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Introduction

We show that a discretization of the supersymmetric 2d gauge theory 
can be constructed on generic graphs (polygons) ⇒ a generalization of 
the supersymmetric lattice gauge theory (the so-called Sugino model)

on S2
on a simplicial 
complex with 
the same Euler 
characteristics

χh = 2

The graph theory is useful for formulating and manipulating 
this kind of the discretized gauge theory



Introduction

We show:

Today, I will explain how to apply localization method to the discretized 
gauge theories and give some exact results.

✤ Graph theory is useful to formulate and analyze the model

✤ The zero mode and anomaly play important roles on the graph

✤ The integrable structure (localization property) still holds in the 
discretized theory

Quiver matrix model of the generic graph
                       = gauge theory on the discretized space-time



What is graph theory?

✤ The graph Γ consists of vertices (sites) and edges (links)

✤ We consider connected graphs with oriented edges (quiver diagram)

Structure of the graph

・Adjacency matrix

・Incidence matrix

・Laplacian matrix

v1

v2 v3

v4

e1

e2

e3

e4

e5

vertices ⇔ gauge groups
edges ⇔ bi-fundamental matters

(nv = |V (�)| and ne = |E(�)|)

V (�) = {v1, v2, v3, v4} : a set of the vertices

E(�) = {e1, e2, e3, e4, e5} : a set of the edges



Adjacency matrix

✤ Adjacency matrix A: V(Γ) → V(Γ)  (nv×nv matrix)

Aij =

(
] of edges from vi to vj
0 otherwise

A(�) =

0

B@

v1 v2 v3

v1 0 1 0

v2 0 0 1

v3 1 0 0

1

CA

e.g.
v1

v2 v3



Incidence matrix

✤ Incidence matrix L:  V(Γ) → E(Γ)  (ne×nv matrix)

Lli =

8
><

>:

+1 if s(el) = vi
�1 if t(el) = vi
0 others

L(�) =

0

B@

v1 v2 v3

e1 +1 �1 0

e2 0 +1 �1

e3 �1 0 +1

1

CA

v1 v2

v1

v2 v3

e.g.

e
s(e) = v1 t(e) = v2

e1

e2

e3

+

-

+ -

+

-

Known as charge matrix (toric data) for the bi-fundamental matters



Laplacian matrix

✤ Laplacian matrix ∆(Γ): V(Γ) → V(Γ)  (nv×nv matrix)

�ij =

8
><

>:

deg(vi) if i = j

�1 if i 6= j and vi is adjacent to vj
0 otherwise

~x

T = (x1, x2, . . . , xnv ) deg(v) = 5

v

For

e.g.

v1

v2 v3
�(�) =

0

B@

v1 v2 v3

v1 2 �1 �1

v2 �1 2 �1

v3 �1 �1 2

1

CA

2nd order difference op.
~x

|�~x =
X

e2E(�)

(xt(e) � xs(e))
2



Examples: square lattice (torus)

v1 v2

v3

v1

v4 v3

v1 v2 v1

e1 e2

e3 e4

e5 e6

e3

e1 e2

e7 e8 e7

A =

0

BB@

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

1

CCA

L =

0

BBBBBBBBBB@

1 �1 0 0
�1 1 0 0
1 0 �1 0
0 1 0 �1
0 0 1 �1
0 0 �1 1
�1 0 1 0
0 �1 0 1

1

CCCCCCCCCCA

� =

0

BB@

4 �2 �2 0
�2 4 0 �2
�2 0 4 �2
0 �2 �2 4

1

CCA
The same topology as T2



Examples: tetrahedron (sphere)

v1

v2 v3

v4

e1

e2

e3

e4

e5

e6
L =

0

BBBBBB@

1 �1 0 0
0 1 �1 0
�1 0 1 0
0 1 0 �1
0 0 1 �1
�1 0 0 1

1

CCCCCCA

A =

0

BB@

0 1 0 0
0 0 1 1
1 0 0 1
1 0 0 0

1

CCA

� =

0

BB@

3 �1 �1 �1
�1 3 �1 �1
�1 �1 3 �1
�1 �1 �1 3

1

CCA
The same topology as S2



Relation of the matrices

✤ The adjacency, incidence and Laplacian matrices are related with each 
other by

degree matrix

adjacency matrix

incidence matrix

Laplacian matrix

� = D �A�A|

� = L|L



Abelian gauge theory

✤ Bosons on V(Γ)

✤ Bosons on E(Γ)

✤ Fermions on V(Γ)

✤ Fermions on E(Γ)

Let us now consider a simple Abelian gauge theory on the graph Γ.
We define the following bosonic and fermionic vectors:

�| = (�1,�2, . . . ,�nv )

�̄
|
= (�̄1, �̄2, . . . , �̄nv )

⌘| = (⌘1, ⌘2, . . . , ⌘nv )

A| = (A1, A2, . . . , Ane)

�| = (�1,�2, . . . ,�ne)

�1, �̄1, ⌘1

�2, �̄2, ⌘2

�3, �̄3, ⌘3

�4, �̄4, ⌘4
A h4

1i
,�

h4
1i

A
h3
4i ,�

h3
4i

Ah23i,�h23i
A
h3
1
i,
� h

3
1
i

A
h12i ,�

h12i

Ah24i ,�h24i



Faces and Plaquettes

We also need variables associated with faces (cycles, loops) F(Γ):

✤ Bosons on F(Γ)

✤ Fermions on F(Γ)

F (�) = {f1, f2, . . . , fnf } v1

v2 v3

e1

e2

e3

f

f = {e1, ē2, e3}
Lagrange multipliers (→ D-term field)

P | = (P1, P2, . . . , Pnf )

Y | = (Y1, Y2, . . . , Ynf )

�| = (�1,�2, . . . ,�nf )

Plaquette variables

Pf = U1U
�1
2 U3

= ei(A1�A2+A3)



Supersymmetry and Action

✤ We define the following Q-transformations (SYSY) for the vectors: 

✤ The action is written in the following Q-exact form

S =
1

2g2
QV

where

moment map constraints
(D-term potential)

V = �(L�̄)| ·⇤� �| · (Y � 2µ)

µ| =
�
µ(P1), µ(P2), . . . , µ(Pnf )

�

Q� = 0
Q�̄ = ⌘, Q⌘ = 0
QA = �, Q� = �L�
QY = 0, Q� = Y

µ(Pf ) = 0 ) Pf = 1

and

µ(Pf ) ⇠ �igzz̄Fzz̄



Localization

✤ After eliminating the auxiliary fields, bosonic part of the action 
becomes

Q-exact action ⇒ The path integral is independent of the coupling g
                          ⇒ 1-loop (WKB) exact
                          ⇒ localized at the fixed points:

SB =
1

2g2

⇢
|L�|2 + 1

2
|µ|2

�

=
1

2g2

⇢
���̄+

1

2
|µ|2

�

Laplacian
F 2
12

⇠

L� = 0

µ = 0 (→ flat connection condition)

(� = L|L)



Action for fermions

✤ The fermionic part of the action becomes

where

}nv

}nf

ne
o

Note that �! incidence matrix for the dual graph

ˆ

�

 | ⌘ (⌘|,�|) = (⌘1, . . . , ⌘nv ,�1, . . . ,�nf ) 2 V (�)� F (�)

SF = � 1

2g2

⇢
⌘|L|�+ �| �µ

�U
�

�

= � 1

2g2
{ |D|�}

“Dirac operator” on Γ

�µ

�A
/ L̂|

D| ⌘
✓
L|
�µ
�A

◆



1-loop determinant

✤ Using the 1-loop (WKB) approximation, we obtain the following 1-
loop determinant under the above gauge fixing:

where ‘ stands for omitting zero modes (zero eigenvalues) from the 
determinants

c, c̄

�, �̄

fermions

�
1-loop

=
det0V (L

|L)��det0V (L|L)
�� ⇥

vuut det0E(DD|)

det0E

⇣
LL| + �µ

��

| �µ
��

⌘ = 1

A



Cohomology on the graph

✤ The Laplacian matrix 𝛥V has rank nv - 1 on the simply connected graph  
　　⇒ 
　　⇒

✤ Similarly, we have  
 

✤ Using the definition of the Euler characteristic:  
 
 
we find

dimHarmV (�) = 1

dimHV (�) = 1

dimHF (�) = dimHV (�̌) = 1

dimHV (�)� dimHE(�) + dimHF (�) = �h = 2� 2h

dimHE(�) = 2h

(x 2 HarmV (�) if �V x = 0)



Zero modes and index theorem

✤  
　⇒ one complex bosonic zero mode

✤ The fermionic zero modes are solutions to the following equations:

�0

thus we find

Hirzebruch-Riemann-Roch theorem on the graph Γ

Euler characteristic of 
the graph with genus h

# of handles
        (genus)

D 0 = 0

D|⇤0 = 0

(] of zero modes of  ) = dimkerD = nv + nf � rankD(= 2)

(] of zero modes of �) = dimkerD|
= ne � rankD|

(= 2h)

indD = dimkerD � dimkerD| = nv � ne + nf = �h

dimker�V = dimHarmV (�)



Anomaly

✤ The modes  is invariant under the following U(1)A symmetry

but the integral measure has the anomaly since

This agrees with the number of the existing zero modes (index 
theorem, similar to Fujikawa’s method)

� ! e2i✓�, �̄ ! e�2i✓�̄

⌘ ! e�i✓⌘, � ! e�i✓�, � ! ei✓�

Y

v2V

d⌘v
Y

e2E

d�e

Y

e2F

d�f �
Y

i

d⌘(i)0

Y

j

d�(j)
0

Y

k

d�(k)
0

! ei�h✓
Y

i

d⌘(i)0

Y

j

d�(j)
0

Y

k

d�(k)
0



Non-Abelian case

✤ The U(N) gauge theory can be obtained by an extension of the 
variables to N×N matrices

✤ The SUSY transformations are:

where
(LU�)e ⌘ Ue�t(e) � �s(e)Ue

and Φf is a representative (average) value of Φv on the face f

Q�v = 0,
Q�̄v = ⌘v, Q⌘v = i[�v, �̄v],
QUe = i⇤e, Q⇤e = �(LU�)e,
QYf = i[�f ,�f ], Q�f = Yf ,

✓
Ue ⌘ eiAe

⇤e ⌘ ei�e

◆



Fixed point equation

✤ The action is again written in the Q-exact form

✤ The path integral is localized at the fixed points which are solutions to 
the following equations:

[�v, �̄v] = 0

(LU�)e = Ue�t(e) � �s(e)Ue = 0

G=U(N) reduces to U(1)N around the fixed points (Abelianization)

�v = diag(�1
v,�

2
v, . . . ,�

N
v )

Ue = �e 2 SN

�t(e) = ��1
e �s(e)�e

4 4

�s(e) �t(e)Ue

�e

�i
s(e)

�i
t(e)



Exact partition function

✤ Using the 1-loop approximation around the fixed points, we can 
evaluate the partition function exactly in terms of the summation over 
the possible permutations and residue integrals

where

�
1-loop

(�) =
Y

i<j

Q
v2V (�

i
v � �j

v)
Q

f2F (�
i
f � �j

f )
Q

e2E(�
�e(i)
t(e) � �j

s(e))

Finally, we obtain (except for the fermionic zero mode integral)

agrees with the 
continuum limit=

�h

Z = N
Z NY

i=1

d�i
0

Y

i<j

(�i
0 � �j

0)
nv+nf�ne



Zero modes for non-Abelian theory

✤ There are zero modes on each decomposed Abelian graph (only in the 
Cartan part)

has the same U(1)A anomaly as the 
original one: N2 × χh

(# of the zero modes of ηv and χf )= N × 2
(# of the zero modes of Λe) = N × 2h =

# of handles
        (genus)Y

v2V

d�vd�̄vd⌘v
Y

e2E

d�e

Y

f2F

d�f

NY

i=1

d�i
0

2hY

l=1

d�i
0,l

Y

i<j

(�i
0 � �j

0)
�h



The compensator

e.g.

The evidence of the zero modes and phase from the anomaly are checked numerically in 
[Kamata-Matuura-Misumi-KO (2016)], see also Matsuura-san’s talk

✤ Due to the existence of the zero modes and anomaly, we consider 
inserting Q-closed operators to compensate (cancel) the phases from 
the integral measure in the numerical simulation

where
QO = 0, but O 6= Q{?}



Conclusion and Discussion

✤ We formulate the discretized gauge theory on the generic graphs

✤ The graph theory is useful (beautiful) to formulate, analyze and solve 
the model

✤ The zero modes and anomaly are also important

Results:

Outlook:
✤ Relation to (or realization in) string/M theory or gravity (topological 

invariants, etc. in mathematics)

✤ A possibility of the emergence (deconstruction) of the space-time 
geometry from the generalized quiver or matrix models


