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Non-locality and non-commutativity

e Non-local structures are promising candidate of the
quantum structure of the space-time.

e One way to lead non-local structures is making the
coordinates non-commutative:

Madore, Connes

(X", x"1#£0 —  AxXFAxXY 2 A

e We can realize such non-commutativity by replacing
the coordinates with matrices.
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Example: fuzzy 2-sphere

2-sphere S? ¢ R® with embedding functions,

(x", x%, x}) e R®, xix; =1

Fuzzy 2-sphere is given by a replacing x' with
normalized N dim irrep of SU(2) generators L',

Madore

. . ? . .
X —s Xi = L0 (XX, = 1)
NZ —1

) ..
ic/k Xk — 0

X, XT) =
N+ — 1 &= commutative limit
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Functions

2-sphere Fuzzy 2-sphere
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: Clebsch-Gordan coefficients
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Ishiki-Shimasaki-Takayama-Tsuchiya




Ditferential and integral

2-sphere Fuzzy 2-sphere
» Poisson bracket - Commutator
{x', x'} = 2e"%x, —iN[X', XT] ~ 265X,
- Integral * Trace

dQ 1_ & dQ)
]ﬂng(Q) NTFYE’m e Eyfm(ﬁ)

e Poisson bracket gives angular momentum operators:
i Y — D lik
{X ’ } — £€ Xkaj
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Dictionary of fuzzy 2-sphere

e Functions, Poisson bracket and integral on 2-sphere
are replaced as

Yom(Q) — Yo
{Xi,-} — —i/\/[Xi,-]
dQ) 1
N

e Thisreplacing is known as a concrete example of
matrix regularization.
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Matrix regularization (MR)

e Symplectic manifold M with symplectic form W and
Poisson bracket {-}.

e MR is asequence of linear maps{Tn}n=12,.. as

Goldstone-Hoppe, Arnlind-Hoppe-Huisken

In : C®°(M) — N x N Hermitian matrices

imn—oo [[T(Fg) — Tn(F) Tn(g)|| = O

limnooo |[IN[TN(F), Tn(g)] — Tn ({F, g} || =

lim %OOZ”TrT ()= [y, fw
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Relation to string/M theories

e We can apply MR to the action of string/membrane
after some gauge fixing and lead matrix models:

BFSS, IKKT, DVV, etc.

world she y R
/ mem‘—\

e They have a lot of expectations: non-perturbative

formulation, 2" quantization, emergent geometry, etc.

Hanada-Kawai-Kimura, Steinacker, Kim-Nishimura-Tsuchiya, etc.
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How about the theory of gravity 77

e Can we describe gravity in terms of matrices 7?7

Francesco-Ginsparge-Zinn-Justin, BFSS, IKKT, Yang, Hanada-Kawai-Kimura

Steinacker, Fukuma-Sugishita-Umeda, etc.

?? —> MR\/§d4X

N—00

e Inthe theory of gravity, the fundamental structure is
Riemannian structures: MR is not useful for this case.

e How can we describe Riemannian structures (metric

tensor) in terms of matrices ??
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Our approach

e \We consider the “inverse problem” of MR: finding the
corresponding space for given matrices.

Hotta-Nishimura-Tsuchiya, Asakawa-Sugimoto-Terasima,
Berenstein-Dzienkowski, Ishiki, etc.

- A . Inverse problerﬂ

MR

e We combine the formulation of the inverse problem
with the notion of information metric.
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Finding corresponding space shizos

e Assumption: we are given a configuration of d N x N
Hermitian matrices,

{(X1,X2,--- ,Xd)|N:1,2,---}

e We introduce a parameter y € R? and construct
"Hamiltonian” using given matrices,

1 d
Hiy) =5 ) (X" —y")’
p=1
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Finding corresponding space s

e We can interpret the zeros of the energies of H(y) as
points on the corresponding smooth space:

1 1
E(y) = (H(y)) = 5 (X" = y")*) = S((X")) = (X")yu + 5(4")°

1 1 1 1
= S((X%) = (X + S (X2 = Xy + S (")

1 1
= S(AX")? + S((X") = y")?
E(y) >0 & (X*Y=y" AX" -0

&  The wave packet shrinks to a point at y € R?
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Finding corresponding space s

e We define the corresponding smooth space M for
given matrices as a set of zeros of E(y) :

M = {y € R/ lim E(y) = 0}

N—oo

e The zero mode |0,y) of H(y) have geometric
information for given matrices X*.

Cf. Berenstein-Dzienkowski 2012, Asakawa-Matsuura 2017

e This method gives the correct corresponding spaces
for fuzzy sphere, fuzzy torus, etc.
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Example: fuzzy 2-sphere

Given matrices

L (XX = 1)
N2 1

L'(i=1,2,3)are Ndimirrep
of SU(2) generators

Hamiltonian

Corresponding space

/eros of the zero mode

T+ |y|? Nly]

E(y) =

1 2
N—_)—;O 5(1 — ly|)

2 VNZ — 1
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Zero modes and density matrix

e In general, the zero mode of H(y) is degenerate,

degree of degenerac
0,y)e a=12- B " e

e Using the zero modes, we construct a N x N density
matrix that is “invariant” under the changing basis:

k
Z Y)aa(0, y|

|0, {J)a - CBa(yHO' y)B (CTC =1)
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Information metric

e For density matrices P, information metric is defined
by the distance between them,

1
ds® = ETr[de], dp = Gp + pG

e [t gives a Riemannian metric on the space of density
matrices of fixed size.
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Riemannian metric via pullback

e |n Mmost cases, the density matrix using the zero
modes gives an embedding,

p:yeM — ply) € {all N x N density matrices }

k
Z Y)aal0, y|

e \We can get a Riemannian metric on M via the
pullback of information metric induced by P(y) :

1 k

ds* = ST{G(y)dp(y)] = 5 Trdp(y)I
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Example: fuzzy 4-sphere

e Fuzzy 4-sphere is defined by N -fold tensor product
of five-dimensional gamma matrices I (u =1, ..., 5),

Castelino-Lee-Taylor

1
X“:N(r“®14®---®14—|—---—|—14®---®14®r“)59m

e [tis a non-commutative version of 4-sphere S* c R?,

XX, =1+01/N), [X*, X"]—> 0(N — oo)

e However, fuzzy 4-sphere is not matrix regularization
because 4-sphere is not symplectic manifold.
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Example: fuzzy 4-sphere

e The Hamiltonian for fuzzy 4-sphere is given by

1
Hiy) = 5(X" = ¢")", yeR

e [he zero modes are

0,y), = U] eigenstates of X> with+1), a=1,2,,..., N +1

U = @ XT212 0= 0212 o=l )2 ,—0r4)2

e Our metric is given by: £ = x5 2 10, y)ac(0. y|
ds® = (d0)? + sin? 0(d¢)? + sin? Osin? d(d)? + sin? Bsin? ¢ sin’ Y(dx)?
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Summary

If we are given matrices, we can get a Riemannian metric on the

corresponding space in terms of the matrices (in most cases).

In the framework of MR, our metric have nice relation with the

symplectic form. cf ishiki- TM-Muraki

Our metric works even for fuzzy 4-sphere which is not matrix

regularization.

It is expected that our metric gives direct relation between the

transformations of matrices and dffeomorphism.



Thank you very much for

nice conference !



