APS index theorem for domain-wall fermion

H. Fukaya, T. Onogi, S. Yamaguchi (Osaka Univ.)

Work in progress

"Discrete Approaches to the Dynamics of Fields and Space-time"
September 21, 2017 @APCTP

Outline

- 1. Introduction
 - a. What is APS index theorem?
 - b. Symmetry protected topological (SPT) phase
 - c. Our goal
- 2. Index for domain-wall Dirac operator
 - a. Determinant phase of the domain-wall Dirac op.
 - Evaluation of PV contribution
 - c. Evaluation of DW contribution
 - d. Final results
- 3. Summary

1. Introduction

a. What is APS index theorem?

Atiyah, Patodi and Singer "Spectral asymmetry and Riemanian geometry", Math. Proc. Cambridge Philos. Soc. 77, 43

• Generalization of Atiyah-Singer Index theorem on a manifold with boundary.

• Key notion in bulk-edge correspondence for insulators in symmetry protected topological phase.

Atiyah-Singer index theorem

Index theorem for massless Dirac op. on even-dim manifold without boundary.

Index of
$$D_{4D} = \frac{1}{32\pi^2} \int d^4x \epsilon_{\mu\nu\rho\sigma} \text{tr} \left[F^{\mu\nu} F^{\rho\sigma} \right]$$

Can be derived by Fujikawa's method

$$\lim_{\Lambda \to \infty} \text{Tr} \gamma_5 e^{D_{4\text{D}}^2/\Lambda^2}$$

Simple 1-loop calculation
Insertion of complete set of plane-wave states

APS index theorem

Index theorem for <u>massless</u> Dirac op. on even-dim manifold with boundary.

Index of
$$D_{4D} = \frac{1}{32\pi^2} \int_{x_4>0} d^4x \epsilon_{\mu\nu\rho\sigma} \operatorname{tr}\left[F^{\mu\nu}F^{\rho\sigma}\right] - \frac{\eta(iD_{3D})}{2}$$

$$\eta(iD_{3D}) = \sum_{\lambda}^{\text{reg}} \text{sgn}(\lambda)$$
 : eigenvalue of iD_{3D}

17.9.21 6

Proof of APS index theorem

- Quite technical
- Proof is given only for the case

$$F_{4i} = 0$$
 near the boundary

Non-local boundary condition is imposed

$$D^{4D} = \gamma_4(\partial_4 + H), \quad H = \gamma_4 \gamma_i D^i \qquad A_4 = 0 \text{ gauge}$$

With non-local boundary condition (APS b.c.)

$$\frac{1}{2}\left(H+|H|\right)\psi\bigg|_{x_{4}=0}=0$$

b. Symmetry protected topological phase

Insulator with T-symmetry can have nontrivial topology (SPT phase)

Partition function after integrating massive fermion

$$\begin{split} Z_{\text{bulk}} &= |Z_{\text{bulk}}| \exp\left(i\pi \frac{1}{32\pi} \int d^4x \epsilon_{\mu\nu\rho\sigma} \text{tr}\left[F^{\mu\nu}F^{\rho\sigma}\right]\right) \\ Z'_{\text{bulk}} &= |Z_{\text{bulk}}| \exp\left(-i\pi \frac{1}{32\pi^2} \int d^4x \epsilon_{\mu\nu\rho\sigma} \text{tr}\left[F^{\mu\nu}F^{\rho\sigma}\right]\right) \\ &= |Z_{\text{bulk}}| \exp\left(i\pi \frac{1}{32\pi^2} \int d^4x \epsilon_{\mu\nu\rho\sigma} \text{tr}\left[F^{\mu\nu}F^{\rho\sigma}\right]\right) \\ &= Z_{\text{bulk}} \end{split}$$
 Atiyah-Singer index = integer !

T-invariance holds, but nontrivially, owing to Atiyah-Singer index theorem.

What happens if there is a boundary?

$$Z_{\text{bulk}} \approx |Z_{\text{bulk}}| e^{i\pi P}$$

$$P = \frac{1}{32\pi^2} \int_{x>0} d^4 x \epsilon_{\mu\nu\rho\sigma} \text{tr} \left[F^{\mu\nu} F^{\rho\sigma} \right]$$

P can no longer be integer > Violation of T symmetry!

Bulk-edge correspondence: Massless edge modes can appear at the boundary of insulator in SPT phase

Bulk-edge correspondence: additional massless edge mode can appear on Y

Low energy 3-dim effective action on Y

$$S_{\text{eff}} = \int_{Y} d^3x \bar{\psi} D^{3d} \psi + \cdots$$

Additional T-anomaly in $Det(D^{3d})$ from T-violating regularization

In 3-dim, (Pauli-Villars regulator) mass term always breaks T-symmetry

$$\operatorname{Det}(D^{3d}) = \prod_{i} \frac{\lambda_{i}}{\lambda_{i} + i\Lambda} = |\operatorname{Det}(D^{3d})| \exp\left(-i\frac{\pi}{2}\eta(D^{3d})\right)$$
$$\lambda_{i} : \text{ eigenvalue of } D^{3d}$$

$$\eta(D^{3d}) = \lim_{s \to 0} \sum_{k} \operatorname{sign}(\lambda_k) |\lambda_k|^{-s} : \eta\text{-invariant}$$

Argument based on low energy effective theory

Witten "Fermion path integrals and topological phases", Rev. Mod. Phys. 88 (2016)

c. f. Metlitski 15, Seiberg-Witten 16, Tachikawa-Yonekura 16, Freed-Hopkins 16, Yonekura 16

Full theory is invariant under T symmetry

→ Anomaly cancelled between the bulk & boundary?

Does this really happen? → YES! (Witten)

$$Z_{\text{bulk}} = |Z_{\text{bulk}}| \exp\left(i\pi \frac{1}{32} \int_{x_4 > 0} d^4 x \epsilon_{\mu\nu\rho\sigma} \text{tr}\left[F^{\mu\nu}F^{\rho\sigma}\right]\right)$$

$$Z_{\text{edge}} = |Z_{\text{edge}}| \exp\left(-i\pi \frac{\eta(iD_{3D})}{2}\right)$$

$$Z_{\text{bulk}} Z_{\text{edge}} = |Z_{\text{bulk}} Z_{\text{edge}}| (-1)^{\mathcal{J}}$$

$$\mathcal{J} = \frac{1}{32\pi^2} \int_{T_4>0} d^4 x \epsilon_{\mu\nu\rho\sigma} \text{tr} [F^{\mu\nu} F^{\rho\sigma}] - \frac{\eta(iD_{3\text{D}})}{2}$$

 $\mathcal{J} = APS \text{ index } = \text{ integer } Recovers T symmetry!$

This is the reason for the stable existence of edge modes!

Unsatisfactory points in Witten's argument:

➤ Reasonable argument but not derivation

```
Imposing theoretical consistency:
"symmetry (microscopic) = symmetry (low energy)"
Similar to anomaly matching condition
```

➤ Why APS index ?

- massless 4d Dirac op. does not appear in DW fermion
- appearance of APS index in T-anomaly looks just accidental
- APS index theorem do not deal with localized edge modes
- Non-local b.c. in APS ←??→ local b.c. in DW
- → Physics of "APS index" and "DW fermion" are quite different
- ➤ Simple and Direct Derivation like Fujikawa's method?

C. Our goal

We directly compute the index for domain-wall fermion. If successful,

- Microscopic derivation of the determinant phase of the Domainwall fermion in a "physicist-friendly" way, similar to the Fujikawa method.
- Better understanding of anomaly descent equations.

Our main result:

- ✓ index for domain-wall fermion = APS index
- √ T-anomaly cancellation using Fujikawa's method.

2. Index for domain-wall Dirac operator

2. Index for domain wall Dirac operator

a. Determinant phase of Domain-wall Dirac op.

Domain-wall fermion in 4-dim with 3-dim boundary

Defining
$$H_{\mathrm{DW}} = \gamma_5 \left(D + M \epsilon(x_4)\right)$$
 $H_{\mathrm{PV}} = \gamma_5 \left(D - M\right)$

Phase can be evaluated as

$$\det\left(\frac{D + M\epsilon(x_4)}{D - M}\right) = \left|\det\left(\frac{D + M\epsilon(x_4)}{D - M}\right)\right| \exp\left(\frac{i\pi}{2}\left(\eta(H_{\text{DW}}) - \eta(H_{\text{PV}})\right)\right)$$

4-dim Hamiltoinan $H_{\mathrm{DW}}, H_{\mathrm{PV}}: \mathrm{Hermitian}$

Det. should be real if properly regularized.

$$\frac{1}{2} \left(\eta(H_{\rm DW}) - \eta(H_{\rm PV}) \right) = \text{integer} \equiv \mathcal{J}^{\rm DW}$$

We propose to define this quantity \mathcal{J}_{DW} as "the index of Domain-wall Dirac op."

Computation of eta-invariant

$$\eta(H) = \lim_{s \to 0} \sum_{k} \frac{\operatorname{sign}(\frac{\lambda_{k}}{M})}{\left|\frac{\lambda}{M}\right|^{s}} = \lim_{s \to 0} \operatorname{Tr}\left[\frac{\frac{H}{M}}{\sqrt{\frac{H^{2}}{M^{2}}}^{1+s}}\right]$$
$$= \lim_{s \to 0} \frac{1}{\Gamma(\frac{1+s}{2})} \int_{0}^{\infty} dt \ t^{\frac{s-1}{2}} \operatorname{Tr}\left[\frac{H}{M} \exp\left(-t\frac{H^{2}}{M^{2}}\right)\right]$$

b. Computation of $\eta(H_{\rm PV})$

$$\begin{split} \frac{H_{\mathrm{PV}}}{M} &= -\gamma_5 + \gamma_5 \frac{D^{4d}}{M}, \quad \frac{H_{\mathrm{PV}}^2}{M^2} = 1 + \frac{(D^{4d})^2}{M^2} \\ \eta(H_{\mathrm{PV}}) &= \lim_{s \to 0} \int_0^\infty dt \frac{t^{\frac{s-1}{2}}}{\Gamma(\frac{1+s}{2})} e^{-t} \mathrm{Tr} \left[\left(-\gamma_5 + \sqrt{5} \frac{D^{4d}}{M} \right) \exp \left(-t \frac{(D^{4d})^2}{M^2} \right) \right] \end{split}$$
 Does not contributue

Calculation of trace using plane wave gives

Essentially the same calculation as Fujikawa's method.

c. Computation of $\eta(H_{\rm DW})$

DW fermion: feels γ_4 -dependent potential at the origin

$$\frac{H_{\text{DW}}}{M} = \gamma_5 \epsilon(x_4) + \gamma_5 \frac{D^{4d}}{M}, \quad \frac{H_{\text{DW}}^2}{M^2} = 1 + \frac{(D^{4d})^2 - 2M\gamma_4 \delta(x_4)}{M^2}$$

Complete set of plane wave states should be modified!

Taking the basis $\gamma_4 = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$ and solving eigenstates for the free part of H^2_{DW}

$$H_{\rm DW}^2 = -\partial_4^2 - \sum_{i=1}^3 \partial_i^2 + M^2 - 2M\gamma_4 \delta(x_4)$$

Complete set of states

$$\begin{split} \varphi_o^{\omega,\vec{k}}(x_4) &= \frac{1}{\sqrt{4\pi}} \left(e^{i\omega x_4} - e^{-i\omega x_4} \right) e^{i\vec{k}\cdot\vec{x}} \left(\begin{array}{c} \phi \\ 0 \end{array} \right), \\ \varphi_e^{\omega,\vec{k}}(x_4) &= \frac{1}{\sqrt{4\pi(\omega^2 + M^2)}} \left((i\omega - M) e^{i\omega|x_4|} + (i\omega + M) e^{-i\omega|x_4|} \right) e^{i\vec{k}\cdot\vec{x}} \left(\begin{array}{c} \phi \\ 0 \end{array} \right), \\ \varphi_e^{\text{edge}}(x_4) &= \sqrt{M} e^{-M|x_4|} \left(\begin{array}{c} \phi \\ 0 \end{array} \right), \\ \varphi_{-,o}^{\omega}(x_4) &= \frac{1}{\sqrt{4\pi}} \left(e^{i\omega x_4} - e^{-i\omega x_4} \right) e^{i\vec{k}\cdot\vec{x}} \left(\begin{array}{c} 0 \\ \chi \end{array} \right), \\ \varphi_{-,e}^{\omega}(x_4) &= \frac{1}{\sqrt{4\pi(\omega^2 + M^2)}} \left((i\omega + M) e^{i\omega|x_4|} + (i\omega - M) e^{-i\omega|x_4|} \right) e^{i\vec{k}\cdot\vec{x}} \left(\begin{array}{c} 0 \\ \chi \end{array} \right), \end{split}$$

$$\eta(H_{\mathrm{DW}}) = \lim_{s \to 0} \int_0^\infty dt \frac{t^{\frac{s-1}{2}}}{\Gamma(\frac{1+s}{2})} e^{-t} \mathrm{Tr} \left[\left(\gamma_5 \epsilon(x_4) + \sqrt{5} \frac{\overline{D}^{4d}}{M} \right) \exp\left(-t \frac{H_{\mathrm{DW}}^2}{M^2} \right) \right]$$
(1) (2)
$$Also \ \text{contributue due to}$$

$$\gamma_4 \text{-dep. complete set of states}$$

Calculation of (1) using complete set of plane wave states gives

$$\eta^{(1)}(H_{\rm DW}) = \frac{1}{32\pi^2} \int_{-\infty}^{\infty} dx_4 \int d^3x \epsilon(x_4) \epsilon^{\mu\nu\alpha\beta} \operatorname{tr}\left[F_{\mu\nu} F_{\alpha\beta}\right] + O(\frac{1}{M^2})$$

Essentially the same calculation as Fujikawa's method.

Calculation of (2) using complete set of states.

by differentiating & integrating over gauge field (integer part can be dropped)

After technical calculation using gaussian integral and error functions

$$\eta^{(2)}(H_{\rm DW}) = 2\left(-\frac{\eta(D^{3d})}{2} + \text{mod(integer)}\right)$$

$$\eta(H_{\rm DW}) = \eta^{(1)}(H_{\rm DW}) + \eta^{(2)}(H_{\rm DW})
= \frac{1}{32\pi^2} \int d^4x \epsilon(x_4) \epsilon^{\mu\nu\alpha\beta} \text{tr}[F_{\mu\nu}F_{\alpha\beta}] + 2\left(-\frac{\eta(D^{3d})}{2} + \text{mod(integer)}\right)$$

d. Final results

Combining PV and DW contributions, we obtain

$$\mathcal{J}^{\text{DW}} \equiv \frac{1}{2} \left(\eta(H_{\text{DW}}) - \eta(H_{\text{PV}}) \right)$$
$$= \frac{1}{32\pi^2} \int_{x_4 > 0} d^4 x \text{tr} \left[\epsilon^{\mu\nu\alpha\beta} F_{\mu\nu} F_{\alpha\beta} \right] - \frac{\eta(D^{3d})}{2} \text{(mod integer)}$$

This agrees with the result by APS index theorem!

Direct macroscopic derivation of Domain-Wall fermion determinant phase,

No fictitious massless Dirac op. needed as a mathematica tool.

We also confirm that domain-wall index

$$\mathcal{J} = \frac{\eta(H_{\rm DW})}{2} - \frac{\eta(H_{\rm PV})}{2}$$

Is idependent of mass,
$$\frac{\partial \mathcal{J}}{\partial M} = 0$$

And stable against change of gauge fields

$$\frac{\delta \mathcal{J}}{\delta A_{\mu}(x)} = 0.$$

3. Summary

3. Summary

- We have succeeded in direct derivation of the determinant phase for Domain-wall fermion using Fujikawa's method.
- We reformulated APS index theorem with domain-wall Dirac op.
- T-anomaly cancellation was understood from microscopic theory.

$$\begin{split} \Im(D^{\text{4D}})|_{\text{APS boundary}} &= \eta(H^{\text{4D}}(m))|_{\text{SO(3) symmetirc boundary}} \\ &= \int_{x_4>0} d^4x F \wedge F - \frac{\eta(iD^{\text{3D}})}{2} \end{split}$$

What is next?

- 1. Generalization to Shamir-type domain-wall fermions
- 2. Generalization to odd dimensions
- 3. Non-perturbative formulation of APS index theorem on a lattice

4. Application to 6D formulation of lattice chiral gauge theory.