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1. Introduction



a. What is APS index theorem?

Atiyah, Patodi and Singer “Spectral asymmetry and Riemanian
geometry”, Math. Proc. Cambridge Philos. Soc. 77, 43

» Generalization of Atiyah-Singer Index theorem on
a manifold with boundary.

 Key notion in bulk-edge correspondence for
insulators in symmetry protected topological phase.
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Atiyah-Singer index theorem

Index theorem for massless Dirac op.

on even-dim manifold without boundary.

1
/d4xewpatr [FHY FP7]

Ind f Dyp =
ndex of D4p 592

Can be derived by Fujikawa’s method

2 2
lim Trvs ePin/A
A—oo
Simple 1-loop calculation
st Insertion of complete set of plane-wave states



APS index theorem

Index theorem for massless Dirac op.

“«

on even-dim manifold with boundary. t
g4 = 0
1 v o U(ZD3D>
Index of Dyp = 393 o A€, potr [FH FP7) — 5

n(iDsp) =Y sgn()) A : eigenvalue of iDsp
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Proof of APS index theorem

* Quite technical
* Proof is given only for the case
F,; = 0 near the boundary
* Non-local boundary condition is imposed
D*P = 4, (04 + H), H = v4v; D’ Ay =0 gauge
With non-local boundary condition (APS b.c.)

1
SUH+H)Y =0
ZIZ4=O
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b. Symmetry protected topological phase

* Insulator with T-symmetry can have nontrivial
topology (SPT phase)

Partition function after integrating massive fermion

1
Zyulk = | Zbulk| exp (iﬁ /d4xe,w,mtr [F‘“’Fp"})

327

; 1 v o
Ziaie = | Zbuik| exp (—171'327_‘_2 /d4x6uwatr [F* FP ])

1
= | Zpuik| exp (iﬁgg 2 /d4xewpgtr [F“”F’”’])
T
\

= Zbulk !
Atiyah-Singer index = integer !

T-invariance holds, but nontrivially,
owing to Atiyah-Singer index theorem.
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What happens if there is a boundary?

Zoulk = | Zpui|e™

1 =

P=_—— d*zeu potr [FH FP7 )
327'('2 /:E>O L€pvp r[ ]

P can no longer be integer - Violation of T symmetry!

Bulk-edge correspondence: Massless edge modes can
appear at the boundary of insulator in SPT phase
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Bulk-edge correspondence:
additional massless edge mode can appearonY

Low energy 3-dim effective actionon'Y

X

Additional T-anomaly in Det(D??) from T-violating regularization

In 3-dim, (Pauli-Villars regulator) mass term always breaks T-symmetry

Det(D3%) =

= [Det(D*)|exp (—izn(D™))

A; : eigenvalue of D3

)\ +
3dy __ 1 . —s . .
n(D>?) = ;%;sgn()\k)]/\k] : p-invariant
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Argument based on low energy effective theory
Witten “Fermion path integrals and topological phases”, Rev. Mod. Phys. 88 (2016)

c. f. Metlitski 15, Seiberg-Witten 16, Tachikawa-Yonekura 16,
Freed-Hopkins 16, Yonekura 16
Full theory is invariant under T symmetry
—>Anomaly cancelled between the bulk & boundary ?
Does this really happen? - YES! (Witten)

1 -
Zputk = | Zbulk| exp (HT/ d*Te, potr [FH FP ])
32 Jiis0

i D
Zedge = |Zedge| exXp (7“7M)

ZbulkZedge = |ZbulkZedge | (_1)j

1 4 n(iD3p)
_ o Ry peo)
J 392 /:c4>0d T€pypotl | ] 2

J = APS index = integer Recovers T symmetry!

1 This is the reason for the stable existence of edge modes!



Unsatisfactory points in Witten’s argument:

»Reasonable argument but not derivation

Imposing theoretical consistency :
“symmetry (microscopic) = symmetry (low energy)”
Similar to anomaly matching condition

» Why APS index ?
- massless 4d Dirac op. does not appear in DW fermion
- appearance of APS index in T-anomaly looks just accidental
- APS index theorem do not deal with localized edge modes
- Non-local b.c. in APS €??-> local b.c. in DW
—> Physics of “APS index” and “DW fermion” are quite different

» Simple and Direct Derivation like Fujikawa’s method?
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C. Our goal

We directly compute the index for domain-wall fermion.
If successful,

» Microscopic derivation of the determinant phase of the Domain-
wall fermion in a "physicist-friendly" way, similar to the Fujikawa
method.

» Better understanding of anomaly descent equations.

Our main result:
v" index for domain-wall fermion = APS index
v T-anomaly cancellation using Fujikawa’s method.
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2. Index for domain-wall Dirac operator



2. Index for domain wall Dirac operator

a. Determinant phase of Domain-wall Dirac op.
Domain-wall fermion in 4-dim with 3-dim boundary

D M \ { Domain-wall with kink mass ‘
det + 6(584) )
D — M 7 ’ Pauli-Villars regulator ‘

Hpw =75 (D + Me(x4))
Hpv =75 (D — M)
Phase can be evaluated as

det <—D ;{45\?4))

e (25t

Defining

exp <% (n(Hpw) — 77<HPV))>



4-dim Hamiltoinan  Hpw, Hpy : Hermitian
@:> Det. should be real if properly regularized.

\ 4

(n(Hpw) — n(Hpy)) = integer = J°W

N | —

We propose to define this quantity Jpw
as “the index of Domain-wall Dirac op.”
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b. Computation of n(Hpvy)

Hpvy
M

n(Hpy) = lim

S—

(oo}

0

55 /54d DAdy2
dt - e 'Tr {(—75 + <—t( )

D4d H2 (D4d)2
VsV ]\;;/=1+ 72

—1

M2

i s ) exp
r(Le) UM

’ Does not contributue ‘

Calculation of trace using plane wave gives l:i}

)

n(Hev) = —

1
3272

> 1
/_ dm/d‘o’xe“”aﬁtr [FuvFag) + O(W

Essentially the same calculation as Fujikawa’s method.
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c. Computation of n(Hpw)

DW fermion: feels Y4 -dependent potential at the origin

H D%  [H2 DA2 _ oM~ (x
]DWW :’)/56($4)—‘r’75 DW :1+( ) V4 ( 4)

M’ M2 M?

Complete set of plane wave states should be modified!
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Taking the basis 7= ( é _O[ )
and solving eigenstates for the free part of H3,

3
Hiw = 03 — 3 0% + M* — 2M~,d ()
1=1
Complete set of states

L 1 W iwr ik ¢
w,k _ TWT 4 TWT 4 ik-T
Fry) = e —e e ,
Po ( 4) T’/T ( ) < 0 )
r 1

w,k _ _ iw|za| —iw|xa] k-@ ¢
o) = s (= Ao (g el o ()

gt = VR (0.

1 TWT 4 —iwTy ik-@ 0
T4) = e —e e ,
#oled) = 7 ( ) < X )
1 _ izl O
Co(xy) = ——m—/—7——((w+ M wlral 4 (o — M)e~@lzal) ik 7 ( ) ,
P2 o(0) = s ({4 M1 o G = M) (0

20



s—1
o0 ti
n(Hpw) = glin dt——

0Jo F(%)

Tyt 2
e ' Tr |:<’Y5€(£L'4) +65?\;/\> exp (tﬁ?‘;’)]

(1) l(z*\

Also contributue due to
Y4 -dep. complete set of states

Calculation of (1) using complete set of plane wave states gives

n™ (Hpw) =

1 > Vo 1
39,2 /_Oo da:4/d3xe(m4)e“ Ptr [Fu, Fap) —|—O(W)

Essentially the same calculation as Fujikawa’s method.
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Calculation of (2) using complete set of states.
by differentiating & integrating over gauge field
(integer part can be dropped )

After technical calculation
using gaussian integral and error functions

|

') (Hpw) = 2 (—

n(D3%)
2

+ mod(integer))

n(Hpw) = 0" (Hpw) +n® (Hpw)
_ 1
3272

DSd
/d4xe($4)e“”‘ﬁtr[FWFa5] +2 <——77( 5 )

+ mod(integer))
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d. Final results
Combining PV and DW contributions, we obtain

TV = % (n(Hpw) — n(Hpv))

B 1
3272

3d>

D
/ d*otr[e" P F,, Fop) — L(mod integer)
x4>0 2

This agrees with the result by APS index theorem!

Direct macroscopic derivation of
Domain-Wall fermion determinant phase,

No fictitious massless Dirac op. needed as a mathematica tool.
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We also confirm that domain-wall index

_ n(Hpw) n(Hpv)
J=" T

ls idependent of mass, OJ
oM
And stable against change of gauge fields

0T _ 0
0Au(x)

0



3. Summary



3. Summary

-We have succeeded in direct derivation of the
determinant phase for Domain-wall fermion using
Fujikawa’s method.

* We reformulated APS index theorem with
domain-wall Dirac op.

* T-anomaly cancellation was understood from
microscopic theory.

3(D4D) |APS boundary "7(H4D(m))’SO(3) symmetirc boundary

d*zFANF — n(iD’?)
x4>0 2




What is next?

Generalization to Shamir-type domain-wall fermions
Generalization to odd dimensions

Non-perturbative formulation of APS index theorem
on a lattice

. Application to 6D formulation of lattice chiral gauge
theory.



