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In this talk 
 

☞  I emphasize that noncommutative (NC) spacetime necessarily 

implies emergent spacetime if spacetime at microscopic scales 

should be viewed as NC.  

 

☞  The emergent gravity from NC U(1) gauge theory is the large N 

duality and the emergent spacetime picture admits a background-

independent formulation of quantum gravity.  

 

☞  Cosmic inflation in this picture corresponds to the dynamical 

emergence of spacetime. 

 

☞  In order to understand NC spacetime correctly, we need to 

deactivate the thought patterns that we have installed in our brains 

and taken for granted for so many years.  



Quantum mechanics is a prominent example of NC space whose coordinate generators 

satisfy the commutation relation 

                      𝑥𝑖 , 𝑝𝑗 = 𝑖ℏ𝛿𝑗
𝑖 ,            𝑖, 𝑗 = 1, ⋯ , 𝑛 .               (1) 

 

        𝑎𝑖 ≡
𝑥𝑖+𝑖𝑝𝑖

2ℏ
,       𝑎𝑖

†  ≡
𝑥𝑖−𝑖𝑝𝑖

2ℏ
 ;     𝑥𝑖 , 𝑝𝑗 = 𝑖ℏ𝛿𝑗

𝑖    ⟺    𝑎𝑖 , 𝑎𝑗
† = 𝛿𝑖𝑗 . 

 

A☞ NC phase space (1) introduces a separable Hilbert space ℋ = { 𝑛   𝑛 = 0,1, ⋯ , ∞} 
and physical observables become operators in 𝒜ℏ acting on the Hilbert space ℋ. 

 

B☞ NC algebra 𝒜ℏ admits a nontrivial inner automorphism 𝔄ℏ  

                               𝑓 𝑥 + 𝑎 = 𝑈𝑎
† 𝑓 𝑥  𝑈𝑎                          (2) 

for 𝑓 𝑥 ∈ 𝒜ℏ and 𝑈𝑎 = 𝑒−𝑖
𝑝⋅𝑎

ℏ ∈ 𝔄ℏ. This means that every points in the NC phase space 

are unitarily equivalent. Thus the concept of classical (phase) space is doomed and a 
quantum algebra (ℋ, 𝒜ℏ) plays a more fundamental role and the classical (phase) space 

is derived (emergent) from the quantum algebra (ℋ, 𝒜ℏ).   

 

  What we have learned from quantum mechanics 



C☞ The Hilbert space ℋ has a countable basis which is orthonormal, 𝑛 𝑚 = 𝛿𝑛𝑚 ,  and 

complete,  |𝑛  𝑛| = 𝐼ℋ
∞
𝑛=0 . Since a physical observable 𝑓 𝑥, 𝑝 ∈ 𝒜ℏ is a linear operator  

acting on the Hilbert space ℋ, it can be represented as a matrix in End ℋ ≡ 𝒜𝑁: 

 

                     |𝑛  𝑛|𝑓 𝑥, 𝑝  |𝑚  𝑚| = ∞
𝑛,𝑚=0   𝑓𝑛𝑚|𝑛 ∞

𝑛,𝑚=0  𝑚|. 

 
Therefore the map 𝒜ℏ → 𝒜𝑁 is a Lie algebra homomorphism where 𝑁 =dim (ℋ) → ∞.  

 

D☞ Infinitesimal generators of the inner automorphism 𝔄ℏ form an inner derivation 𝔇ℏ. 

 For example, 𝑝𝑖 = −𝑖ℏ
𝜕

𝜕𝑥𝑖  or  𝑥𝑖= 𝑖ℏ
𝜕

𝜕𝑝𝑖
.  Recall also that angular momentum operators  

in quantum mechanics can be represented by differential operators in Γ(𝑇𝕊2).   

In general, any dynamical variable in 𝒜ℏ can be represented by a differential operator in 𝔇ℏ 

by the adjoint map  

                       𝒜ℏ  → 𝔇ℏ: 𝑓 𝑥, 𝑝 ↦ 𝑎𝑑𝑓 = [𝑓 𝑥, 𝑝 , ∙  ] ≡ 𝑉 𝑓.                     (3) 

 

The adjoint map 𝒜ℏ  → 𝔇ℏ is also a Lie algebra homomorphism:                  

 
                                 𝑉 [𝑓,𝑔] = [𝑉 𝑓, 𝑉 𝑔],    for 𝑓 𝑥, 𝑝 ,  𝑔 𝑥, 𝑝 ,  𝑓, 𝑔 𝑥, 𝑝 ∈ 𝒜ℏ.   (4) 

   What we have learned from quantum mechanics 



Consider the 𝑆𝑈(2) Lie algebra: 𝐽𝑖 , 𝐽𝑗 = 𝑖𝜀𝑖𝑗𝑘 𝐽𝑘 ∈ 𝒜ℏ,     𝑖, 𝑗, 𝑘 = 1,2,3. 

 

(1) Matrix representation: 𝒜ℏ → 𝒜𝑁, e.g. spin-1 representation 𝐽𝑖 𝑗𝑘 = −𝑖 𝜀𝑖𝑗𝑘 , 

 

       𝐽1= −𝑖
0 0 0
0 0 1
0 −1 0

,    𝐽2 = −𝑖
0 0 −1
0 0 0
1 0 0

,     𝐽3 = −𝑖
0 1 0

−1 0 0
0 0 0

, 

 

(2) Differential operator representation: 𝒜ℏ  → 𝔇ℏ, e.g. 𝐽𝑖 = 𝐽𝑖
𝛼 𝜕

𝜕𝑥𝛼 ∈ Γ 𝑇𝕊2 ,   𝑥𝛼 = 𝜃, 𝜙 , 

 

      𝐽1 = 𝑠𝑖𝑛𝜙
𝜕

𝜕𝜃
+ cot𝜃 cos𝜙

𝜕

𝜕𝜙
,      𝐽2 = −𝑐𝑜𝑠𝜙

𝜕

𝜕𝜃
+ cot𝜃 sin𝜙

𝜕

𝜕𝜙
,      𝐽3= −

𝜕

𝜕𝜙
, 

 

      𝑔𝛼𝛽 =  𝐽𝑖
𝛼𝐽𝑖

𝛽3
𝑖=1 = 

1 0
0 1

sin2 𝜃

        ⇒     𝑔 = 𝑑𝜃2 + sin2 𝜃 𝑑𝜙2,    

 

 So we can derive the underlying geometry from the 𝑆𝑈(2) Lie algebra using  

 the duality chain : 𝒜ℏ → 𝒜𝑁 → 𝔇ℏ. 

                        Heuristic Example 



                    NC spacetime as 𝛼′-quantization 

Lesson from quantum mechanics: 

 

Quantum mechanics is the more fundamental description of nature.  

Classical world is a coarse graining description of quantum world,  

so emerges from the quantum mechanics in a specific limit ℏ → 0. 

Suppose that nature admits a new physical constant 𝛼′ whose physical dimension is of 𝑙𝑠
2.  

It is important to notice that a new physical constant such as ℏ and 𝛼′ introduces  

a deformation of some structure in a physical theory. For example, ℏ deforms the 

algebraic structure of particle phase space from commutative to NC space.  

 

An educated reasoning motivated by the fact that [𝛼′] = (length)×(length) leads to  

a natural speculation that α′ brings about the deformation of the algebraic structure 
of spacetime itself such that                      
                                 𝑥𝑦 − 𝑦𝑥 = 0     ⟹      𝑥𝑦 − 𝑦𝑥 = 𝑖 𝛼′.        (5) 

 

Since the mathematical structure of the NC space (5) is essentially the same as 

quantum mechanics, we will consider the deformation (5) as 𝛼′-quantization.  



                NC spacetime as 𝛼′-quantization 

Lesson from quantum mechanics: 

 

NC spacetime is the more fundamental description of nature.  

Classical spacetime is a coarse graining description of quantum geometry,  

so emerges from the NC spacetime in a specific limit 𝛼′ → 0. 

Suppose that a 𝑈(1) gauge theory is defined on ℝ1,𝑑−1 × ℝ𝜃
2𝑛 where ℝ𝜃

2𝑛 is the NC space 

whose coordinate generators obey the commutation relation 

 

                         𝑦𝑎 , 𝑦𝑏 = 𝑖𝜃𝑎𝑏,          (𝑎, 𝑏 = 1, ⋯ , 2𝑛)              (6) 

 

where 𝜃 𝑎𝑏 = 𝛼′(𝐼𝑛 ⊗ 𝑖𝜎2) is a 2𝑛 × 2𝑛 symplectic matrix and the NC space (5) 

corresponds to the 𝑛 = 1 case. 

 

Let us denote the NC ⋆-algebra generated by ℝ𝜃
2𝑛 by 𝒜𝜃 ≅ 𝒜ℏ and the NC ⋆-algebra  

on ℝ1,𝑑−1 × ℝ𝜃
2𝑛 by 𝒜𝜃

𝑑 ≡ 𝒜𝜃 𝐶∞ ℝ1,𝑑−1 = 𝐶∞ ℝ1,𝑑−1 ⊗ 𝒜𝜃. 

Note that the 𝑈(1) gauge theory on ℝ1,𝑑−1 × ℝ𝜃
2𝑛 takes values in 𝒜𝜃

𝑑. 





                Lesson from quantum mechanics 

History is a mirror to the future.  
If we do not learn from the mistakes of history, we are doomed to repeat them. 
                                             George Santayana (1863-1952) 

Since 𝒜𝜃 ≅ 𝒜ℏ, let us apply the propositions (A~D) in quantum mechanics to the 𝑈(1) 

gauge theory on ℝ1,𝑑−1 × ℝ𝜃
2𝑛  which takes values in 𝒜𝜃

𝑑. 
 

𝔸☞ NC space (6) introduces a separable Hilbert space ℋ = { 𝑛   𝑛 = 0,1, ⋯ , ∞} and 

dynamical variables become operators in 𝒜𝜃
𝑑 acting on the Hilbert space ℋ. 

 

𝔹☞ NC algebra 𝒜𝜃
𝑑 admits a nontrivial inner automorphism 𝔄𝜃

𝑑 

                               𝑓 𝑥, 𝑦 + 𝑑 = 𝑈𝑑
† 𝑓 𝑥, 𝑦  𝑈𝑑                          (7) 

for 𝑓 𝑥, 𝑦 ∈ 𝒜𝜃
𝑑 and 𝑈𝑑 = 𝑒𝑖𝑝⋅𝑑 ∈ 𝔄𝜃

𝑑 and 𝑝𝑎 = 𝐵𝑎𝑏 𝑦𝑏 with 𝐵 = 𝜃−1.  

This means that every points in the NC space ℝ𝜃
2𝑛 are unitarily equivalent. Thus the 

concept of classical space(time) is doomed and the space(time) is replaced by a quantum 

algebra (ℋ, 𝒜𝜃
𝑑) and the classical spacetime is derived (emergent) from the quantum 

algebra (ℋ, 𝒜𝜃
𝑑) in a specific limit.   



                Lesson from quantum mechanics 

In the presence of NC 𝑈(1) gauge fields which appear in the form of background-

independent variables 𝜙𝐴 = 𝑖𝐷𝜇 , 𝜙𝑎  where 𝐷𝜇 = 𝜕𝜇 − 𝑖𝐴𝜇(𝑥, 𝑦) and 𝜙𝑎 = 𝑝𝑎 + 𝐴𝑎 𝑥, 𝑦 ,  

one can covariantize the inner automorphism with 𝑈𝑑 = 𝑒𝑖𝜙𝐴𝑑𝐴
∈ 𝔄𝜃

𝑑 by introducing  

open Wilson lines.  (See, Ishibashi et. al.; Das & Rey; Gross et. al.) 

 

ℂ☞ The map 𝒜𝜃
𝑑  → 𝒜𝑁

𝑑 ≡ 𝒜𝑁 𝐶∞ ℝ1,𝑑−1 = 𝐶∞ ℝ1,𝑑−1 ⊗ 𝒜𝑁  is a Lie algebra 

homomorphism where 𝑁 =dim (ℋ) → ∞: 

 

             |𝑛  𝑛|𝑓 𝑥, 𝑦  |𝑚  𝑚| = ∞
𝑛,𝑚=0   𝑓𝑛𝑚(𝑥)|𝑛 ∞

𝑛,𝑚=0  𝑚|              (8) 

 

for 𝑓 𝑥, 𝑦 ∈ 𝒜𝜃
𝑑 and 𝑓 𝑥 𝑛𝑚 ∈ 𝒜𝑁

𝑑 .  

 

𝔻☞ For any dynamical variable, e.g. 𝜙𝐴 𝑥, 𝑦 ∈ 𝒜𝜃
𝑑 , we can associate a differential 

operator, the so-called polyvector fields in 𝒟𝜃
𝑑, by the adjoint map  

      

            𝒜𝜃
𝑑  → 𝒟𝜃

𝑑: 𝜙𝐴 𝑥, 𝑦  ↦ 𝑎𝑑𝜙𝐴
= [𝜙𝐴 𝑥, 𝑦 , ∙  ] ≡ 𝑉 𝐴.                 (9) 

 

The adjoint map 𝒜𝜃
𝑑  → 𝒟𝜃

𝑑 is also a Lie algebra homomorphism.                   



Using the matrix representation (8), the 𝐷 = (𝑑 + 2𝑛)-dimensional NC 𝑈(1) gauge theory 

on ℝ1,𝑑−1 × ℝ𝜃
2𝑛 is exactly mapped to the 𝑑-dimensional 𝑈(𝑁 → ∞) Yang-Mills theory on 

 ℝ1,𝑑−1:  

 

                                                                                                                         (10) 

 

                                                                                                                         (11) 

                                                                                                                              

where 𝐺𝑌𝑀
2 = 2𝜋 𝑛 𝑃𝑓𝜃  𝑔𝑌𝑀

2  and 𝐵𝐴𝐵 =
0 0
0 𝐵𝑎𝑏

. 

 

We emphasize that the equivalence between the 𝐷-dimensional NC 𝑈(1) gauge theory (10) 

and 𝑑-dimensional 𝑈(𝑁 → ∞) Yang-Mills theory (11) is not a dimensional reduction but 

an exact mathematical identity although they are defined in different dimensions with 

different gauge groups.  

 
What is a physical consequence of this mathematical identity?   

               Physical consequence from (𝔸 ⋃ ℂ)  



In a large-distance limit, i.e. 𝜃 → 0, one can expand the NC vector fields 𝑉 𝐴 in Eq. (9) 

using the explicit form of the Moyal ⋆-product. The result takes the form 

                                                                                                                          

                                                                                                                   (12) 

 

where 𝑋𝑀 = (𝑥𝜇, 𝑦𝑎) are local coordinates on a 𝐷-dimensional emergent Lorentzian 

manifold ℳ. In general, the module of derivations 𝒟𝜃
𝑑 is a direct sum of the submodules of 

horizontal and inner derivations: 

 

                                    𝒟𝜃
𝑑 = Hor (𝒜𝜃

𝑑) ⊕  𝒟(𝒜𝜃
𝑑),                       (13) 

 

where horizontal derivation is locally generated by a vector field  𝑘𝜇 𝑥, 𝑦
𝜕

𝜕𝑥𝜇 ∈ Hor (𝒜𝜃
𝑑).  

 

Thus the Taylor expansion of NC vector fields in 𝒟𝜃
𝑑 generates an infinite tower of the 

so-called polyvector fields. Note that the leading term gives rise to the ordinary vector 

fields that will be identified with a frame basis associated to the tangent bundle 𝑇ℳ  
of an emergent manifold ℳ. 

               Physical consequence from (𝔹 ⋃ 𝔻)  



               Physical consequence from (𝔸~𝔻)  



The large 𝑁 duality is still a conjecture, not proven yet. But we can use the emergent 

gravity from NC 𝑈 1  gauge theory to verify the conjectural large 𝑁 duality by realizing 

the equivalence between the actions (10) and (11) in a reverse way.  

 

It is based on the observation that there are two different kinds of vacua in Coulomb branch 

if we consider the 𝑁 → ∞ limit and the NC space (6) arises as a vacuum solution of the 𝑑-

dimensional 𝑈(𝑁 → ∞) Yang-Mills theory (11) in the Coulomb branch.  

 

The conventional choice of vacuum in the Coulomb branch of 𝑈(𝑁) Yang-Mills theory is 

given by 

                                                                                                                              (14) 

                                                                                                                           

for 𝑎 = 1, ⋯ , 2𝑛. In this case the 𝑈(𝑁) gauge symmetry is broken to 𝑈 1 𝑁.  

If we consider the 𝑁 → ∞ limit, the large 𝑁 limit opens a new phase of the Coulomb 

branch given by  

 

                                                                                                                              (15) 

 

where the vacuum moduli 𝑦𝑎 satisfy the Moyal-Heisenberg algebra (6).                                                                                                        

                            Large 𝑁 duality  



The vacuum (15) will be called the NC Coulomb branch.  

Note that the Moyal-Heisenberg vacuum (15) saves the NC nature of matrices  

while the conventional vacuum (14) dismisses the property. 

 

Suppose that fluctuations around the vacuum (15) take the form 

 
              𝐷𝜇 = 𝜕𝜇 − 𝑖𝐴𝜇 𝑥, 𝑦 ,            𝜙𝑎 = 𝑝𝑎 + 𝐴𝑎 𝑥, 𝑦 ∈ 𝒜𝜃

𝑑.                  (15) 

 

The above adjoint scalar fields now obey the deformed algebra given by 

 

        𝜙𝑎 , 𝜙𝑏 = −𝑖 𝐵𝑎𝑏 − 𝐹𝑎𝑏 ,                𝐹𝑎𝑏 = 𝜕𝑎𝐴𝑏 − 𝜕𝑏𝐴𝑎 − 𝑖 𝐴𝑎 , 𝐴𝑏 , 
 

with the definition 𝜕𝑎 ≡ −𝑖 𝑎𝑑𝑝𝑎
= −𝑖 𝑝𝑎, ∙ . Plugging the fluctuations (15) into  

the 𝑑-dimensional 𝑈(𝑁 → ∞) Yang-Mills theory (11), we finally get the 𝐷 = (𝑑 + 2𝑛)-

dimensional NC 𝑈(1) gauge theory (10) . Thus we arrive at the reversed version of the 

equivalence: 

 

 

                                                                                                                           (16) 

 

 

                            Large 𝑁 duality  



                 Flowchart for large 𝑁 duality  



If general relativity emerges from a symplectic or NC 𝑈(1) gauge theory, it is necessary 

to realize the equivalence principle and general covariance from the 𝑈(1) gauge theory.  

Now I will try to elucidate why NC spacetime requires us to take a radical departure from 

the 20th century physics.   

  

Consider a general open string action defined by 

              𝑆 =
1

4𝜋𝛼′
 𝑑𝑋 2 +  𝐵 +  𝐴

𝜕Σ
,

ΣΣ
              (17) 

where 𝑋:  Σ → 𝑀, 𝐵 Σ = 𝑋∗𝐵(𝑀) and 𝐴 𝜕Σ = 𝑋∗𝐴 𝑀 .  
 

The string action (17) respects two local gauge symmetries: 

 

(I) Diff(𝑀)-symmetry: 𝑋 → 𝑋′ = 𝜙 𝑋 ∈ Diff(𝑀), 

 

(II) Λ-symmetry: 𝐵, 𝐴 → (𝐵 − 𝑑Λ, 𝐴 + Λ), 

where the gauge parameter Λ is a one-form in Γ(𝑇∗𝑀).  

 

The Λ-symmetry is present only when 𝐵 ≠ 0. When 𝐵 = 0, the symmetry is reduced                       

to 𝐴 → 𝐴 + 𝑑𝜆, which is the ordinary 𝑈(1) gauge symmetry.  

     Equivalence principle for electromagnetic force  



Suppose that 𝐵 ∈ Γ(Λ2𝑇∗𝑀) is a symplectic structure on 𝑀, i.e., a nondegenerate, 

closed two-form. The symplectic two-form defines a bundle isomorphism  

𝐵: 𝑇𝑀 → 𝑇∗𝑀 by 𝑋 ↦ 𝐴 = 𝚤𝑋𝐵. Then 𝐹 = 𝑑𝐴 = ℒ𝑋𝐵 where ℒ𝑋 = 𝑑𝚤𝑋 + 𝚤𝑋𝑑 is the 

Lie derivative with respect to 𝑋 ∈ Γ(𝑇𝑀).  
 

𝐵 + 𝐹 ∈ Γ(Λ2𝑇∗𝑀) is a gauge invariant quantity under the Λ-symmetry, but we have 

the relation 𝐵 + 𝐹 = 𝐵 + ℒ𝑋𝐵 = (1 + ℒ𝑋)𝐵 ≈ 𝑒ℒ𝑋  𝐵. Note that a vector field is an 

infinitesimal generator of local coordinate transformations, in other words, a Lie algebra 

generator of Diff(𝑀). Thus there always exists a diffeomorphism 𝜙 ∈ Diff(𝑀) such that 

𝜙∗ 𝐵 + 𝐹 = 𝐵 where 𝜙∗ = 1 + ℒ𝑋
−1 ≈ 𝑒−ℒ𝑋. Actually this statement is precisely 

the Darboux theorem or the Moser lemma in symplectic geometry.  

 

Therefore the Λ-symmetry can be identified with a coordinate transformation generated 

by a vector field 𝑋 ∈ Γ(𝑇𝑀). As a result, the electromagnetic force can always be 

eliminated by a local coordinate transformation as far as 𝑈(1) gauge theory is defined 

on a spacetime with symplectic structure, in other words, a microscopic spacetime 

becomes NC. 

 

     Equivalence principle for electromagnetic force  



DBI action: Diff(𝑀) ⊕ Λ-symmetry 

𝑔𝑐 + 𝜅 𝐵 + 𝐹 → 𝑔𝑐 + 𝜅 𝐵 + ℒ𝑋𝐵 → 𝜙∗(𝑔𝑐 + 𝜅 1 + ℒ𝑋)𝐵 → 𝐺 + 𝜅𝐵  
where 𝐺 ≡ 𝜙∗ 𝑔𝑐  & 𝜙∗ = 1 + ℒ𝑋

−1 ≈ 𝑒−ℒ𝑋 ∶ 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑚𝑎𝑝 

 

      
1

𝑔𝑠
 𝑑𝑝+1𝑥 det 𝑔𝑐 + 𝜅 𝐵 + 𝐹 =

1

𝑔𝑠
 𝑑𝑝+1𝑦 det 𝐺 + 𝜅𝐵                 (18) 

                                                               =
1

𝐺𝑠
 𝑑𝑝+1𝑦 det 𝑔𝑜 + 𝜅 𝐹 − 𝐵         

where 𝐺𝜇𝜈 𝑦 =
𝜕𝑥𝑎

𝜕𝑦𝜇

𝜕𝑥𝑏

𝜕𝑦𝜈 𝑔𝑎𝑏 𝑥  and 𝜙: 𝑦𝑎 ↦ 𝑥𝑎(𝑦) = 𝑦𝑎 + 𝜃𝑎𝑏𝐴 𝑏 𝑦 .   

 

We remark that NC gauge fields 𝐴 𝑏 𝑦  are locally defined by quantizing the Poisson 
algebra on a local Darboux chart, so the quantum algebra (ℋ, 𝒜𝜃) defining the NC 

gauge theory is locally defined. Therefore, we need to glue these local data on Darboux 

charts to yield global vector fields which will eventually be identified with gravitational 

fields, i.e., vielbeins. 

 

Question: What is the operation of the gluing from the Hilbert space point of view? 

Answer?: According to Raamsdonk, it may be a quantum entanglement for locally  

                defined Hilbert spaces on overlapping Darboux patches.  

     Emergent geometry and quantum entanglement 



       Emergent spacetime from large 𝑁 duality 

Let us start with a one-dimensional matrix model, a.k.a. BFSS matrix model, with a bunch of 

𝑁 × 𝑁 Hermitian matrices, 𝜙𝐴 ∈ 𝒜𝑁
1 𝐴 = 1, ⋯ , 𝑑}, whose action is given by 

                        𝑆 =
1

𝑔2  𝑑𝑡 𝑇𝑟(−
1

2
𝐷0𝜙𝐴

2 +
1

4
𝜙𝐴, 𝜙𝐵

2)                          (19) 

where 𝐷0𝜙𝐴 = 
𝜕𝜙𝐴

𝜕𝑡
− 𝑖[𝐴0, 𝜙𝐴]. Consider a translation invariant vacuum defined by     

  

   𝐴0 𝑣𝑎𝑐= ℰ 𝟙𝑁×𝑁,     𝜙𝑎 𝑣𝑎𝑐= 𝑝𝑎 = 𝐵𝑎𝑏  𝑦𝑏 ∈ 𝒜𝑁
1 ,       (𝑎, 𝑏 = 1, ⋯ , 2𝑛),   (20) 

        𝜙𝑖 𝑣𝑎𝑐=  diag 𝜙𝑖 1, ⋯ , 𝜙𝑖 𝑁 ≡ 𝛼𝑖 ∈ 𝒜𝑁
1 ,  (𝑖 = 2𝑛 + 1, ⋯ , 𝑑),  

 

where 𝑦𝑎 , 𝑦𝑏 = 𝑖𝜃𝑎𝑏𝟙𝑁×𝑁 and 𝛼𝑖 , 𝛼𝑗 = 0. The above vacuum is a consistent 

solution of the theory (19). Introduce fluctuations around the vacuum  

                 𝐷0 = 
𝜕

𝜕𝑡
− 𝑖𝐴0 𝑡, 𝑦 ,     𝜙𝑎 = 𝑝𝑎 + 𝐴𝑎(𝑡, 𝑦),   𝜙𝑖 = 𝛼𝑖 + 𝜑𝑖 𝑡, 𝑦 .  

 

The action (19) for these fluctuations is given by 

            𝑆 =
1

𝑔𝑌𝑀
2  𝑑2𝑛+1𝑋 −

1

4
ℱ𝑀𝑁ℱ𝑀𝑁 −

1

2
𝐷𝑀𝜑𝑖

2 +
1

4
𝜑𝑖 , 𝜑𝑗

2
,     (21) 

where 𝑋𝑀 = 𝑡, 𝑦𝑎 ,  𝐴𝑀 = 𝐴0, 𝐴𝑎 ,  𝑀 = 0,1, ⋯ , 2𝑛 and ℱ𝑀𝑁 = 𝐵𝑀𝑁 − 𝐹𝑀𝑁.  



       Emergent spacetime from large 𝑁 duality 

Therefore the fluctuations around the NC vacuum are described by the (2𝑛 + 1)-

dimensional NC 𝑈(1) gauge theory with (𝑑 − 2𝑛) adjoint scalar fields. 

In this case, the emergent geometry are determined by applying the  flowchart  

in Fig. 2 to the action (21) and takes the form of a (2𝑛 + 1)-dimensional Lorentzian 

manifold embedded in ℝ1,𝑑 .  But, let us set 𝜑𝑖 𝑡, 𝑦 = 0 for simplicity. 

 

Then the time-dependent vector fields 𝑉 𝐴 𝑡 ∈ 𝔇𝜃
1  take the following form    

 

 

 

         

 

Let us truncate the above polyvector fields to ordinary vector fields given by  

 

                𝒳 𝑀 = 𝑉𝐴 = 𝑉𝐴
𝑀 𝑡, 𝑦

𝜕

𝜕𝑋𝑀 |𝐴, 𝑀 = 0,1, ⋯ , 2𝑛 . 



       Emergent spacetime from large 𝑁 duality 

The orthonormal vielbeins on 𝑇𝑀 are obtained by the prescription 

      

     𝑉0, 𝑉𝑎 = 𝐸0, 𝜆𝐸𝑎 ∈ Γ(𝑇𝑀)   or   𝑒0, 𝑒𝑎 = 𝑣0, 𝜆𝑣𝑎 ∈ Γ(𝑇∗𝑀).                 (22) 

 

The conformal factor 𝜆 ∈ 𝐶∞(𝑀) is determined by the volume-preserving condition 

 

             ℒ𝑉𝐴
𝓋𝑡 = 𝛻 ⋅ 𝑉𝐴 + 2 − 2𝑛 𝑉𝐴 ln 𝜆 = 0  with  𝓋𝑡 = 𝜆2𝑑𝑡 ∧ 𝑣1 ∧ ⋯ ∧ 𝑣2𝑛. 

 

If the structure equation of vector fields 𝑉𝐴 ∈ Γ(𝑇𝑀) is defined by 𝑉𝐴, 𝑉𝐵 = −𝑔𝐴𝐵
      𝐶  𝑉𝐶  , 

the volume-preserving condition can be written as  

 

                                          𝑔𝐵𝐴
      𝐵 = 𝑉𝐴 ln 𝜆2.                                                     (23) 

 

In the end, the Lorentzian metric on a (2𝑛 + 1)-dimensional emergent spacetime manifold  

is given by 

 

                                                                                                                                       (24) 

 

where 𝑨𝜇: = 𝐴0
𝜇

𝑡, 𝑦 𝑑𝑡.  



          Origin of flat Minkowski spactime 

The large 𝑁 duality in Fig. 2 says that the gravitational variables such as vielbeins in general 

relativity arise from the commutative limit of NC 𝑈(1) gauge fields. Then one may ask 

where the flat Minkowski spacetime comes from. Let us look at the metric (24) to identify 

the origin of the flat Minkowski spacetime. 

 

It turns out that the flat Minkowski spacetime is originated from the NC vacuum (20) since  

in this case 𝑉𝐴 vac = 𝛿𝐴
𝑀𝜕𝑀, so  𝜆 = 1 according to  (23). Thus the inverse vielbeins and the 

metric for the vacuum geometry are given by   

 

                   𝐸𝐴
(0)

= 𝑉𝐴
(0)

= (
𝜕

𝜕𝑡 
,

𝜕

𝜕𝑦𝑎),                 𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑦 ⋅ 𝑑𝑦 .        (25) 

 

We emphasize that the NC Coulomb vacuum (20) is responsible for the emergence of the 

Minkowski spacetime (25), but this vacuum has a nontrivial vacuum energy density caused 

by the condensate (20). We can calculate it using the action (21): 

                                   𝜌𝑣𝑎𝑐 =
1

4𝑔𝑌𝑀
2 𝐵𝑎𝑏

2.                                                     (26) 

A striking fact is that the flat spacetime is originated from the uniform vacuum energy (26) 

known as the cosmological constant in general relativity. This is a tangible difference from 

Einstein gravity, in which 𝑇𝜇𝜈 = 0 in flat spacetime. 



    Cosmic inflation from time-dependent matrices 

However, since we have started with the matrix model (19) in which any spacetime 

structure has not been assumed in advance, the spacetime was not existent at the 

beginning but simply emergent from the vacuum condensate (20) . Therefore the 

Planck energy condensation into vacuum must be regarded as a dynamical process. 

 

It is not difficult to show that the dynamical process for the vacuum condensate 

is described by the time-dependent vacuum matrices given by 

 

         𝜙𝑎 𝑡 𝑣𝑎𝑐 = 𝑝𝑎𝑒
𝜅𝑡

2 ,      𝐴0 𝑡 𝑣𝑎𝑐 =
𝜅

2
 𝑑𝜎

𝑑𝑦𝑎(𝜎)

𝑑𝜎

1

0
 𝑝𝑎 𝜎 ,            (27) 

 

where the open Wilson line is defined along a path parameterized by the curve  

𝑦𝑎 𝜎 = 𝑦0
𝑎 + 𝜁𝑎(𝜎) with 0 ≤ 𝜎 ≤ 1 and 𝑦𝑎 𝜎 = 0 ≡ 𝑦0

𝑎,  𝑦𝑎 𝜎 = 1 ≡ 𝑦𝑎. 

Using the formula                                

                                                                                              

 

for some differentiable function 𝐾(𝑦), it is easy to check that the time-dependent matrices  

in (27) satisfy the equations of motion, 𝐷0
2𝜙𝑎 + 𝜙𝑏, 𝜙𝑎 , 𝜙𝑏 = 0,  as well as the Gauss 

constraint, 𝜙𝑎 , 𝐷0𝜙𝑎 = 0. The constant 𝐻 = 𝑛 − 1 𝜅 will be identified with the 

inflationary Hubble constant. 



    Cosmic inflation from time-dependent matrices 

The (2𝑛 + 1)-dimensional basis for the time-dependent vacuum (27) can easily be calculated 

using the map (9): 

        𝑉0 =
𝜕

𝜕𝑡 
−

𝜅

2
𝑦𝑎 𝜕

𝜕𝑦𝑎,    𝑉𝑎 = 𝑒
𝜅𝑡

2
𝜕

𝜕𝑦𝑎    ⟹    𝑒0 = 𝑑𝑡,  𝑒𝑎 = 𝑒𝐻𝑡 𝑑𝑦𝑡
𝑎          (28) 

where 𝑦𝑡
𝑎 = 𝑒

𝜅𝑡

2 𝑦𝑎 and 𝜆 = 𝑒𝑛𝜅𝑡. Finally, the time-dependent metric for the inflating 

background (27) is given by 
                                    𝑑𝑠2 = −𝑑𝑡2 + 𝑒2𝐻𝑡 𝑑𝑦 𝑡 ⋅ 𝑑𝑦 𝑡 .                                  (29) 

Note that the conformal vector field 𝑍 ≡
1

2
𝑦𝑎 𝜕

𝜕𝑦𝑎 in Eq. (28) is known as the Liouville vector 

field in locally conformal symplectic manifolds and generated by the open Wilson line (27). 

It obeys ℒ𝑍𝐵 = 𝜅𝐵, so 𝐵 𝑡 = 𝑒𝜅𝑡𝐵.  This explains why the volume of spacetime phase 

space whose symplectic two-form is 𝐵 exponentially expands.  

 

Since 𝜙𝑎(𝑡 = 0) are operators acting on a Hilbert space, this means that the inflationary 

vacuum (27) creates a spacetime of the Planck size and evolves to the inflation epoch unlike 

the traditional inflationary models that describe just the exponential expansion of a 

preexisting spacetime. This picture is similar to the birth of inflationary universes (Hawking, 

Moss, Vilenkin) in which the universe is spontaneously created by quantum tunneling from 

nothing into a de Sitter space.                                



    Emergent spacetime, Quantum gravity and Cosmic inflation 

The cosmic inflation arises as a time-dependent solution of a background-independent theory 

describing the dynamical process of Planck energy condensate in vacuum without introducing 

any inflaton field as well as an ad hoc inflation potential.  

 

The large 𝑁 duality in Fig. 2 also implies  that cosmic inflation triggered by the Planck 

energy condensate into vacuum must be a single event. 

 

Thus the emergent spacetime is a completely new paradigm so that the multiverse 

debate in physics circles has to seriously take it into account. 

An underlying idea must be clear although it has been dormant so far.  

In order to understand NC spactime correctly, we need to deactivate the thought 

patterns that we have installed in our brains and taken for granted for so many 

years. However, if it is understood correctly, its impact must be huge as we have 

described in this talk. Therefore I hope an underlying idea of this talk has not 

been hindered by too restricted concepts and traditional prejudices. 


