Spontaneous symmetry breaking

What is important?

Independence of details of theory

Low-energy theorem

Ex.) Goldberger-Treiman relation

 $g_{\pi NN} = 2m_{N}g_{A}/f_{\pi}$

Relation between different vertices.

Why important? Without detail of systems, one can predict many things: **Spontaneous symmetry breaking** $\bf W$ in Table 10 are shown in Table L vs temperature curves for Gd4Bia and Gd4Sba are obtains values of the resistivity which are not too

dispersion relations, low-energy theorem,... metallic conduction mechanism. Table I gives the conduction method in the conduction method in the conduction slope of the curves above the Curie temperature that

Bloch *T*3/2 law, the phonon part in the resistivity. The magnetic scat- \mathbf{D} laab $\mathbf{T}^{3/2}$ law \blacksquare divided in the \blacksquare to *T=* OaK and subtracting the residual resistivity Pres.

different from those measured in Gd metal *(p= 130-*

Holtzberg, McGuire, M'ethfessel, Suits, J. Appl. Phys. 35,1033 (1964)

Debye *T*3 law, ...

All samples are ferromagnetic at low temperatures. Their magnetization approaches the saturation value $\bf I$ viau $\bf II$ ont $\bf I$ $\omega \sim \kappa$, $\bf I$ $\mathbf{Magnon: } \omega \sim k^2$ **Phonon:** $\omega \sim k$

'" **,-...j....-l....-lO....-l\O('f")**

Open systems

Environment

System

Example) Active matter

Questions Hamiltonian systems Continuum $\partial_\mu J^\mu = 0$ **Open systems** $\partial_\mu J^\mu \neq 0$ because of friction **What is the symmetry? Is there any symmetry breaking? Does a NG mode appear?**

Classification of Nambu-Goldstone modes in Hamiltonian system

Exception of NG theorem *NG* modes with $\ N_{\rm BS}\neq N_{NG} \ \ {\rm and} \ \ \omega \neq k \ \ \ {\rm exist}$ **Miransky, Shovkovy ('02) Schafer, Son, Stephanov, Toublan, and Verbaarschot ('01) Dispersion:** $\omega \propto k$ and $\omega \propto k^2$ $N_{\rm BS} = 3$, $N_{\rm NG} = 2$ **NG modes in Kaon condensed CFL phase** $SU(2)_I \times U(1)_Y \rightarrow U(1)_{\text{em}}$ **Dispersion: Magnon** $N_{\rm BS} = \dim(G/H) = 2$ $N_{\rm NG} = 1$ $\omega \propto k^2$ spin rotation *SO*(3) ! *SO*(2)

Internal symmetry breaking Symmetry group $G \Rightarrow H$

 $N_{BS} = \dim(G/H)$ # of flat direction

This does work in nonrelativistic system at zero and finite temperature

Classification of NG modes **[Watanabe, Murayama \('12\)](http://prl.aps.org/abstract/PRL/v108/i25/e251602), [YH \('12\)](http://arxiv.org/abs/arXiv:1203.1494)**

cf. Takahashi, Nitta ('14), Beekman ('14)

Type-A Type-B Harmonic oscillation $N_A = N_{BS} - \text{rank}\langle[iQ_a, Q_b]\rangle$ 1 2 $\mathrm{rank}\langle [iQ_a, Q_b]\rangle$ **Ex.) superfluid phonon Ex.) magnon** $N_{\rm NG}=N_{\rm BS}-\frac{1}{2}$ 2 $\langle i[Q_a,Q_b]\rangle$

Dispersion relation

Type-A Type-B $\boxed{\omega \sim \sqrt{g} \sim \sqrt{k^2}}$

$\omega \sim g \sim k^2$

Examples of Type-B NG modes

At finite temperature Hayata, YH ('14)

The interaction with thermal particles modifies the dispersion relation $\omega = a k - i b k^2$ $\omega = a'$ $\textbf{Type-B:}\omega = a'k^2 - ib'k^4$ **Type-A:**

Open system

[CC BY-SA 2.0](http://en.wikipedia.org/wiki/Active_matter#mediaviewer/File:The_flock_of_starlings_acting_as_a_swarm._-_geograph.org.uk_-_124593.jpg)

Ex)Active Brownian model Model of active particles

Process

 $\partial_t \epsilon = q - c\epsilon - \kappa v^2 \epsilon$ **feed** metabolic **kinematic energy loss** $m\partial_t v = -m\gamma v + \epsilon \kappa v + \mathcal{E}$ **friction noise propelling force**

Ex1)Active Brownian model

Ex2) Vicsek model

T. Vicsek, et al., PRL (1995).

 $\boldsymbol{x}_i(t + \Delta t) = \boldsymbol{x}_i(t) + \boldsymbol{v}_i \Delta t$ **velocity**

 $\theta_i(t + \Delta t) = \langle \theta_i(t) \rangle_r + \xi_i$ **angle of velocity** $\bm{v}_i = \overline{\bm{v}_0(\cos\theta_i,\sin\theta_i)}$ **average noise angle**

An example of SSB in open systems

Some cells on fish skin

low density high density

B. Szabo, et al., Phys. Rev. E 74, 061908 (2006)

Model of active matter: Vicseck model, Active hydrodynamics, …. T. Vicsek, et al., PRL (1995). J. Toner, and Y. Tu, PRL (1995).

Ex.) NG mode in Active hydrodynamics J. Toner, and Y. Tu, PRE (1998) **Field theoretical model**

 $\partial_t \boldsymbol{v} + (\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v} = \alpha \boldsymbol{v} - \beta \boldsymbol{v}^2 \boldsymbol{v} - \boldsymbol{\nabla} P + D_L \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \boldsymbol{v}) + D_l (\boldsymbol{v} \cdot \boldsymbol{\nabla})^2 \boldsymbol{v} + \boldsymbol{f}$ $\partial \rho + \mathbf{\nabla} \cdot (\rho \boldsymbol{v})=0$ nonconserved term noise

 $O(3) \rightarrow O(2)$ Steady state solution: $\bm{v}^2=\alpha/\beta\equiv v_0^2$ Fluctuation: $v = (v_0 + \delta v_x, \delta v_y, \delta v_z)$ Symmetry breaking:

> $\omega = ck \quad \omega = i\Gamma k^2$ NG modes **propagating diffusive**

Can we discuss symmetry breaking without ordinary conservation law?

Ex) Symmetry of Brownian motion

d $\frac{d}{dt}$ **u**(*t*) = $-\gamma$ **u**(*t*) + ξ (*t*) *d* $\frac{d}{dt}\boldsymbol{x}(t) = \boldsymbol{u}(t)$ **Langevin equation**

$$
\langle \xi_i(t)\xi_j(t')\rangle = 2\delta_{ij}\gamma T\delta(t-t')
$$

A ngular momentum $L = x \times u$

$$
\frac{d}{dt}\langle \mathbf{L}(t)\rangle = -\gamma \langle \mathbf{x} \times \mathbf{u}(t)\rangle \neq 0
$$
\nnot conserved

Langevin equation $\frac{d}{dt}u(t) = -\gamma u(t) + \xi(t)$ **Fokker-Planck equation** $\partial_t P(t,u) = \frac{\partial}{\partial u}$ ∂u_i $\left(\gamma T\frac{\partial}{\partial r^2}\right)$ ∂u_i $+$ γu_i $\overline{}$ $P(t,u)$ **Path integral Martin-Siggia-Rose formalism** $Z =$ Z $\mathcal{D}\chi\mathcal{D}ue^{iS[\chi,u]}$

Dynamic action: *iS* = Z $dt\Big[i\chi_i\Big]$ ⇣ *d* $\frac{d}{dt}u_i + \gamma u_i$ \overline{X} $-T\gamma\chi^2_i$ i

Symmetry of Dynamic action

$$
iS = \int dt \Big[i\chi_i \Big(\frac{d}{dt} u_i + \gamma u_i \Big) - T\gamma \chi_i^2 \Big]
$$

$\chi_i \rightarrow R_{ij}\chi_j \quad u_i \rightarrow R_{ij}u_j \quad \text{with} \; R_{ik}R_{kj} = \delta_{jk}$ **O(3) symmetry Noether charge** $L_{\text{MSR}} = \overline{\chi \times u} \quad L = \overline{x \times u}$ $L_{\rm MSR} \neq L$

Open quantum system

cf. for review, Sieberer, Buchhold, Diehl, 1512.00637

 ϕ_1 ϕ_2 **time** $S[\phi_1], S[\phi_2]$ are invariant. *Q*1*, Q*² :Symmetry generators: $Q_R =$ Q_1+Q_2 2 $Q_A =$ $Q_1 - Q_2$ Suppose $S_{12}[\phi_1, \phi_2]$ is invariant under $Q_A = \frac{\omega_1}{2}$ complex We also define **Schwinger-Keldysh Path integral** $Z =$ z $\mathcal{D}\phi_1\mathcal{D}\phi_2 \exp\left[i S[\phi_1] - i S[\phi_2] + i S_{12}[\phi_1,\phi_2]\right]$ $\overline{1}$

Ex1) SU(2)xU(1) model Type-A $^{V(\phi)}$ **Langevin equation** $\left(\partial_0^2\right)$ $\partial_0^2 + \gamma \partial_0 - \nabla^2) \phi_a = - \frac{\partial V}{\partial \phi}$ $\partial \phi_a$ $+\xi_a$ **Spontaneous symmetry breaking Minami, YH ('15)**

Linear analysis

 $(\partial_0^2 + \gamma \partial_0 - \nabla^2)\pi_a = 0$ **NG type-A mode** $\frac{1}{2} - \omega^2 - i \gamma \omega + k^2 = 0$ **diffusion mode** $\omega = \frac{-i\gamma}{2}$ 2 *± i* 2 $\sqrt{\gamma^2 - 4k^2} \sim$ *i* γ k^2 , $-i\gamma$ + *i* γ k^2 ### **Ex2) SU(2)xU(1)model Type-B with chemical potential** $V(\phi)$ **Spontaneous symmetry breaking Minami, YH ('15)**

 $\int -\partial_0^2 - \gamma \partial_0 + \nabla^2$ 2 $\mu \partial_0$ $-2\mu\partial_0$ $-\partial_0^2 - \gamma\partial_0 + \nabla^2$ $\bigwedge \pi_1$ π_2 ◆ $= 0,$ $\omega =$ k^2 $\frac{\dot{m}}{4\mu^2+\gamma^2}(\pm 2\mu-i\gamma)$

quadratic dispersion

Inverse propagator and dispersion

Minami, YH ('17)

$$
[G_{\pi}^{-1}(k)]^{\beta\alpha} = iC^{\mu;\beta\alpha}k_{\mu} + C^{\mu\nu;\beta\alpha}k_{\mu}k_{\nu} + \cdots
$$

Hamiltonian system

 $C^{\mu;\beta\alpha} = -\langle[iQ^\alpha_R, j^\beta_\mu(0)]\rangle$

$$
-i\int d^Dx \langle [iQ^\alpha_R, \mathcal{L}_{12}(x)]j^{\beta\mu}_A(0)\rangle_{\pi\mathrm{c}}
$$

$$
C^{\mu\nu;\beta\alpha} = i \int d^D x \langle j_R^{\alpha\mu}(x) j_A^{\beta\nu}(0) \rangle_{\pi c}
$$

$$
- \lim_{k \to 0} \frac{\partial}{\partial k_{\nu}} i \int d^D x e^{ik_{\rho}x^{\rho}} \langle [iQ_R^{\alpha}, \mathcal{L}_{12}(x)] j_A^{\beta\mu}(0) \rangle_{\pi c}
$$

Our result is too general Need to impose symmetry of S12 Ex)'Standard' Fokker-Plank eq. Type-A mode $\text{Diffusive} \quad \omega = -ik^2 \Gamma$ **Type-B mode** $\omega = ak^2 - ik^2\Gamma'$ $N_B =$ 1 2 $\mathrm{rank}\langle [iQ^{\alpha}_R$ $N_A = N_{\rm BS} - {\rm rank}\langle [iQ^\alpha_R,Q^\beta_A]\rangle \quad \,\,\, N_B = \frac{1}{2} {\rm rank}\langle [iQ^\alpha_R,Q^\beta_A]\rangle$

Next step: classification

Spontaneous breaking of symmetry of Dynamic action Type-A mode $\overline{\text{Diffusive}}$ $\omega = -ik^2\overline{\Gamma}$ **Type-B mode** $\omega = ak^2 - ik^2\Gamma'$ **Two-type of diffusive NG modes Next step: classification**

What is the condition satisfying this table?