Spontaneous symmetry breaking

What is important?

Independence of details of theory

Low-energy theorem

Ex.) Goldberger-Treiman relation

 $g_{\pi NN} = 2m_N g_A / f_\pi$

Relation between different vertices.

Spontaneous symmetry breaking Why important? Without detail of systems, one can predict many things:

dispersion relations, low-energy theorem,...

Bloch $T^{3/2}$ law,

Holtzberg, McGuire, M'ethfessel, Suits, J. Appl. Phys. 35,1033 (1964)

|Magnon: $\omega \sim k^2$ |

Debye T^3 law, ...

Phonon: $\omega \sim k$

Open systems

Environment

System

Example) Active matter

Questions Hamiltonian systems Continuum $\partial_{\mu}J^{\mu} = 0$ symmetry **Open systems** $\partial_{\mu}J^{\mu} \neq 0$ because of friction What is the symmetry? Is there any symmetry breaking? **Does a NG mode appear?**

Classification of Nambu-Goldstone modes in Hamiltonian system

Exception of NG theorem NG modes with $N_{\mathrm{BS}}
eq N_{NG}$ and $\omega
eq k$ exist NG modes in Kaon condensed CFL phase Miransky, Shovkovy ('02) Schafer, Son, Stephanov, Toublan, and Verbaarschot ('01) $SU(2)_I \times U(1)_Y \to U(1)_{\rm em}$ $N_{\rm BS} = 3, \quad N_{\rm NG} = 2$ Dispersion: $\omega \propto k$ and $\omega \propto k^2$ – Magnon $\uparrow \uparrow \circ Spin rotation SO(3) \rightarrow SO(2)$ $N_{\rm BS} = \dim(G/H) = 2$ $N_{\rm NG} = 1$ Dispersion: $\omega \propto k^2$

Internal symmetry breaking Symmetry group $G \Rightarrow H$

of flat direction $N_{\rm BS} = \dim(G/H)$

This does work in nonrelativistic system at zero and finite temperature

Classification of NG modes Watanabe, Murayama ('12), YH ('12)

cf. Takahashi, Nitta ('14), Beekman ('14)

Type-A
Harmonic oscillationType-B
Precession $N_A = N_{BS} - rank\langle [iQ_a, Q_b] \rangle$ $N_B = \frac{1}{2} rank\langle [iQ_a, Q_b] \rangle$ Ex.) superfluid phononEx.) magnon $N_{NG} = N_{BS} - \frac{1}{2} \langle i[Q_a, Q_b] \rangle$

Dispersion relation

Type-A $\omega \sim \sqrt{g} \sim \sqrt{k^2}$

Type-B $\omega \sim g \sim k^2$

Examples of Type-B NG modes

	$N_{\rm BS}$	$N_{\rm type-A}$	$N_{ ext{type-B}}$	$\frac{1}{2} \operatorname{rank} \langle [Q_a, Q_b] \rangle$	$N_{\rm type-A} + 2N_{\rm type-B}$
Spin wave in ferromanget SO(3)→SO(2)	2	0	1		2
NG modes in Kaon condensed CFL SU(2)xSU(1)y→U(1)em	3	-1	1		3
Spinor BEC SO(3)xU(1)→U(1)	3	1	1	-1	3
nonrelativistic massive CP ¹ model U(1)x R ³ → R ²	2	0	1		2
$N_{\text{type-A}} + 2N_{\text{type-B}} = N_{\text{BS}}$ $N_{\text{BS}} - N_{\text{NG}} = \frac{1}{2} \text{rank} \langle [Q_a, Q_b] \rangle$					

ING

2

 $\underline{\mathsf{Lank}}[\forall a, \forall b]/$

At finite temperature Hayata, YH ('14)

The interaction with thermal particles modifies the dispersion relation Type-A: $\omega = ak - ibk^2$ Type-B: $\omega = a'k^2 - ib'k^4$

Open system

CC BY-SA 2.0

Model of active particles Ex)Active Brownian model

 $\partial_t \epsilon = q - c\epsilon - \kappa v^2 \epsilon$ feed metabolic kinematic energy loss $m \partial_t v = -m \gamma v + \epsilon \kappa v + \xi$ friction propelling noise force

Ex1)Active Brownian model

Ex2) Vicsek model

T. Vicsek, et al., PRL (1995).

 $oldsymbol{x}_i(t+\Delta t) = oldsymbol{x}_i(t) + oldsymbol{v}_i\Delta t$ velocity

 $oldsymbol{v}_i = oldsymbol{v}_0 (\cos heta_i, \sin heta_i)$ $eta_i (t + \Delta t) = \langle heta_i (t)
angle_r + \xi_i$ angle of velocity average noise angle

An example of SSB in open systems

Some cells on fish skin

low density

high density

B. Szabo, et al., Phys. Rev. E 74, 061908 (2006)

Model of active matter: Vicseck model, Active hydrodynamics, T. Vicsek, et al., PRL (1995). J. Toner, and Y. Tu, PRL (1995).

Field theoretical model Ex.) NG mode in Active hydrodynamics J. Toner, and Y. Tu, PRE (1998)

 $\begin{array}{l} \partial \rho + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{v}) = 0 \\ \partial_t \boldsymbol{v} + (\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v} = \alpha \boldsymbol{v} - \beta \boldsymbol{v}^2 \boldsymbol{v} - \boldsymbol{\nabla} P + D_L \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \boldsymbol{v}) + D_l (\boldsymbol{v} \cdot \boldsymbol{\nabla})^2 \boldsymbol{v} + \boldsymbol{f} \\ \text{nonconserved term} & \text{noise} \end{array}$

Steady state solution: $v^2 = \alpha/\beta \equiv v_0^2$ Symmetry breaking: $O(3) \rightarrow O(2)$ Fluctuation: $v = (v_0 + \delta v_x, \delta v_y, \delta v_z)$

 $\omega = ck \quad \omega = i\Gamma k^2 \text{ NG modes}$ propagating diffusive

Can we discuss symmetry breaking without ordinary conservation law?

Ex) Symmetry of Brownian motion

Langevin equation $\frac{d}{dt}\boldsymbol{x}(t) = \boldsymbol{u}(t)$ $\frac{d}{dt}\boldsymbol{u}(t) = -\gamma \boldsymbol{u}(t) + \boldsymbol{\xi}(t)$

$$\langle \xi_i(t)\xi_j(t')\rangle = 2\delta_{ij}\gamma T\delta(t-t')$$

Angular momentum L = x imes u

$$\frac{d}{dt} \langle \boldsymbol{L}(t) \rangle = -\gamma \langle \boldsymbol{x} \times \boldsymbol{u}(t) \rangle \neq 0$$

not conserved

Langevin equation $\frac{d}{dt}u(t) = -\gamma u(t) + \xi(t)$ Fokker-Planck equation $\partial_t P(t, u) = \frac{\partial}{\partial u_i} \left(\gamma T \frac{\partial}{\partial u_i} + \gamma u_i \right) P(t, u)$ Path integral Martin-Siggia-Rose formalism $Z = \int \mathcal{D}\chi \mathcal{D}u e^{iS[\chi, u]}$ **Dynamic action:** $iS = \int dt \left[i\chi_i \left(\frac{d}{dt} u_i + \gamma u_i \right) - T\gamma \chi_i^2 \right]$

Symmetry of Dynamic action

$$iS = \int dt \left[i\chi_i \left(\frac{d}{dt} u_i + \gamma u_i \right) - T\gamma \chi_i^2 \right]$$

O(3) symmetry $\chi_i \rightarrow R_{ij}\chi_j \quad u_i \rightarrow R_{ij}u_j \quad \text{with } R_{ik}R_{kj} = \delta_{jk}$ Noether charge $L_{MSR} = \chi \times u \quad L = \chi \times u$ $L_{MSR} \neq L$

Open quantum system

cf. for review, Sieberer, Buchhold, Diehl, 1512.00637

Schwinger-Keldysh Path integral time ϕ_1 ϕ_2 $Z = \int \mathcal{D}\phi_1 \mathcal{D}\phi_2 \exp\left[iS[\phi_1] - iS[\phi_2] + iS_{12}[\phi_1, \phi_2]\right]$ complex Q_1, Q_2 :Symmetry generators: $S[\phi_1], S[\phi_2]$ are invariant. Suppose $S_{12}[\phi_1, \phi_2]$ is invariant under $Q_A = \frac{Q_1 - Q_2}{2}$ We also define $Q_R = \frac{Q_1 + Q_2}{2}$

Spontaneous symmetry breaking Minami, YH ('15) Ex1) SU(2)xU(1) model Type-A $V(\phi)$ Langevin equation $(\partial_0^2 + \gamma \partial_0 - \nabla^2)\phi_a = -\frac{\partial V}{\partial \phi_a} + \xi_a$

Linear analysis

 $(\partial_0^2 + \gamma \partial_0 - \nabla^2)\pi_a = 0 \text{ NG type-A mode}$ $-\omega^2 - i\gamma\omega + k^2 = 0$ $\omega = \frac{-i\gamma}{2} \pm \frac{i}{2}\sqrt{\gamma^2 - 4k^2} \sim -\frac{i}{\gamma}k^2, -i\gamma + \frac{i}{\gamma}k^2$ diffusion mode

Spontaneous symmetry breaking Minami, YH ('15) Ex2) SU(2)xU(1)model Type-B with chemical potential V(φ)

quadratic dispersion

Inverse propagator and dispersion

Minami, YH ('17)

$$[G_{\pi}^{-1}(k)]^{\beta\alpha} = iC^{\mu;\beta\alpha}k_{\mu} + C^{\mu\nu;\beta\alpha}k_{\mu}k_{\nu} + \cdots$$

Hamiltopian system

 $C^{\mu;\beta\alpha} = -\langle [iQ_R^{\alpha}, j_A^{\beta\mu}(0)] \rangle$

$$-i \int d^D x \langle [iQ_R^{\alpha}, \mathcal{L}_{12}(x)] j_A^{\beta\mu}(0) \rangle_{\pi c}$$

$$C^{\mu\nu;\beta\alpha} = i \int d^D x \langle j_R^{\alpha\mu}(x) j_A^{\beta\nu}(0) \rangle_{\pi c} - \lim_{k \to 0} \frac{\partial}{\partial k_{\nu}} i \int d^D x e^{ik_{\rho}x^{\rho}} \langle [iQ_R^{\alpha}, \mathcal{L}_{12}(x)] j_A^{\beta\mu}(0) \rangle_{\pi c}$$

Our result is too general Need to impose symmetry of S₁₂ Ex)'Standard' Fokker-Plank eq. **Type-A mode Type-B mode** Diffusive $\omega = -ik^2\Gamma$ $\omega = ak^2 - ik^2\Gamma'$ $N_B = \frac{1}{2} \operatorname{rank} \langle [iQ_R^{\alpha}, Q_A^{\beta}] \rangle$ $\overline{N}_A = \overline{N}_{\rm BS} - \operatorname{rank}\langle [iQ_B^{\alpha}, Q_A^{\beta}] \rangle$

Next step: classification

Spontaneous breaking of symmetry of Dynamic action **Two-type of diffusive NG modes** Type-A mode **Type-B mode** Diffusive $\omega = -ik^2\Gamma$ $\omega = ak^2 - ik^2\Gamma'$ Next step: classification

Туре	Dispersion		Concerned oborro	Evopoloo
	Re	Im	Conserved charge	Examples
A	k	k ²	Q _A , Q _R	Superfluid, etc.
	0	k ²	QA	Flock of birds
B <[Qa, Qr]>≠0	k ²	k⁴	Q _A , Q _R	Ferromagnet
	k ²	k ²	QA	Magnetotactic bacteria?

What is the condition satisfying this table?