
What is important?
Independence of details of theory

Spontaneous symmetry breaking

Low-energy theorem
Ex.) Goldberger-Treiman relation

g⇡NN = 2mNgA/f⇡
g⇡NN

Aµ
5

Relation between different vertices.



Why important?
Without detail of systems, one can predict many things:

Bloch T3/2 law，
dispersion relations, low-energy theorem,...
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obtained with solid ingots in the solid solution system 
Gd4(SbxBh_x)a are shown in Table L The resistivity 
vs temperature curves for Gd4Bia and Gd4Sba are 
shown in Fig. 3. At the high-temperature end one 
obtains values of the resistivity which are not too 
different from those measured in Gd metal (p= 130-
140 ,uQ cm) .6,6 The slope of the curves indicates a 
metallic conduction mechanism. Table I gives the 
slope of the curves above the Curie temperature that 
can be interpreted as the temperature dependence of 
the phonon part in the resistivity. The magnetic scat-
tering part pm has been determined in the usual way, 
by linear extrapolation of the high temperature part 
to T= OaK and subtracting the residual resistivity Pres. 

160r---------------, 

o 0.1 02 0.3 0.4 0.5 0.6 0.7 
(T/Tc )3/2 

FIG. 4. Saturation magnetization of Gd metal and 
Gd4 (SbxBi1_x)s compounds compared with the Tl law (solid 
lines). For Gd metal u oo/2 has been plotted. 

All samples are ferromagnetic at low temperatures. 
Their magnetization approaches the saturation value 
Uoo,T (at T=const) as UH.T=uoo ,T(1-a/H) for field 
strength H between 5 and 25 kOe. The values of "a" 
are given in Table 1. As shown in Fig. 4, the saturation 
magnetization UcoT follows the simple spin-wave law 

to remarkably high temperatures, similar to Gd metal. 
The absolute saturation moments, no per Gd atom, 
are lower than the value 7.0,uB expected for the 8S7/2 

ground state, This deviation is probably due to the 
presence of second phase in the grain boundaries ob-
servable by micro metallurgical techniques. 

The ferromagnetic Curie temperatures Tc were de-
termined by three different methods: by the classical 
method of Weiss and Forrer (W.F.), by extrapolating 

5 R. V. Colvin, S, Legvold, and F. H. Spedding, Phys. Rev. 
120, 741 (1960). 

6 P. W. Bridgman, Am. Acad. Arts. Sci. 82,83 (1953). 
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Gadolinium

Holtzberg, McGuire, M'ethfessel, Suits, J. Appl. Phys. 35,1033 (1964)

Debye T3 law, ...
from Kittel and Kroemer (1980)Solid argon

Spontaneous symmetry breaking

Magnon: Phonon:! ⇠ k2 ! ⇠ k



Open systems

Example) Active matter

System

Environment



Questions 
Hamiltonian systems

Continuum 
symmetry @µJ

µ = 0

Open systems
@µJ

µ 6= 0 because of friction

What is the symmetry?
Is there any symmetry breaking?

Does a NG mode appear?



Classification of  
Nambu-Goldstone modes 

in Hamiltonian system 



Exception of NG theorem
NBS 6= NNG and ! 6= k

Schafer,  Son, Stephanov, Toublan, and Verbaarschot (’01)Miransky, Shovkovy (’02)

Dispersion:
NBS = 3, NNG = 2

NG modes in Kaon condensed CFL phase

SU(2)I ⇥ U(1)Y ! U(1)em

! / k ! / k2and

existNG modes with

Dispersion:

Magnon

NBS = dim(G/H) = 2 NNG = 1

! / k2

spin rotation SO(3) ! SO(2)



Internal symmetry breaking

NBS = dim(G/H)
# of flat direction

G HSymmetry group ⇒

This does work in nonrelativistic system 
at zero and finite temperature



Type-A Type-B

Classification of NG modes

Harmonic oscillation Precession
NA = NBS � rankh[iQa, Qb]i NB =

1

2
rankh[iQa, Qb]i

Ex. ) superfluid phonon Ex. ) magnon

Watanabe, Murayama (’12), YH (’12)

NNG = NBS � 1

2
hi[Qa, Qb]i

cf.  Takahashi, Nitta (’14), Beekman (’14)

http://prl.aps.org/abstract/PRL/v108/i25/e251602
http://arxiv.org/abs/arXiv:1203.1494


Type-A Type-B

Dispersion relation

! ⇠ p
g ! ⇠ g⇠

p
k2 ⇠ k2

gravity



NBS Ntype-I Ntype-II
1

2
rankh[Qa, Qb]iNBS �NNG

Spin wave in 
ferromanget

SO(3)→SO(2) 2 0 1 1 2
NG modes 


in Kaon 
condensed CFL

SU(2)xSU(1)Y→U(1)em

3 1 1 1 3

Spinor BEC 
SO(3)xU(1)→U(1) 3 1 1 1 3

nonrelativistic 
massive CP1 model


U(1)xR3→R2 2 0 1 1 2

Examples of Type-B NG modes
NBS

1

2
rankh[Qa, Qb]i

NBS �NNG =
1

2
rankh[Qa, Qb]iNtype-A + 2Ntype-B = NBS

Ntype-A Ntype-B Ntype-A + 2Ntype-B



At finite temperature

The interaction with thermal particles 
modifies the dispersion relation

! = ak � ibk2

! = a0k2 � ib0k4
Type-A:
Type-B:

Hayata, YH (’14)
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Open system

http://en.wikipedia.org/wiki/Active_matter#mediaviewer/File:The_flock_of_starlings_acting_as_a_swarm._-_geograph.org.uk_-_124593.jpg


Ex)Active Brownian model
Model of active particles

@t✏ = q � c✏� v2✏
feed metabolic

m@tv = �m�v + ✏v + ⇠
friction noise

kinematic energy loss

propelling  
force



Ex1)Active Brownian model
position velocity



Ex2) Vicsek model
T. Vicsek, et al., PRL (1995).

xi(t+�t) = xi(t) + vi�t

✓i(t+�t) = h✓i(t)ir + ⇠i

velocity

angle of velocity

vi = v0(cos ✓i, sin ✓i)

noiseaverage 
angle

✓





Some cells on fish skin

An example of SSB in open systems

B. Szabo, et al.,  Phys. Rev. E 74, 061908 (2006)

Model of active matter: Vicseck model, Active hydrodynamics, ….
T. Vicsek, et al., PRL (1995). J. Toner, and Y. Tu, PRL (1995).

high densitylow density



@tv + (v ·r)v = ↵v � �v2v �rP +DLr(r · v) +Dl(v ·r)2v + f

@⇢+r · (⇢v) = 0

Ex.) NG mode in Active hydrodynamics
J. Toner, and Y. Tu, PRE (1998)

noisenonconserved term

! = ck ! = i�k2 NG modes
diffusivepropagating

O(3) ! O(2)

Steady state solution:

v = (v0 + �v
x

, �v
y

, �v
z

)Fluctuation:

v2 = ↵/� ⌘ v20

Symmetry breaking:

Field theoretical model



Can we discuss symmetry breaking 
without ordinary conservation law?



Ex) Symmetry of Brownian motion

d

dt
u(t) = ��u(t) + ⇠(t)

d

dt
x(t) = u(t)

L = x⇥ u

Angular momentum
d

dt
hL(t)i = ��hx⇥ u(t)i 6= 0

Langevin equation

h⇠i(t)⇠j(t0)i = 2�ij�T �(t� t0)

not conserved



Langevin equation
d

dt
u(t) = ��u(t) + ⇠(t)

Fokker-Planck equation
@tP (t, u) =

@

@ui

⇣
�T

@

@ui
+ �ui

⌘
P (t, u)

Path integral Martin-Siggia-Rose formalism

Z =

Z
D�DueiS[�,u]

Dynamic action: iS =

Z
dt
h
i�i

⇣ d

dt
ui + �ui

⌘
� T��2

i

i



�i ! Rij�j ui ! Rijuj

O(3) symmetry
with RikRkj = �jk

Symmetry of Dynamic action

Noether charge
LMSR = �⇥ u

L = x⇥ u

LMSR 6= L

iS =

Z
dt
h
i�i

⇣ d

dt
ui + �ui

⌘
� T��2

i

i



Open quantum system

�1

�2

time

S[�1], S[�2]

Q1, Q2 :Symmetry generators:

QR =
Q1 +Q2

2

QA =
Q1 �Q2

2
Suppose S12[�1,�2]

are invariant.

is invariant under

complex

We also define

Schwinger-Keldysh Path integral
cf. for review,  Sieberer, Buchhold, Diehl, 1512.00637

Z =

Z
D�1D�2 exp

h
iS[�1]� iS[�2] + iS12[�1,�2]

i



Ex1)SU(2)xU(1) model Type-A

�

V (�)

Langevin equation
(@2

0 + �@0 �r2)�a = � @V

@�a
+ ⇠a

Linear analysis
NG type-A mode

�!2 � i�! + k2 = 0

diffusion mode

(@2
0 + �@0 �r2)⇡a = 0

! =
�i�

2
± i

2

p
�2 � 4k2 ⇠ � i

�
k2,�i� +

i

�
k2

Spontaneous symmetry breaking
Minami, YH (’15)



Ex2)

�

V (�)with chemical potential

quadratic dispersion

✓
�@2

0 � �@0 +r2 2µ@0
�2µ@0 �@2

0 � �@0 +r2

◆✓
⇡1

⇡2

◆
= 0,

SU(2)xU(1)model Type-B

! =
k2

4µ2 + �2
(±2µ� i�)

Spontaneous symmetry breaking
Minami, YH (’15)



Minami, YH (’17)

[G�1
⇡ (k)]�↵ = iCµ;�↵kµ + Cµ⌫;�↵kµk⌫ + · · ·

Inverse propagator and dispersion

�i

Z
d

D
xh[iQ↵

R,L12(x)]j
�µ
A (0)i⇡c

� lim
k!0

@

@k

⌫

i

Z
d

D

xe

ik⇢x
⇢

h[iQ↵

R

,L12(x)]j
�µ

A

(0)i
⇡c

Cµ;�↵ = �h[iQ↵
R, j

�µ
A (0)]i

C

µ⌫;�↵ = i

Z
d

D
xhj↵µR (x)j�⌫A (0)i⇡c

Hamiltonian systemOpen system



Our result is too general

Need to impose symmetry of S12

Ex)’Standard’ Fokker-Plank eq.
Type-A mode

! = �ik2�Diffusive
Type-B mode
! = ak2 � ik2�0

Next step: classification

NB =
1

2
rankh[iQ↵

R, Q
�
A]iNA = NBS � rankh[iQ↵

R, Q
�
A]i



Spontaneous breaking of 
 symmetry of Dynamic action

Type-A mode
! = �ik2�Diffusive

Type-B mode
! = ak2 � ik2�0

Two-type of diffusive NG modes

Next step: classification



Type Dispersion
Conserved charge ExamplesRe Im

A
k k2 QA, QR Superfluid, etc.

0 k2 QA Flock of birds

B 
<[QA, QR ]>≠0

k2 k4 QA, QR Ferromagnet

k2 k2 QA Magnetotactic bacteria?

What is the condition satisfying this table?


