°7an) ;

Py =UU; Us



Supersymmetry and Action

* We define the following Q-transformations (SYSY) for the vectors:

Qo =0
Qo =n, Qn =20
QA=X, QAX=-Lo¢

QY =0, Ix =Y
* The action is written in the following Q-exact form

> M

S =
2g°2

where

=—(Lo)"T-A—xT (Y —2p)

v
= P : e SRR Pn
[V (M( 1) 1(P2) pi( f)) LR e = 0= Rl
moment map constraints — and

(D-term potential) =0
M(Pf) =g



l.ocalization

* After eliminating the auxiliary fields, bosonic part of the action
becomes

1 1
Sg = — < |Lp|“+ =l
a = 5oz {1267 + 31wl
B s
oY { QAP + 5‘#‘ (A=LTL)
) ¢ Laplacian
Fy

Q-exact action = The path integral is independent of the coupling g
= 1-loop (WKB) exact
= localized at the fixed points:

Lo =0

i = 0 (— flat connection condition)



Action for fermions

* The fermionic part of the action becomes

J. 5#
Sy = BTN
3 29 { x50 }
= {\IJTDT)\}
2g*
where
Pl = (77T7XT) — (7717 oy Tng s X1y e ,an) a V(F) D F(F)
T al
SA/) INf e
1o Dirac operator” on I A

0 4
Note that 5—; x LT — incidence matrix for the dual graph I'



I-loop determimant

* Using the 1-loop (WKB) approximation, we obtain the following 1-
loop determinant under the above gauge fixing:

C,C fermions
dety, (LTL) det’z (DDT)
Bt-toop = det?, (LTL) ¢ / DL O X
v ( \ det’, (LL7+ &7 5%)
@, ¢ A

where ‘ stands for omitting zero modes (zero eigenvalues) from the
determinants



(C.ohomology on the graph

+ The Laplacian matrix 4y has rank 7, - 1 on the simply connected graph
= dim Harm" (I") = 1 (x € Harm" (') if Aypa =0)
= dimH"(T) =1

* Similarly, we have

dim H* (T) = dim H" (I') = 1

* Using the definition of the Euler characteristic:
dlivan JET D) = @i AP0 2 @ BRI =00 =7 — 2
we find

dim H”(T") = 2h



Z.ero modes and index theorem

+ dimker Ay = dim Harm" (I')
= one complex bosonic zero mode @,

* The fermionic zero modes are solutions to the following equations:

DU, =0
DTAG =0
thus we find # of handles
(f of zero modes of ¥) = dimker D = n, + ny —rank D(= i/ (genus)
(f of zero modes of A\) = dimker DT = n, — rank DT (= 2h)
‘ Euler characteristic of

the graph with genus h
incERA= iy ere DRSSl it e iD=t S S S = e

Hirzebruch-Riemann-Roch theorem on the graph I



Anomaly

* The modes is invariant under the following U(1)4 symmetry

¢ . 62’i9¢’ q_b 1l 6—220&
et e oy A Ry N e Lo

but the integral measure has the anomaly since

veV ecF ecF
— GZXhH H dn(()?’) H d)\(j) H dX(k)

This agrees with the number of the existing zero modes (index
theorem, similar to Fujikawa’s method)



Non-Abelian case

* The U(N) gauge theory can be obtained by an extension of the
variables to NxN matrices

+* The SUSY transformations are:

Q(I)'v = 0,

QP = 1, My = i[q)va (I)’U]a [J. = etAe
QUe 3 iAea QAe = _(LU(I))ea (Ae — 673)\6
QYy =i[®r,xrl,  Qxy =Y, ;

where

(Lu®)e = UePse) — Pse)Ue

and ®ris a representative (average) value of @, on the face f



Fixed point equation

* The action is again written in the Q-exact form

* The path integral is localized at the fixed points which are solutions to
the following equations:

@, ®,] =0 Ls(e) U. Lye)
ﬁ
(LU(I))e — Ueq)t(e) =) (I)s(e)Ue =0

y s o

(I)’U = dlag(qbqlm Qb%, s e ey ¢£JV) ‘ ol
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kixact partition function

* Using the 1-loop approximation around the fixed points, we can
evaluate the partition function exactly in terms of the summation over
the possible permutations and residue integrals

N .
= E ||dqb7’A_OO (@)
{O'e}/c’il £ ;

where

[Toev (9% — ¢9) [T er (9% — &%)

Al—loop(qb) S H T
1<J HeEE(¢t(€e()) P i(e))

Finally, we obtain (except for the fermionic zero mode integral)

N .
7 :N/qubé H(% _ gl ynotns—ne | agrees with the
i=1

et L continuum limit
1< X h




/.ero modes for non-Abelian theory

* There are zero modes on each decomposed Abelian graph (only in the
Cartan part)

(# of the zero modes of 1, and xs)= N x 2

(# of the zero modes of A.) =N x 2h

N % %
)y # of handles (<§ )
(genus)

] d@vd®,dn, ] dre ] dxs

veEV eck fer

T dot [ ]ane, | [(eh — o)
=1

i=1 i<

has the same U(1)4 anomaly as the d )
original one: N2 x x, '



T'’he compensator

+ Due to the existence of the zero modes and anomaly, we consider
inserting J-closed operators to compensate (cancel) the phases from
the integral measure in the numerical simulation

e.g.
2
1 1 AT
O, = — —Tr o
n=o 3 (FTE)
veV 2
1 I —q =5 ) 3] AT
Oz = n_ Z NTT (QUeq)t(e)Ue (I)s(e) T (Ueq)t(e)Ue = (I)S(e))AeUe AeUe )

& ec B

where

QO =0, but O #£ Q{x}

The evidence of the zero modes and phase from the anomaly are checked numerically in
[Kamata-Matuura-Misumi-KO (2016)], see also Matsuura-san’s talk



Conclusion and Discussion

Results:
* We formulate the discretized gauge theory on the generic graphs

* The graph theory is useful (beautiful) to formulate, analyze and solve
the model

* The zero modes and anomaly are also important

Outlook:

* Relation to (or realization in) string /M theory or gravity (topological
invariants, etc. in mathematics)

* A possibility of the emergence (deconstruction) of the space-time
geometry from the generalized quiver or matrix models



