# Lattice Theory and Graph Theory - Supersymmetric Gauge Theory on the Graph Kazutoshi Ohta (Meiji Gakuin University)

Based on: S. Matsuura and T. Misumi, PTEP (2014) 123B01; PTEP (2015) 033B07, S. Kamata, S. Matsuura and T. Misumi [arXiv:1607.01260] and work in progress

"Discrete Approaches to the Dynamics of Fields and Space-Time", APCTP, 9/20/2017

## Introduction

We show that a discretization of the supersymmetric 2d gauge theory can be constructed on generic graphs (polygons)  $\Rightarrow$  a generalization of the supersymmetric lattice gauge theory (the so-called Sugino model)

The graph theory is useful for formulating and manipulating this kind of the discretized gauge theory



on a simplicial complex with the same Euler characteristics

 $\chi_h = 2$ 

#### Introduction

We show:

- \* Graph theory is useful to formulate and analyze the model
- \* The zero mode and anomaly play important roles on the graph
- The integrable structure (localization property) still holds in the discretized theory

Today, I will explain how to apply localization method to the discretized gauge theories and give some exact results.

Quiver matrix model of the generic graph = gauge theory on the discretized space-time

# What is graph theory?

- \* The graph Γ consists of vertices (sites) and edges (links)
- We consider connected graphs with oriented edges (quiver diagram)



# Adjacency matrix

\* Adjacency matrix A:  $V(\Gamma) \rightarrow V(\Gamma)$   $(n_v \times n_v \text{ matrix})$ 

$$A_{ij} = \begin{cases} \# \text{ of edges from } v_i \text{ to } v_j \\ 0 \text{ otherwise} \end{cases}$$



$$V_1 \quad V_2 \quad V_3$$
$$A(\Gamma) = \frac{v_1}{v_2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ v_3 & 1 & 0 & 0 \end{pmatrix}$$



#### Incidence matrix

\* Incidence matrix L:  $V(\Gamma) \rightarrow E(\Gamma)$   $(n_e \times n_v \text{ matrix})$ 



Known as charge matrix (toric data) for the bi-fundamental matters

## Laplacian matrix

\* Laplacian matrix  $\Delta(\Gamma)$ :  $V(\Gamma) \rightarrow V(\Gamma)$   $(n_v \times n_v \text{ matrix})$ 

 $\Delta_{ij} = \begin{cases} \deg(v_i) & \text{if } i = j \\ -1 & \text{if } i \neq j \text{ and } v_i \text{ is adjacent to } v_j \\ 0 & \text{otherwise} \end{cases}$ 

For  $\vec{x}^T = (x_1, x_2, \dots, x_{n_v})$ 

2nd order difference op.

 $v_2$ 

v

 $\deg(v)$ 

 $v_1$ 

$$\vec{x}^{\mathsf{T}} \Delta \vec{x} = \sum_{e \in E(\Gamma)} (x_{t(e)} - x_{s(e)})^2$$

<u>e.g.</u>

$$\Delta(\Gamma) = \frac{v_1}{v_3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ v_3 & -1 & -1 \end{pmatrix}$$

111

# Examples: square lattice (torus)

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$
$$L = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}$$
$$\Delta = \begin{pmatrix} 4 & -2 & -2 & 0 \\ -2 & 4 & 0 & -2 \\ -2 & 0 & 4 & -2 \\ 0 & -2 & -2 & 4 \end{pmatrix}$$



The same topology as  $T^2$ 

# Examples: tetrahedron (sphere)

 $A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$  $L = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & 0 & 1 \end{pmatrix}$  $\Delta = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ -1 & -1 & -1 & 3 \end{pmatrix}$ 



The same topology as  $S^2$ 

#### Relation of the matrices

 The adjacency, incidence and Laplacian matrices are related with each other by



# Abelian gauge theory

Let us now consider a simple Abelian gauge theory on the graph  $\Gamma$ . We define the following bosonic and fermionic vectors:

\* Bosons on  $V(\Gamma)$ 

$$\boldsymbol{\phi}^{\mathsf{T}} = (\phi_1, \phi_2, \dots, \phi_{n_v})$$
$$\bar{\boldsymbol{\phi}}^{\mathsf{T}} = (\bar{\phi}_1, \bar{\phi}_2, \dots, \bar{\phi}_{n_v})$$

- \* Bosons on  $E(\Gamma)$  $A^{\mathsf{T}} = (A_1, A_2, \dots, A_{n_e})$
- \* Fermions on  $V(\Gamma)$

$$\boldsymbol{\eta}^{\mathsf{T}} = (\eta_1, \eta_2, \dots, \eta_{n_v})$$

• Fermions on  $E(\Gamma)$ 

$$\boldsymbol{\lambda}^{\mathsf{T}} = (\lambda_1, \lambda_2, \dots, \lambda_{n_e})$$



# Faces and Plaquettes

We also need variables associated with faces (cycles, loops)  $F(\Gamma)$ :

$$F(\Gamma) = \{f_1, f_2, \dots, f_{n_f}\}$$

\* Bosons on  $F(\Gamma)$ 

Plaquette variables  

$$P^{\mathsf{T}} = (P_1, P_2, \dots, P_{n_f})$$

$$\boldsymbol{Y}^{\mathsf{T}} = (Y_1, Y_2, \dots, Y_{n_f})$$

Lagrange multipliers ( $\rightarrow$  D-term field)

\* Fermions on  $F(\Gamma)$ 

$$\boldsymbol{\chi}^{\mathsf{T}} = (\chi_1, \chi_2, \dots, \chi_{n_f})$$



 $=e^{i(A_1-A_2+A_3)}$ 

## Supersymmetry and Action

\* We define the following *Q*-transformations (SYSY) for the vectors:

$$\begin{aligned} Q\boldsymbol{\phi} &= 0\\ Q\bar{\boldsymbol{\phi}} &= \boldsymbol{\eta}, \qquad Q\boldsymbol{\eta} &= 0\\ Q\boldsymbol{A} &= \boldsymbol{\lambda}, \qquad Q\boldsymbol{\lambda} &= -L\boldsymbol{\phi}\\ Q\boldsymbol{Y} &= 0, \qquad Q\boldsymbol{\chi} &= \boldsymbol{Y} \end{aligned}$$

The action is written in the following Q-exact form

$$S = \frac{1}{2g^2}QV$$

where

$$V = -(L\bar{\boldsymbol{\phi}})^{\mathsf{T}} \cdot \boldsymbol{\Lambda} - \boldsymbol{\chi}^{\mathsf{T}} \cdot (\boldsymbol{Y} - 2\boldsymbol{\mu})$$

$$\boldsymbol{\mu}^{\mathsf{T}} = \left(\mu(P_1), \mu(P_2), \dots, \mu(P_{n_f})\right)$$

moment map constraints (D-term potential)  $\mu(P_f) = 0 \Rightarrow P_f = 1$ and  $\mu(P_f) \sim -ig^{z\bar{z}}F_{z\bar{z}}$ 

#### Localization

 After eliminating the auxiliary fields, bosonic part of the action becomes

$$S_{B} = \frac{1}{2g^{2}} \left\{ |L\phi|^{2} + \frac{1}{2}|\mu|^{2} \right\}$$
  
=  $\frac{1}{2g^{2}} \left\{ \phi \Delta \bar{\phi} + \frac{1}{2}|\mu|^{2} \right\}$  ( $\Delta = L^{T}L$ )  
 $\overset{?}{Laplacian}$   
 $F_{12}^{2}$ 

Q-exact action  $\Rightarrow$  The path integral is independent of the coupling g  $\Rightarrow$  1-loop (WKB) exact  $\Rightarrow$  localized at the fixed points:

$$L\phi = 0$$
  
 $\mu = 0$  ( $\rightarrow$  flat connection condition

#### Action for fermions

The fermionic part of the action becomes

$$S_F = -\frac{1}{2g^2} \left\{ \boldsymbol{\eta}^{\mathsf{T}} L^{\mathsf{T}} \boldsymbol{\lambda} + \boldsymbol{\chi}^{\mathsf{T}} \frac{\delta \boldsymbol{\mu}}{\delta \boldsymbol{U}} \boldsymbol{\lambda} \right\}$$
$$= -\frac{1}{2g^2} \left\{ \boldsymbol{\Psi}^{\mathsf{T}} D^{\mathsf{T}} \boldsymbol{\lambda} \right\}$$

where

 $\Psi^{\mathsf{T}} \equiv (\eta^{\mathsf{T}}, \chi^{\mathsf{T}}) = (\eta_{1}, \dots, \eta_{n_{v}}, \chi_{1}, \dots, \chi_{n_{f}}) \in V(\Gamma) \oplus F(\Gamma)$  $D^{\mathsf{T}} \equiv \begin{pmatrix} L^{\mathsf{T}} \\ \frac{\delta \mu}{\delta A} \end{pmatrix} {}^{n_{f}}_{n_{f}}$ "Dirac operator" on  $\Gamma$ 

Note that  $\frac{\delta \mu}{\delta A} \propto \hat{L}^{\intercal} \longrightarrow$  incidence matrix for the dual graph  $\hat{\Gamma}$ 

# 1-loop determinant

 Using the 1-loop (WKB) approximation, we obtain the following 1loop determinant under the above gauge fixing:

$$\Delta_{1\text{-loop}} = \frac{\det_{V}^{\prime}(L^{\mathsf{T}}L)}{\left|\det_{V}^{\prime}(L^{\mathsf{T}}L)\right|} \times \sqrt{\frac{\det_{E}^{\prime}(DD^{\mathsf{T}})}{\det_{E}^{\prime}\left(LL^{\mathsf{T}} + \frac{\delta\mu}{\delta\lambda}^{\mathsf{T}}\frac{\delta\mu}{\delta\lambda}\right)}} = \frac{1}{4}$$

where ' stands for omitting zero modes (zero eigenvalues) from the determinants

# Cohomology on the graph

- \* The Laplacian matrix  $\Delta_V$  has rank  $n_v$  1 on the simply connected graph  $\Rightarrow \dim \operatorname{Harm}^V(\Gamma) = 1$  ( $\boldsymbol{x} \in \operatorname{Harm}^V(\Gamma)$  if  $\Delta_V \boldsymbol{x} = 0$ )  $\Rightarrow \dim H^V(\Gamma) = 1$
- \* Similarly, we have

 $\dim H^F(\Gamma) = \dim H^V(\check{\Gamma}) = 1$ 

\* Using the definition of the Euler characteristic:  $\dim H^V(\Gamma) - \dim H^E(\Gamma) + \dim H^F(\Gamma) = \chi_h = 2 - 2h$ we find

 $\dim H^E(\Gamma) = 2h$ 

#### Zero modes and index theorem

• dim ker  $\Delta_V = \dim \operatorname{Harm}^V(\Gamma)$ 

 $\Rightarrow$  one complex bosonic zero mode  $\phi_0$ 

The fermionic zero modes are solutions to the following equations:

 $D\Psi_0 = 0$  $D^{\mathsf{T}} \Lambda_0 = 0$ 



Hirzebruch-Riemann-Roch theorem on the graph  $\Gamma$ 

# Anomaly

• The modes is invariant under the following  $U(1)_A$  symmetry

$$egin{aligned} \phi &
ightarrow e^{2i heta}\phi, & ar{\phi} 
ightarrow e^{-2i heta}ar{\phi} \ \eta &
ightarrow e^{-i heta}\eta, & \chi 
ightarrow e^{-i heta}\chi, & \lambda 
ightarrow e^{i heta}\lambda \end{aligned}$$

but the integral measure has the anomaly since

$$\prod_{v \in V} d\eta_v \prod_{e \in E} d\lambda_e \prod_{e \in F} d\chi_f \supset \prod_i d\eta_0^{(i)} \prod_j d\lambda_0^{(j)} \prod_k d\chi_0^{(k)}$$
$$\to e^{i\chi_h \theta} \prod_i d\eta_0^{(i)} \prod_j d\lambda_0^{(j)} \prod_k d\chi_0^{(k)}$$

This agrees with the number of the existing zero modes (index theorem, similar to Fujikawa's method)

#### Non-Abelian case

- The U(N) gauge theory can be obtained by an extension of the variables to N×N matrices
- \* The SUSY transformations are:

$$\begin{array}{ll} Q\Phi_v = 0, \\ Q\bar{\Phi}_v = \eta_v, \\ QU_e = i\Lambda_e, \\ QY_f = i[\Phi_f, \chi_f], \end{array} \begin{array}{ll} Q\eta_v = i[\Phi_v, \bar{\Phi}_v], \\ Q\Lambda_e = -(L_U\Phi)_e, \\ Q\chi_f = Y_f, \end{array} \begin{array}{ll} \left( \begin{matrix} U_e \equiv e^{iA_e} \\ \Lambda_e \equiv e^{i\lambda_e} \end{matrix} \right) \\ Q\chi_f = Y_f, \end{matrix}$$

where

$$(L_U \Phi)_e \equiv U_e \Phi_{t(e)} - \Phi_{s(e)} U_e$$

and  $\Phi_f$  is a representative (average) value of  $\Phi_v$  on the face f

# Fixed point equation

- \* The action is again written in the *Q*-exact form
- The path integral is localized at the fixed points which are solutions to the following equations:

$$\begin{bmatrix} \Phi_{v}, \bar{\Phi}_{v} \end{bmatrix} = 0 \\ (L_{U}\Phi)_{e} = U_{e}\Phi_{t(e)} - \Phi_{s(e)}U_{e} = 0 \\ \Phi_{v} = \operatorname{diag}(\phi_{v}^{1}, \phi_{v}^{2}, \dots, \phi_{v}^{N}) \\ U_{e} = \sigma_{e} \in \mathfrak{S}_{N} \\ \Phi_{t(e)} = \sigma_{e}^{-1}\Phi_{s(e)}\sigma_{e} \\ \phi_{s(e)}^{i} = \phi_{s(e)}^{-1}\Phi_{s(e)}\sigma_{e} \\ \phi_{t(e)}^{i} = \phi_{e}^{-1}\Phi_{s(e)}\sigma_{e} \\ \phi_{t(e)}^{i} = \phi_{e}^{-1}\Phi_{s(e)}\phi_{e} \\ \phi_{t(e)}^{i} = \phi_{e}^{-1}\Phi_{s(e)}\phi_{e} \\ \phi_{t(e)}^{i} = \phi_{t(e)}^{i} = \phi_{t(e)}^{i} = \phi_{t(e)}^{i} \\ \phi_{t(e)}^{i} = \phi_{t$$

G=U(N) reduces to  $U(1)^N$  around the fixed points (Abelianization)

#### Exact partition function

 Using the 1-loop approximation around the fixed points, we can evaluate the partition function exactly in terms of the summation over the possible permutations and residue integrals

$$Z = \sum_{\{\sigma_e\}} \int_C \prod_{i=1}^N d\phi^i \,\Delta_{1\text{-loop}}(\phi)$$

where

$$\Delta_{1-\text{loop}}(\phi) = \prod_{i < j} \frac{\prod_{v \in V} (\phi_v^i - \phi_v^j) \prod_{f \in F} (\phi_f^i - \phi_f^j)}{\prod_{e \in E} (\phi_{t(e)}^{\sigma_e(i)} - \phi_{s(e)}^j)}$$

Finally, we obtain (except for the fermionic zero mode integral)

$$Z = \mathcal{N} \int \prod_{i=1}^{N} d\phi_0^i \prod_{i < j} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i < j \\ \chi h}} (\phi_0^i - \phi_0^j)^{n_v + n_f - n_e} \prod_{\substack{i <$$

agrees with the continuum limit

#### Zero modes for non-Abelian theory

 There are zero modes on each decomposed Abelian graph (only in the Cartan part)



## The compensator

 Due to the existence of the zero modes and anomaly, we consider inserting Q-closed operators to compensate (cancel) the phases from the integral measure in the numerical simulation

<u>e.g.</u>

$$\mathcal{O}_{\rm Tr} = \frac{1}{n_v} \sum_{v \in V} \left( \frac{1}{N} \operatorname{Tr} \Phi_v^2 \right)^{-\frac{N^2}{4}\chi_h}$$
$$\mathcal{O}_{\rm IZ} = \frac{1}{n_e} \sum_{e \in E} \left( \frac{1}{N} \operatorname{Tr} \left( 2U_e \Phi_{t(e)} U_e^{-1} \Phi_{s(e)} - (U_e \Phi_{t(e)} U_e^{-1} - \Phi_{s(e)}) \Lambda_e U_e^{-1} \Lambda_e U_e^{-1} \right) \right)^{-\frac{N^2}{4}\chi_h}$$

where

$$Q\mathcal{O} = 0$$
, but  $\mathcal{O} \neq Q\{\star\}$ 

The evidence of the zero modes and phase from the anomaly are checked numerically in [Kamata-Matuura-Misumi-KO (2016)], see also Matsuura-san's talk

## **Conclusion and Discussion**

Results:

- \* We formulate the discretized gauge theory on the generic graphs
- The graph theory is useful (beautiful) to formulate, analyze and solve the model
- \* The zero modes and anomaly are also important

Outlook:

- Relation to (or realization in) string/M theory or gravity (topological invariants, etc. in mathematics)
- \* A possibility of the emergence (deconstruction) of the space-time geometry from the generalized quiver or matrix models