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1 Introduction

In this Talk, I discuss on recent topics in quantum statistical mechainics -

thermalization and localization in quantum many-body systems.

1.1 What is thermalization?

Let’s consider a closed quantum system S. Time evolution of the system is

given by

ρ(t) = e−iHtρ(0)eiHt, H : Hamiltonian

We can consider the same system in thermal equilibrium at temperature β−1:

ρ(eq)(β) =
1

Z(β)
e−βH, Z(β) = Tr e−βH
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Figure 1: The closed system S is inside of the box. The subregion A is a region bounded by the red circle, and B = S −A.

Pick a small subregion A in the system in real space.

B = S −A is regarded as a reservoir.

Reduced density matrix of A:

ρA(t) = TrB ρ(t).

Also,

ρ
(eq)
A (β) = TrB ρ

(eq)(β).
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Then, the system thermalizes for the temperature β−1 if

ρA(t)→ ρ
(eq)
A (β) as t→∞ and |S| → ∞ with |A| fixed

holds for all subsystems A.

Note: Thermalization does not imply ρ(t)→ ρ(eq)(β).
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1.2 Eigenstate Thermalization Hypothesis (ETH)

Suppose ρ(0) is a pure state of an energy eigenstate:

ρ(0) = |En⟩⟨En|, H|En⟩ = En|En⟩.

=⇒ ρ is time-independent: ρ(t) = ρ(0).

=⇒ ρA(t) = ρA(0) for any A.

In this case, we expect all the energy eigenstates are thermalized (ETH).

[Deutsch 1991, Srednicki 1994, Tasaki 1998,...]

If ETH holds,

• The temperature at the thermal equilibrium β−1n is determined by

En = ⟨H⟩βn ≡
1

Z(βn)
Tr
(
H e−βnH

)
.

• Entanglement entropy

SA = −TrA (ρA ln ρA)
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is equal to the equilibrium thermal entropy of A.

In particular, SA obeys the volume law: SA ∝ |A|.

• Initial density matrix

ρ(0) =
∑
n,m

γn,m |En⟩⟨Em|

evolves as

ρ(t) =
∑
n,m

γn,m e
−i(En−Em)t |En⟩⟨Em|

(Thermalization) = (Contribution from off-diagonals decays at late time)

For an operator X,

⟨X⟩ = Tr [X ρ(t)] =
∑
n,m

γn,mXmn e
−i(En−Em)t

When γn,mXmn slowly varies w.r.t. n and m, contribution form

off-diagonals is strongly suppressed at late time due to rapidly oscillating

behavior (dephasing).

6



Such “global” operators would be suitable observables treated in quantum

statistical mechanics.

Local initial informations are ‘hidden’ in dephasing after long time.

However, ETH is a hypothesis.

Not true for one class of systems - localized systems.
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1.3 Localized systems

♢ Anderson localization (single particle problem) [Anderson 1958]

H = −
1

2m

∂2

∂x2
+ Vp(x) + Vq(x)

↑ ↖
periodic potential random noise

• For Vq = 0,

Wave function ψ(x) is oscillating (Bloch wave).

• When Vq is turned on,

Wave function becomes localized:

ψ(x) ∼ e−µq|x| (|x| → ∞)

with a strictly positive constant µq.

8



♢ Many-body localization (MBL):

• localization with many-body interactions

• occurs for highly excited states

Typical system (quantum spin-1
2
chain)

H =
∑
i

hiσ
z
i +

∑
⟨i, j⟩

Jij σ⃗i · σ⃗j

↗ ↖
−W ≲ (random magnetic fields) ≲ W short-range interations

All Jij are almost same. Jij ∼ J .

1. For all Jij = 0,

eigenstates are product states |σz1⟩|σz2⟩ · · · .
=⇒ the system is fully localized.

Strictly local integrals of motion (LIOM): σzi (i = 1, 2, · · · )
[H, σzi ] = 0
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2. For J ̸= 0 and J ≪W ,

=⇒ MBL takes place.

Quasi LIOM (with exponentially decaying tails) are constructed

perturbatively and nonperturbatively

[Basko-Aleiner-Altshuler 2006, Imbre 2014]

H = E0 +
∑
i

h′iτ
z
i +

∑
i<j

J ′ij τ
z
i τ

z
j

+
∞∑
n=1

∑
i<k1<···<kn<j

K
(n)
i {k} j τ

z
i τ

z
k1
· · · τ zknτ

z
j

τ zi = e−iSσzi e
iS: Unitary transf. of σzi

Couplings J ′ij, K
(n)
i, {k},j fall off exponentially as |i− j| → ∞.

• Each of the terms in H is quasi LIOM.

• No spin flip operators (τx, τ y) in H=⇒ No dissipation
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1. First, consider the site i = 2.

Unitary transformation (Schrieffer-Wolff transf.):

H → H ′ = eiSH e−iS

S: sum of local operators is chosen so that off diagonals σx2 , σ
y
2 can be

eliminated

=⇒ [σz2, H
′] = 0:

Writing H = H0 + V with H0 ≡ h2σ
z
2 , V ≡ (rest),

S =
−i
2h2

(P+V P− − P−V P+) +O(V 2), P± =
1

2
(12± σz2).

2. Continue for the other sites. =⇒ H ′(σzi ) (σxi , σ
y
i : eliminated)

H = e−iSH ′(σzi ) e
iS = H ′(τ zi ) with τ zi = e−iSσzi e

iS
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3. For J ≫W ,

=⇒ ETH true

Phase transition between MBL and ETH phases around J ∼W ?

New type of phase transition between thermal equilibrium and

out-of-equilibrium.

For applications, it is expected that localization is an intriguing phenomenon

to protect the system from thermal decoherence

and to construct devices for quantum computation.
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Some properties (known from spin systems)

Thermal phase Many-body localizaton

ETH true ETH false

Memory of local initial info. ‘hidden’ Memory of some local initial info.preserved

Continuous spectrum Discrete spectrum

Eigenstates with Eigenstates with
volume-law EE area-law EE

Power-law spreading of entanglement Logarithmic spreading of entanglement
from non-entangled initial state from non-entangled initial state

SA ∼ tp SA ∼ ln t
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Issues:

- Almost these analysis have been performed only for spin systems.

Extension to other systems should be important to understand universal

properties for localizations.

- While numerical evidence has been accumulated, analytic treatment is hard.

Hard to investigate large volume systems in numerics. ∼ 20 sites

- Nonthermal phases other than Anderson localization phase and MBL phase?

� �
Here, we construct an integrable model of many-body conformal quantum me-

chanics by using coproducts,

and analyze its thermal or localization properties.� �
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2 Many-body interacting model by using coproducts

Based on the idea by [Ballesteros-Ragnisco 1998].

2.1 Conformal quantum mechanics

♢ SL(2, R) (1d conformal) generators: L0, L+, L−

[L0, L±] = ±L±, [L+, L−] = −2L0

♢ Realization as 1 particle QM [De Alfaro-Fubini-Furlan 1976]

L0 =
1

4

(
p2 +

g

x2
+ x2

)
,← Hamiltonian

L± =
1

4

(
−p2 −

g

x2
+ x2

)
∓ i

1

4
(xp+ px).

For simplicity, we consider the case of g = 0 (harmonic oscillator).
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2.2 Coproducts

La, i (a = 0, ±) : L-operators of particle i (or at site i)

∆(2)(La) = La ⊗ 1 + 1⊗ La = La, 1 + La, 2,

∆(3)(La) = (11⊗∆(2)) ◦∆(2)(La)

= (11⊗∆(2)) ◦ (La ⊗ 1 + 1⊗ La)
= La ⊗∆(2)(1) + 1⊗∆(2)(La)

= La ⊗ 1⊗ 1 + 1⊗ (La ⊗ 1 + 1⊗ La)
= La, 1 + La, 2 + La, 3,

...

∆(k)(La) = (

k−2︷ ︸︸ ︷
11⊗ · · · ⊗ 11⊗∆(2)) ◦∆(k−1)(La)

= La, 1 + · · ·+ La, k
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Note: The copropuct acts as homomorphism:

[∆(k)(L0), ∆
(k)(L±)] = ±∆(k)(L±),

[∆(k)(L+), ∆
(k)(L−)] = −2∆(k)(L0).

For Casimir operator

C = L2
0 −

1

2
{L+, L−} = L2

0 − L0 − L+L−,

∆(k)(C) =
(
∆(k)(L0)

)2
−∆(k)(L0)−∆(k)(L+)∆

(k)(L−).

=⇒ ∆(k)(C) commutes with ∆(k)(La)

=⇒ ∆(k′)(C) commutes with ∆(k)(La) when k′ ≤ k
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2.3 N -particle interacting system [PP-FS]

HN = ∆(N)(L0) +
N∑
k=2

αk∆
(k)(C)

↗ ↗ ↖
N free harmonic oscillators coupling consts. (nonlocal) interactions

Notes:

• ∆(N)(L0) and ∆(k)(C) (k = 2, · · · , N ) mutually commute.

=⇒ N conserved quantities (integrable system)

But, not local. (Nontrivial for MBL)

• In terms of x, p variables,

HN =
N∑
i=1

1

4

(
p2i + x2

i

)
+

N∑
k=2

αk

1

4

∑
k≥i>j≥1

M2
ij +

k(k − 4)
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withMij ≡ xipj − xjpi (“angular momenta”).
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1 2 k N

∆(k)(C)

Figure 2: The operator ∆(k)(C) has interactions between any two sites among {1, 2, · · · , k}.

• Taking αk ∼ e−k/ξ makes the interactions exponentially local w.r.t. the
site k.
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3 Eigenstates and eigenvalues [PP-FS]

♢ Level 0 (Lowest weight states):

L−, i|s⟩N = 0 for i = 1, · · · , N
=⇒ |s⟩N = |r(1)0 , · · · , r(N)

0 ⟩ with L0. i|r(i)0 ⟩ = r
(i)
0 |r

(i)
0 ⟩ (r

(i)
0 = 1

4
or 3

4
).

Energy: E = RN +
∑N

k=2αkRk(Rk − 1) Rk ≡ r(1)0 + · · ·+ r
(k)
0

=⇒ Fock space

F =
⊕

r
(1)
0 ,··· ,r(N)

0

F
(r

(1)
0 ,··· ,r(N)

0 )

with

F
(r

(1)
0 ,··· ,r(N)

0 )
≡
{
Lk1+, 1 · · ·L

kN
+, N |s⟩N ; k1, · · · , kN = 0, 1, 2, · · ·

}
↖

(level: k1 + · · ·+ kN)
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♢ Level p excited states:

(
p+N − 1

p

)
states

|vp, (m1,n1),··· ,(mq,nq)⟩N =
(
∆(N)(L+)

)n
×Fm1(∆

(n1)(L+), L+, n1+1)

×Fm2(∆
(n2)(L+), L+, n2+1)

× · · ·
×Fmq(∆

(nq)(L+), L+, nq+1) |s⟩N ,

where Fmk
(∆(nk)(L+), L+, nk+1) is a degree-mk homogeneous polynomial

of ∆(nk)(L+) and L+, nk+1 (indep. of αk’s),

p = n+
∑q

j=1mj,

N − 1 ≥ n1 > n2 > · · · > nq ≥ 1.
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Energy:

Ep, (m1,n1),··· ,(mq,nq) = RN + p+

nq∑
k=2

αkRk(Rk − 1)

+

q∑
ℓ=2

nℓ−1∑
k=nℓ

αk

Rk +

q∑
j=ℓ

mj

Rk +

q∑
j=ℓ

mj − 1


+

N∑
k=n1

αk

Rk +

q∑
j=1

mj

Rk +

q∑
j=1

mj − 1



Remarks:

• For highly excited states (p = n+
∑q

j=1mj large), huge degeneracy at

free case -

(
p+N − 1

p

)
degeneracy - is completely resolved by turning

on αk’s.
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• For αk ∼ e−k/ξ, the level splitting between states with different mj’s is

O(e−N/ξ). Spectrum becomes continuous at large N .

=⇒ Thermalization expected

On the other hand, the splitting between states with different p’s (mj fixed)

is O(1).

=⇒ Nonthermal behavior (localization) expected
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4 Entanglement entropies [PP-FS]

The total system S = {1, 2, · · · , N} is divided into

A = {N − ν + 1, · · · , N}, B = {1, · · · , N − ν}

with ν ≪ N .

♢ Entanglement entropy of highly excited states with n1 < N − ν for large

N :

• For n(≡ p−
∑

jmj)≪ R̂N(≡ RN +
∑

jmj),

SA ∼
(∑
i∈A

r
(i)
0

)
×

n

R̂N

ln R̂N

↗
Volume law like behavior! — seems to support thermal phase,

although SA is tiny.

Entanglement spreading from low-level (noneigen)states ∼ t2 when

αk ∼ e−k/ξ
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• For n≫ R̂N ,

SA ∼ lnn

Indep. of ν! =⇒ Area law like — seems to support localization phase
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5 Summary and discussions

♢ Summary:

• We briefly reviewed quantum thermalization and localizations.

• We constructed an integrable model with many-body interactions by using

the coproducts, and discussed its thermalization and localization properties.

– Seems more tractable compared with the coupled harmonic oscillators.

♢ Future directions:

• Figure out clearer physical picture for this model.

– Complete the computation of the entanglement entropy,

and investigate other indicators for MBL (entanglement growth,

transport properties, ...).

– Analyze “phase transition” between the thermal and localization phases

around n ∼ R̂N .
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• Role of conformal symmetry? Implication in AdS/CFT?

• Models of the coproducts based on different groups.

Thank you very much for your attention!
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