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§ 1 . Introduction
® The keyword “Duality” is conceptually hard to
incorporate with the geometry. To understand the

stringy geometry, we need to accommodate them.

® The symmetry is, as usual, the guiding principle to find a

proper way.
But we need a kind of generalization of the standard

symmetry in standard field theory, namely,
Lie algebra and Diffeomorphism

There are several directions, super, higher, Lie algebroid, ...

For these generalizations, we also need to generalize the geometry.

This gives a natural way to a stringy geometry.
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There are several generalizations of the geometry.
One direction is (geometry and symmetry)

1. Generalized geometry [Hitchin|: we consider the geometry
of E=TM&T"'M Exact Courant algebroid

NSNS sector of closed string/SUGRA

2. Bo, generalized geometry [Baraglia]
E=TM®1eT*M Courant algebroid
Type I and Heterotic string/SUGRA

3. Exceptional generalized geometry [Hull, Pacheco-Waldram, Baraglia |

E=TM & N*T*M & A°T*M  Leibniz algebroid

M-t

neory

4. Doub.

e field theory [Hull, Zwiebach]|

base manifold M x &  manifest O(D,D)
5. Exceptional field theories [Hull, Pacheco-Waldram|
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Introduction

All fit into the supergeometry formulation. Let me talk about the
generalized geometry as a basic example to introduce terminologies

Generalized geometry is manifestation of the O(D, D) symmetry of
T-duality. In the generalized geometry, we consider

1. generalized tangent bundle E-TMaoT*M
2. its section : generalized vector I'(E) 3 u = X*0; + a;dz’

There is a generalization of Lie bracket called Dorfman bracket
X +a,Y +8]lp=Lx(Y +08)—iyda

Together with O(D, D) invariant product (%, v)
X +o,Y + 5) =tk Eiye

and the anchor map » @ I'(£) = I'(T'M) p(u) =X
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Generalized geometry

In this context, the 3-form H-flux is introduced as a kind of twist
of the bracket:

[37+OA,Y+,[)’]H - [X+a,Y+,B]D—ixin

The generalized Lie derivative L,v = [u,v]p gives the symmetry

of the Courant algebroid. The parameter is the generalized vector.
u= X'0; + a;dx"

It is just the gauge symmetry of g + B . Diffeo. x Q

closed

One can construct the connection and curvature using the Lie
algebroid structure in CA. And then the generalized scalar

curvature gives the bosonic part of SUGRA action.

In this talk, I want to discuss these algebra/algebroid structure from the

supergeometric point view.
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Fluxes

In this talk, [ also want to discuss the structure of the fluxes
appearing in the T-duality chain of NS-fluxes.|Shelton Taylor Wecht]

f &5 5 £
Habc< >FI;‘2;< b) ng( )Rabc

This is obtained by naive application of the Buscher rule.
These fluxes appear also in the compactified theory as structure
constants of the gauge algebra in gauged supergravity.|Kaloper,Myers]|

) YT e
_ea, eb O Fabec + Habce
1 b be Gl
eq, €°] = Q) fgs g

:ea,eb: s Rabcec X ngec
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Fluxes

The true origin of these fluxes is still to be clarified. There are
already the some formulations, in such as (3 gravity, DFT, ....
We want to derive those fluxes from the supergeometric
construction of the algebra/algebroid.
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Plan of talk

. Introduction

. Supergeometry

. Examples

. Applications (review of our works)

. Fluxes in Supergeometry

. Examples

. Double Field Theory in Supergeometry
. Discussion
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§ 2. Supergeometry (Lie algebra) [AKSZ, Strobl,lkeda,

Before giving the general definition, we look at how Lie algebra

relates to supergeometry.
We notice soon that it is very familiar formulation, since it is

simply the ghost part of BRST-BV formulation

1. For a generator 1, € g weintroduce coordinates,

Qa

g~ and its dual Pa

(1,‘_

‘pa‘ =1

2. We assign a degree (ghost number) q

This superspace is called T"2|g|1]
(Pa, q%) ~ (1, 1)
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Supergeometry (Lie algebra)
In the superspace gl g ) ~ (1,1)
3. We define an graded Poisson bracket {q%, py} = o

4. On this “phase space” we may define a “Hamiltonian”.

For the Lie algebra ¢ — % F

5. Then the algebra structure is encoded in the “classical master

equation” (0,0} =0 & R

6. “Derived bracket” defines the Lie bracket [Pa,pb] = —{{Pa; O}, pv}
o fabcpc

So we can identify the vector space spanned by p. with g
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Supergeometry as Diff. Graded Symplectic Manifold

In general, we require the following structures

1. Take a local coordinate and its dual with degree

(qaapaa”') B (1,7l— 17)
2. Poisson structure or equivalently graded symplectic structure

{¢*,m} = (-1)™{ps,a°} =6  w = (-1)"dq” Adpg +---

3. Hamiltonian © master equation {©,0}=0

This is also called QP-manifold of degreen |w|=n |O|=n+1

We automatically have the following operation.

1. Nilpotent differential of degree1 Q =1{©,—} Q-structure

2. derived bracket B
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§ 3. Examples Lie bialgebra
In the previous example of Lie algebra, the nilpotent
differential gives the cobracketin g*
1
Qq" = §fbcaqch
Since the role of the coordinates and dual coordinates are

symmetric, we can define the bracket on g* by the Hamiltonian

1
S==dp

2
This defines a Lie bialgebra structure. The Hamiltonian
Oz =0+ S defines a Lie algebra structure of the Drinfeld double.
Master equation requires generalized Jacobi identities and derived

bracket gives . .
5 €a,€h| = fabcec

. b bC > -~
€a. € =Cigts " IaE C
b

; a &
== e
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Examples Generalized geometry

For the generalized geometry, we take the following QP manifold

T*[2]T[1]M @t s (01.1,0)
{«',¢} =8 {d,p} =&
1. The Hamiltonian functionis  © = &d¢'
2. Embedding jildst g = g )
3. generalized vectors correspond to the degree 1 subspace:
F*(X'p; + a;q" ) = X0 G )

4. Nilpotent operator Q gives de Rahm differential
for example, on the function f(z) Qf={6,f}=¢0;f

This encodes the Courant algebroid structure completely
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Examples Generalized geometry
Courant algebroid structure from supergeometry:

1. Dorfman bracket [X+a, Y +8]=-{{X+¢«,0},Y + 3}
by applying J° (X fa Xt 8l— Ly(¥ +8) —ivdo

2. anchor p(X +a) = X'0;

For this we consider the function f(z) then the derived
bracket X +a)(f)=—{{X+a.0}.f}=X"8f

3. O(D, D)invariant product D) = {X taY + 5]

The derived bracket can be defined on any polynomial of the graded

coordinate. On the other hand ;*sends them to the p-forms and k-

vectors. For example B — 55i;¢'¢’ can be identified with 2-form B field.

A derived bracket with the generalized vector defines the generalized

Lie derivative w.r.t. the vector X and 1-form «, as expected.
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§4. Applications of supergeometry

We have formulated some of generalized gauge theories
using the supergeometry. They are specified by

1. Superspace M 2. Hamiltonian @
1. Algebroid gauge theory: (generalized gauged sigma model)
M=T*n|E[1l] (2*¢*)(&' pa) ~ (0,1),(n,n—1)

where F isvectorbundle v — F - M
O = p'a(z)&ig" + %f"ab(ﬂ?)qaqbpc
gauge symmetry is [Pa:Ps] = [ (T)Pe
Embedding t~ @' (o) : T > M

gauge field q" ~ Ao}, do”

|U.C-Watamura,M.Heller,N.Ikeda, T.Kaneko,S.W, PTEP 2017,083B01;arXiv:1612.02612]
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Applications of supergeometry
2. Higher gauge theory: Non-abelian p-form theory Multi-M5

M=T*Ph)(g1]®b[2]) (¢% Q*), (pa,Pa)
(1,2),(n—1,n — 2)

1
= 14 Q%p, — (~1)2e £ 0t q"QP;

gauge symmetry @ X [] Lie 2-algebra

[gm gb] i ff;'bgc [h’A?h’B] 7 .nghC fAB N Aa(?B
twomaps a:9Xh—=bh a(g.)ha = agshp
Loy = e =140, crossed module

1
Fu=ddA® — f ft} AUA-ASBIGB D,
H? =idBA &y Az ABR BE‘ AT e 0 T P A“A Dy,

|U.Carow-Watamura,M.Heller,N.Ikeda,Y.Kaneko,S.W., JHEP(2016)125]
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Applications of supergeometry

3. Poisson Courant algebroid: Variant of generalized geometry
M = TZ |2V
O = r¢p; — %W i pip¥ %Rij “pip;pi
[T. Asakawa,H.Muraki,S.Sasa,S.W.,]JMP, A30 (2015) 30,1550182]

Gravity on Poisson manifold and non geometric flux:
| T. Asakawa,H.Muraki,S.W., Fortsch.Phys. 63 (2015) 683-704]

Contravariant gravity; Muraki’s Talk
|H.Muraki,Y.Kaneko,S.W.,Class.Quant.Grav. 34 (2017) no.11, 11500]

Semiclassical approximation of noncommutative

gravity, Kaneko's talk
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§ 5. Unified Picture of Fluxes

Canonical transformation and fluxes

nQP manifold is a graded phase space and thus we can consider
the canonical transformation. Let the exponential adjoint action

65AB—=-B+{B,A}+%{{B,A},A}+...

where A,B are any function.
[f |[Al =n , then this action defines the canonical transformation.

e®4{B,C} = {e°AB,C} + {B, e’°AC}

For Courant algebroid, n=2 and thus the parameters of the
canonical transformation are for example B= %Bijq"q-*' 8= %6‘*‘-"1»;;19.-,-
They generate so-called B-transformation and 3-transformation

which are elements of O(D,D) transformation.
18/29 20.9.2017




Fluxes in Supergeometry

Now we want to formulate the fluxes using the above
supergeometric construction

The first example is H-flux. As I explained in the introduction,
H-flux can be introduced by a twist of the Courant algebroid.

This twist is known as B-transformation and naturally we apply

the canonical transformation by B field:

1 g 7 SRR (SR
B=:Byd'd Oo=6&q P o
=g +dB

The derived bracket gives
[u,v] = —{{u,On},v} = [u,v|p + ixiydB

From this, we can identify the local expression of H-flux as H =dB

With this identification, the classical master equation for

Oy = ©o+ H gives the Bianchi identity dH =0
19/29 20.9.2017




Geometric Fluxes

Here we introduce the geometric flux. For this, we need to
introduce the local Lorentz frame. Thus we consider the frame
bundle and the coordinate (¢%,p.)

The vielbein is now assigned as e=¢e¢; , e ' =elq'p,
The canonical transformation is given by D, = e %% -1¢7%
| - 1 B
O = Debiq’ = &iea'q® + 5 f559°0"Pe + (€a'Die} ) p;a"
f5e = —eheidy el
This is the local expression of the geometric flux

appearing in the commutator  [e}d;,el0,] = flelo;

The classical master equation gives  (e}9;fs.) + ffia fg;Z] =0

pueonZ209.2017




General Fluxes

Now we introduce the full twist. The corresponding Hamiltonian
1S Seids
@eﬂB =PD.e=fas Ehi
OBpe = €5'q°6; + €18 " Pobm — ebzﬁlmameajeaiqipjpb ey meajeaiqiqbpj
1 a..b.oe 1
g 5 ? abcq 9 q + 5
The local expression of the fluxes are

1 1
Fipaq®q® + -Q-Qgcqapbpc - gR“b"papbpc,

Hape = 3V[a,Bbc],
F§. = ft. — HmnaB%e%es e,
foe = 2ep" mec]je“j,
Hpns = 36[m-an]a
Qgc b 6a6bc i fgdﬂdc S5 gdﬁdb G Hz‘sr,BSh,Brkeaiebheck,
Rabc it 3(6[a|m|8mﬁbc] R fr[r?n'BblmI/BC]n) a Hmnsﬁmiﬂnhﬂskeaiebheck~
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General Fluxes

The classical master equation with these identification leads to

the Bianchi identity: 3
e[;nalm|Hbcd] 2 'éF[ZbH|e|cd] = 0,

€a = €,0; elaglimlg, phed _ §Q[abR|e|cd] _y
€8 On H{gbe) — 3€(qOnFyy — 3Heap QS + 3F 5o o = 0,
—26[(; linl 5 F[d]b] .9 [:anQ [cd] & He[a,b]Re[ cd] 4 QLCd]F[ab] 4 Fgfaneld] 0,

36[?,3”77"87,@2‘1] ) eananR[bcd] % 3Fe[gR|e|cd] 25 3Q([3chLe|d] D

This is the same as the closure condition for the

€a,€b] = ac,:bec o Habcega
: b b

€a, €] = Q e eﬁa
:eg, 63: — R%%, + Qaben,

where Ef = egaz- eti — ﬁabea [Blumenhagen, Deser, Plauschinn, Rennecke]|
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§©. DFT and supergeometry

Here we discuss about the supergeometric formulation of the
DFT and flux [Deser-Stasheff, Deser-Saemann, Ikeda-Heller-S.W.]

Since the base manifold is also doubled in DFT, we generalize
the supermanifold correspondingly

g 2 M ~
where all coordinates are doubled as z = (@,,2™), ¢ = (Gm,q™)

The P-structure is given by  {z™,éx} =6 , {¢™,pm} =Y

The Hamiltonian is
Oprr = Em (g™ +n™MVpu) = &i(g* + 5°) + E(pi + &)
This Hamiltonian does not satisfy the classical master equation.

This supermanifold is called pre-QP-manifold.
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DFT and supergeometry

The classical master equation gives now
{OpF7,OprT} = MV EMEN

Instead of requiring the CME, we restrict the algebra in subspace
{{A,{®pFrr,OpFr}}, B} = 0™ A0y B =0
This is the strong constraint in DFT.

The derived bracket is equivalent to the D-bracket in DFT.

_{{@7XNQN}aYLQL} g (XM(aMYN) 2 YMaMXN A YMBNXM)QN o j*[Xa Y]D

|
where ¢V = ﬁ(qM +9MVpy) and © = ¢, QM
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DFT and supergeometry

Fully twisted Hamiltonian

éBﬂc 2 edz'&qd it edi mz‘.gqu + eclélpc 8 ﬁmleclé-mpc R ecanmﬂmlé'npc
-+ ed': (0; + Bimém)eaj e"kqu"’ qd -+ ecz((';l L L0 Blmané")eaj e"Lp; qkpc
+ (& + Oiel e%piq” + 8ienfjequapb)ﬁi + (&' + O'e e%piq* + '€, ebj q9°Py)Gi

1 e RS R R
+ 5(9iBjif” + 0" Bjrdi)eg ep q®q’ + 5(3iﬂ3 °pl + 847" ;) e’ e pope

L g e 1 : ¥
— 0iB;18""e,) €' ¢°Pe — 0 By 8™ €, €501 Pe + 50 BB B e e B P

1 . .
+ =6 BjkﬂJmﬂkneb'luec'leipbpc

2
L a,b_c 1 a b c 1 be a | 1 abe
b3 Hate@" 04 + S FpcPaq "+ 5 Qa0 PP+ 5 2 PaPbPe;
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DFT and supergeometry

Local expression of the fluxes

Hape = 3(v[a.Bbc] i B[a|m|8 Bbc] 5 f[a Bb|m|Bc]n)
Fb(' fbn mnsﬁqzea Cb € "I'aaBbc +f:dB ff'dBdb

Q fbc+6aﬁbc+ f ‘Bdr' By fpdﬁdb+str68h]8rke e hc k
+Bam8mﬁbv+a[bB ﬁe|(’] +2B[a|f>fbp dv_QBalpfvp db,

A~

Rabc 58 3(ﬁ[a|m|8 [)abc] i f 6b|m|ﬁc]n i a[aﬁbc] f[abﬂldlc]
+ B, 0" gleb glnic e i RE SRR g aie g, 3701 gldl<])

g mnsﬂmzﬂnhﬁs’cea ebhe ok

Hypns = 3((:)[mBn.s] T B[mllla an]):

rab a am._bl 4
yis —2e[m8 € €,
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DFT and supergeometry

Bianchi identities:

3
(’[aBma Hyeqy — —F[abH|e|cd] = 0,

(e[?t 5 e[ClLIBlman)aancd] T _Q[aleelcd] = 0,
( d b 6d ﬂlman)énH[abc] 36[aanaanc] 3He[ach] —+ 3 [anc] 0

( [c ('t e[c ’Blm an) an F[ . ok 6[; B anQ[cd] i He[a,b] Re[cd] i QLcd] F[ab] ) FlfaQ|e|d]
3(cl +elfgimp,,.)0"Qd — e BRI SRR = 30lcleld —

After imposing the strong constraints, these local expressions of
the fluxes and Bianchi identities reduce to the known examples.
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§ 7. Discussions

1. The supergeometric method is very powerful to investigate
the generalization of geometry and gauge symmetries.

. Apllying to the generalized geometry and DFT, the local
expression of the fluxes, and Bianchi identities can be
derived by canonical transformations.

. Application to DFT is still under investigation. Especially,
the Riemannian structure and the characterization of the
invariant action are to be done. However, for this it seems
we need to generalize the supergeometric method.

. This formulation fits also to the Leibniz algebroid, and thus
also to the formulation of EFT.
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Discussions

Physically, the geometries based on Lie algebroid, Courant
algebroid and Leibniz algebroid in general, are very interesting.

. Based on the Poisson-Lie algebroid, we can construct the
contra variant gravity, gravity on the poisson manifold.

[H.Muraki,Y.Kaneko,SW]
. This may be considered as the semiclassical limits of the

gravity on the noncommutative geometry.

Finally, these class of symmetries are subalgebra of so-called

L~ algebra which appears as the symmetry of closed string field th
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