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- Introduction



Noncommutative space-time
S

» Noncommutative space-time Is considered as playing a
crucial role in quantum gravity

» Indeed, it appears in various contexts of string theory

» Noncommutative Yang-Mills is a low energy effective theory
for D-branes in a constant B-field Seiberg-Witten ('98)

» Noncommutative gauge theories are naturally realized in
matrix models which are expected to give nonperturbative
formulation of string theory

» String field theories seem to be formulated as Chern-Simons-
like gauge theory on a certain huge nhoncommutative space-
time



Field theory on noncommutative space
S

» It is important to elucidate the difference b/w field theories
on ordinary space and noncommutative space

» It is well-known that there are the IR divergences that
originate from UV divergences in field theories on
noncommutative space -~ UV/IR mixing

Minwalla-Raamsdonk-Seiberg ('99)

» The UV/IR mixing prevents a theory from being
perturbatively renormalizable



What we will do

» Here we study whether a scalar field theory on the fuzzy
sphere, which Is a typical compact noncommutative space,
IS nonperturbatively renormalizable
» We want to see how meaningful the local gquantities are on
noncommutative space

» We define multi-point local correlation functions on the

fuzzy sphere using the Berezin symbol and calculate them
by Monte Carlo simulation

» Cf.) Bietenholz-Hofheinz-Nishimura ('04)
calculate 2-point function in a scalar field theory on
noncommutative torus and take the double scaling
(continuum and thermodynamic) limit



Motivation

BFSS, IKKT, DVWV,......

: Matrix Models

Ex.)Ryu-Takayanagi Connes-Douglas-
formula Schwarz ('97)
Aoki et. al. (99)

- ? -

Karczmarek-Sabella-Garnier (*13)
Suzuki-A.T. ('17)




- Noncommutative plane



Noncommutative plane

» Noncommutative plane (Moyal plane) Ct) tﬁ'&faﬁ::r?dn?;?,’g

simplest example of noncommutative space

[If?lj If?g] — 30 @ :real constant
» Conjugate momenta
p1=0""2s, Po=—0""%
- S
_p17p2] = 10

~_<

Zi, 5] = 1di5 (2,7 =1,2)

—

coordinates and momenta are not independent

— Hilbert space for a particle in one dimension



Matrix vs field
e

f . operator (matrix with infinite matrix size)

f(:lj‘) . field in two dimensions (Weyl-ordered symbol)

F d’k 2 —ik-x _ik-d
f_/(27r)2/d xf(x)e e

A2k .
f(ZE) _ / (zw)Zezk-xtr(fe—zk-:c)




Correspondence
S

A

Di, f] Gy —i0if()

(f) = /

A

fg — — s
2 5 (01 Oy — BWayl)f(w)g(y)

o=y
Moyal product (star product)

Noncommutative & nonlocal



Field theory on noncommutative plane

e
> a matrix model with infinite matrix size

S = 2m0tr (——[pz, 0] +—¢ + cb)

» correspondence between matrix and field

T dk 2 —ik-x _ik-T
¢_/(27r)2/d rp(x)e e

» scalar field theory on noncommutative plane

S = [ (50u0() + 760+ 30(0) » 6(a)  6(0) + ()

effect of noncommutativity appears only
IN interaction term



UV/IR mixing

Minwalla-Raamsdonk-Seiberg ('99)
1

Ex.) 1-loop correction to propagator

planar non-planar

O
O

_2)\/ d?q 1 d2q |e=#*(w1e2-p201)|  suppress UV
(27)? g% + m? _)‘/ 2m)2 ¢+ m? divergence
same as the one different form the one

in ordinary field theory in ordinary field theory



UV/IR mixing (cont'd)

N d2q e_’w(plqz—p2Q1) )\ 1
_ 2 _

A : UV cutoff

=0 A—oco = ~logA~UVdiv.in ordinary field theory
040 A— oo = log(Q\/HQ ) p—0 IR div.

UV/IR mixing



Scalar field theory




Fuzzy sphere

S
» Definition of fuzzy sphere Cf.) Ishiki’ s talk

31 +35+35 =R
R
O Ti= L
Vi +1)

L, :generators of spin j rep. of SU(2) (L, Lj| = t€;6Lg

~——

» Noncommutativity

. . R . R > o —
[xz‘,ﬂ?j]zz j(j+1)€z‘jk$k ]_> 00 g [xlaxj] T O
R : fixed

commutative limit




Fuzzy sphere (cont'd)
S

> Derivative

Li, &;] = i€ij1Tk

7 [L’ia*] =) ﬁz’*z—iEz’jkl’jak*

> Spin| for adjoint operation [L;, %] = L; ¥ — x L;
tensor product of two spin J

mm) [(=0,1,---,29
mmm) | 27 : UV cutoff




Standard basis for SU(2) algebra

Li . generators of spin j rep. of SU(2)

L:|: — Ll + ?;Lg

Ly|jm) = /(j Fm)( £m + 1)|jm £ 1)

. ) m:_],_]‘l‘l,,]
Ls|jm) = m|jm)



Bloch coherent states

(1 = (97(10)

)

8?19 (sin wLj—cos pLj)

rotation operator

i - LIQ) = j|Q)

Gazeau et al.(09)

77}

Localized around Q = (6, ©)
with width 1//j



Bloch coherent states
]

> Z(ALz‘)2 iS minimum
» completeness

2j + 1
2 [l - Z jm) Gm] = 1

» Inner product

(@]2)] = (c0s )

2 2 1 2j
_ X —1
X . ad ~ S ~
Nz ‘ (cos 5 ) (1 Qj) e

width of wave packet ~ 1/v/J

(cont'd)




Berezin symbol
S

» Berezin symbol
fa(Q) = (QA|Q)

» Derivative
fip,,4(82) = L fa()

L : angular momentum operators
» Star product
fa(Q)* fB(Q) = fap(Q)

> Trace
1

2j + 1

Y/
Trd = / Z—wa(Q)



Stereographic projection




Star product

- |
(BlAl) _ _po (BlAla+8) _ _sa ap (BIAID

O

(Bl (Blo+ B) (B18)
= e3¢5 f4(3, B)

fa*fe(B,8) = (B|AB|B)

27 + 1 d*a 5D 0l N Bl Gl - 2
= 4 e "om o3 fo(B, B)e” 27 e 98 (B, B)|(Bla)]
47 / (1 n |O£|2)2

» fA*fB(OJO) ~ e%%%fA(Zaz)fB(waw)’zzwzo
0~ 1/(27)

g fA(ﬁ?B)fB(/BJB)

] — o0



Matrix vs Field

N
» correspondence between matrix and field

p(Q2) = fo = (QP)

R? 2 A ) D (25 +1) x(25+1)

1
Sne = t L;, ® + =& + ~o* . .
NC ™ 9511 r( oL 1+ 507+ Hermitian matrix

j — 00 Chu-Madore-Steinacker ('01)
at quantum level

() = p(2)

I classically —> UV/IR anomaly

R 1 o W o Ay
Sc = - dQ( 2R2(£@¢) ‘|‘7¢ +Z¢)



What we will calculate by Monte
__ Carlo simulation

» n-point correlation functions in matrix model

_ [ d2p(Q)p(Q2) - p(Qn)e e

(P(Q1)p(Q2) - () [ dde—5nc

SN = ! tr —E[L- @]24_”_2(1)2_,_3(1)4 We put R =1
27 +1 2" 2 4 without loss
of generality

N
d® =|[d®; ]| dRe®rdIm®y
=1 1<j<k<N

(1)) - () < (D(21)P(22) - - p(£2,))

Weput N=25+1 :UV cutoff




What we will show
e

» We will show that 2-pt and 4-pt functions of the Berezin
symbol are independent of the UV cutoff N by tuning
one parameter and making wave function
renormalization

— Hatakeyama's part



4. Calculation of correlation functions

and renormalization




& Correlation functions calculated
by Monte Carlo simulation

1-point function: (¢(£%)) (1 <i <4),
2-point function: ((Q:)p(2;)) (1 <i<j<4),
4-point function: (p(21)p(Q22)e(23)p(24))

A0 is taken in steps of 0.1
in the range 0 < A6 < 1.5.

Q) — (g +A9,0)

Fixed on the equator




Renormalization

® Renormalization

o = \/Z& (Z': the factor of the wave function renormalization)
4> renormalized matrix

0 () = (Q|P,.|Q0) : the renormalized Berezin symbol

<S0(Qz)> — \/Z (@r(Qz» ;
<80(Qa:)90(ﬂj)>c = Z (%(Qi)@r(ﬂj»c,
(e()e(Q2)0(3)p()), = Z° (or(Q1)or(Q2)0r (23)0r (),

In the following,

we show that renormalized correlation functions are
iIndependent of the matrix size N which is the UV cutoff
by tuning 1-parameter.



1-point function

0.2 I | | i | |
N =40, 14* = —6.0,A=1.0 +—e—
0.15 1 1 2 Koo Ala\T
SNC— Ntr (—5[_[/1,(1)] ‘I‘7(I) ‘|‘Z@ )
0.1 ®: N x N Hermitian matrix
L;: generators of the spin j rep. of SU(2), N x N matrices
0.05 | : -
~ UV cutoff > N =25+1
é O - T--T-® g g mw T T E--T T -0 T —
=
—0.05 _
—0.1 —
—0.15 _
_0.9 | | | | | |
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

A6



@ Correlation functions calculated
by Monte Carlo simulation
1-point function: (¢(£1)) =0,
2-point function: (¢ (2:)p(€25)) = ((2:)(£2))..

4-point function: (p(21)e(22)0(Q3)p(24))

AS

# Connected 4-point function
() p(Q2)0(23) (),

= (@(21)0(Q22)(23)0(2)) — ((21)2(22) ) (0(23) (1))
—(@(921)0(23)) (2(2)p(Q)) — (L(Q1)p() ) (©(Q2)p(3))



Renormalization with A fixed (A=1.0)



2-point function (N=40 and 32, A=1.0)
(P (Q21)p(§22)) = Z (or(€21) 7 (Q22))

1.2

1

0.8

0.6

0.4

0.2

0

—0.2

I | | | I |
3 N =40,p° = —6.0,A=1.0 =
5 N =32, =-334,A=1.0 e
R N =32,%=-6.0,A=1.0 o
T = N=32p>=-1.0,A=10 = _
=
L - = —
k-
- =
i : )
* =
= *x
- * x - —
L ; = i & -
| | | | | |
0.2 0.4 0.6 0.8 1 1.2 1.4




2-point function (N=40 and 32, A=1.0)

L p()e(92)) = Z (e (Q)er(2))
- N—4O/,L——6O)\—10I—E—I
1 L N=32u2=-334,A=1.0 e _
- Z(N =40)
0.6 : _
0.4 > _
0.2 N = _
B
B
0 — * e b = - —
—0.2 | | | | | |
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6




2-point function (N=40 and 32, A=1.0)
{p(21)p(E2)) = Z(sor(ﬂl)%(ﬂzb

1.2 I | I |
= N—40[L_—60)\—10|—E—|
1 L N—32,u —3.34, A =10 F—-=— 4
o (3240 = 1.263
0.8 | _
Z(N = 40) = ¢
04 | ® -
=
0.2 3 _
o
* =
O — b = o = -
—(0.2 I I I | | |
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6




2-point function (N=40 and 32, A=1.0)

1.2

0.8

0.6

0.4

0.2

—0.2

(p(1)p(2)) = Z {@r(21)pr(£22))

I I | | | |
3 N =40,p° = —6.0,A=1.0 =
_ N =32, u%>=-334,A=1.0 - _
s N =321%2=—-60,\=1.0
T = N=32,p°>=-1.0,A=10 |
=
. = Ihese do not agree with the data for N = 40.
L : —
- =
. : |
* =
b =
- > x - —
- ; i [ ] & . -
I | | | I |
0.2 0.4 0.6 0.8 1 1.2 1.4




Connected 4-point function (N=40 and 32, A=1.0)

() (Q2)p(Q23)(Q4)) . = Z7 (0r(Q1)or (Q2) 7 (23) 01 (Q4)),
0.05 i i I | | I

ai Hﬁiﬁi‘

—0.05 |

ﬁ% |
—0.15 % -
—0.2 | -
095 L N =40, p4° = 6.0, =1.0 =

N=321%2=-334,A=10 -
—0.3 | | ] ] | |

((Q21)0(2)0(23) (L)),

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6




Connected 4-point function (N=40 and 32, A=1.0)
<90(Q(1))Osg(ﬂz)s0(93)<ﬁ(ﬂ4)>c = 77 (00 (Q1)0r (2) 0 (Q3) 01 (L)),

| mnn
| ﬂﬁ“
015 1 20 = 40

. Z(N = 32) = (32540

_09 L ) 3 -
(32540 = 1.995

_095 L N =40,p* = —6.0,A=1.0 = _

N =32,4?=-334,2 =10 o

03 | | | l | |
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

A6

(1) (22)0(23) (1)),




Renormalization with u? fixed (u*=-6.0)



2-point function (N=40 and 32, u*=-6.0)

Lo () = Z (o, (e ( Q)
- N =40,u° = -6.0,A=1.0 e
I N =32, u* = —-6.0,\ = 1.234 +—=—
0.8 F * -
k-
3 ol _
S-
S 04 E : -
= =
=
0.2 F = _
2
=
0 s o, ® &
0.9 | | | | | |
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6




2-point function (N=40 and 32, u*=-6.0)

. (pE)e(El)) = Z (%(Ql)%(%)) |
= N_40,,L——60)\_10|_E_|
1 k N =32, =—-6.0,\=1.234 o _
- (3240 = 1.129
08T Z(N = 40) _. )
~ — — (32—40
S 06 | . Z(N = 32) |
=N
S 04 F ® -
> =
0.2 = _
* E
0 F T e T & 8 -
—0.2 | ] | | | |
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6




Connected 4-point function (N=40 and 32, u?=-6.0)
<w(%13<5p(ﬂ2)90(93)¢(94))c = 77 (o0 (1) 0r (Q2) 0 () 0 ()),

(0(21)p(Q22)0(23)0(24))..

0

—0.05

—0.1

—0.15

—0.2

—0.25

—0.3

I I | I | I
$ }
&
_ N =40, = =6.0,A=1.0 = —
N =32, u%2=—6.0,A=1.234 =
| | | | | |
0.2 0.4 0.6 0.8 1 1.2 1.4

1.6




Connected 4-point function (N=40 and 32, u?=-6.0)
(e(1)e(Q2)e(Q3) (), = Z2 (0r(Q1)0r (Q2) 0r (Q3) 07 ().,

(0(Q1)e(22)0(23)0(4))..

Z

— 40, pu?

RSN

Z(N = 40)

Z(N = 32

) = (32540

(3o—a0 = 1.275°

— —6.0,\A=1.0 = _
—6.0,\ = 1.234 +—o—i

1.2




5. Conclusion and outlook



Conclusion

® We constructed the correlation functions
In a scalar field theory on the fuzzy sphere
by using the Berezin symbol.
We calculated them by Monte Carlo simulation.

¢ We found that
the non-trivial agreement of correlation functions
at different N after tuning one parameter (u? or A)
and performing the wave function renormalization,
which strongly suggests that
correlation functions are independent of the cutoff N,
namely,
the theory on the fuzzy sphere is renormalizable.



Outlook

€ Renormalization in different phases

e uniform ordered phase : in progress
® non-uniform ordered phase

I(@(QD =

disordered
phase

(p(€2)) depends on angle

non-uniform ordered phase

e 0 (=% M) = (2.3,0.52) (p(€2)) = const
i uniform ordered phase Y
.' > — [

[ Garcia Flores, Martin, O’Conner ('09) ]

A= \/N, i? = p?/N3/?




T —
Distribution of 1-point function

007 | | | | | | | |
mlN—4O,;L2—6.O,A—1.O o
0.06 = o disordered phase
(o]
o | Sne = — tr [~ [ <1>]2+”—2<1>2+3<1>4
005 — 5 o NC_N 9 19 9 4
o o
0.04 | ™ -
5 o o= 40.3,0)) ~0
) (5[5 +030))
o o]
0.03 | _
o o
0.02 N ° i
O o]
0.01 |
0

-10 -8 -6 -4




Distribution of 1-point function (preliminary)

0.09 [ | | I I I &’o [ I
_ 2 _
0.03 L N = 40, u* = —29.4,A=1.0 o NE |
uniform ordered phase
0.07 o 1 1 _ 2 MZ 9 A 4 o o -
Sne = i (2[Lz,<1>] + 50+ 0 )
0.06 | T . . o _
<<,0(§ +0.3,0)> ~ 4.1 In this case. o
0.05 F . |
= (o]
0.04 F . _
0.03 F o o .
0.02 | © o _
(o]
0.01 } S ° .
O o]
0 ' 'og:maadmaa

10 -8 -6 -4 -2 0 2 4 6 8 10



T ——
Phase diagram at N = 40 (preliminary)

I(:Iisordelre(I phase = |

uniform ordered phase e

uniform ordered phase

(0(§2)) = const(# 0)

I I I

100 200 300 400 200 600

_N2




Renormalization with A fixed (A=1.0)

In the uniform ordered phase (preliminary)



Connected 2-point function (N=40 and 64, A=1.0) (preliminary)

- <s0(|91)90(9|2)> = IZ<90r(Ql)90r(Qz)) |

0s L N =64,p%=-31.0,A=10 e |
| % N =40,u%2 = =294\ = 1.0 o— |
0.7 | =

0.6 }z -
o5 b8 i
t

SR :
ol Hy ‘

| SRR RS

0.1 | | | | | |




Connected 2-point function (N=40 and 64, A=1.0) (preliminary)
(p(C1)p(22)), = Z (or (1) pr (),

0.9 I | I I I I
g L N =64,p%=-31.0,A=10 = |
| % N =40,4%2=-294)1=1.0 o
0.7 — C40—>64 — 1250 B
0.6 |- Z(N = 64) ¢ -
— (40—64
05 L E Z(N = 40) B
0.4 | E _
0.3 | _
0.2 E E _
0.1 F E E E E -
o AR
—0.1 | | | | | |
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6




Outlook

€ Behavior on the phase boundary
In the ordinary theory,
the theory behaves as CFT on the phase boundary,
which implies 2-point function behaves as power of distance.

& Effect of the noncommutativity
By examining the behavior of 2-point function on the boundary,
we expect to understand the difference between
the theory on the fuzzy sphere 1 [
and that on the ordinary sphere, e
that is, we expect to understand
the effect of the noncommutativity.

g boundar
uniform ordered phaseI

\ \
500 600




Outlook

® Renormalization in different phases
¥ Behavior on the phase boundary
& Effect of the noncommutativity

® Renormalization in different limits
Ex) fuzzy sphere limit: N,R -
[ Kawamoto-Kuroki ('15)]
® Generalization to higher dimensions

R x fuzzy S* fuzzy CP?  fuzzy S* x fuzzy S* elc.
€ Quantum entanglement in noncommutative space

Karczmarek-Sabella-Garnier (*13)
Sabella-Garnier ('14)
Suzuki-A.T. (’17)









Fuzzy spherical harmonics

® As a basis of operators on the Hilbert space,
we define fuzzy spherical harmonics.

Yim = 2] T 1y (1) 2trche. . |jr)r'| < Y(Q): spherical
! harmonics

This corresponds to composition of two angular momenta j.
Cii_.is a Clebsch-Gordan coefficientand 0 <1< 2j, -l <m <.

Arbitrary operator fis expanded in terms of Yim.
R,
f — Z Z flml/lm

The maximum of the angular momentum I (=0 m=—1
corresponds to the UV cutoff.




Correspondence between Y;,,, and Y;,,

Spherical harmonics Yim
€ Acting angular momentum

Lo = L1 +ily = cEi¢ (i% +icot 9%), 3= i

Fuzzy spherical harmonics Yim

¢ Commutation relation
L:I: — Ll + ZLQ

L Vim| = VIFm)TEm+ 1) Vi,

L] -

€ Hermitian conjugate
Yl = ()™,

mYim

& Orthonormal relation

1t
— tr
N

(ﬁ%ﬁ’m’) = 011 Omm/

€ Product

LY () = I Fm)( £m+1)Yme1(€),

¢ Complex conjugate
Y5, () = (—=1)™Yi_ ()

® Orthonormal relation
ds?
_le:fn(ﬂ)}/l’m’(ﬂ) = 011 Oy’

/5

& Product

Vi Vi ﬁ i () Yo (€



UV/IR anomaly @M

€ UV/IR anomaly is a quantum effect which is caused
by the noncommutativity between quantization
and taking commutative limit.

Consider 1-loop correction.

Planar diagram — (P(g)

planar

1’
) — NG O (—1)™ TE
mm/ Log div. in j - oo

O 2 .
O IPEZK 2K+ 1 @+O(1)

2
= K(K+1)+p

Non-Planar diagram

1’
T o T (T ptaner) = A0 (1) TP

6j symbol

2J

NP _ ka2; CK+1)(25+1)|f5 5 1
\/ I :Z(_l)l+ + KK 77 [{j y K}]

K=0

[, mand ', m" are momenta of external lines.



UV/IR anomaly @

® Calculation of IV? — [P Legendre polynomial

1 1 dl
P(t) — 1 _ 2 l
—1 J
|

- Forlargel, log |
« For small [, finite — non IR div.

Therefore, this term causes a nonlocal difference
in the 1-loop effective action.

=Renormalization is nontrivial.
(UV/IR anomaly ~ a finite analog of UV/IR mixing)



UV/IR anomaly @

# Using approximate formula of 6j symbol
(_1)l—|—2j—|—K

i o3 1 K? . .
. ~ Pll—-— [ < K <2
{J 7 K} 2) l( 23‘2)’ D

25

2K +1 I .
INP —IP _ 1 [+K+25 23 1
il OK +1 [ K2
~ Y e (-5
K=0 HL J
2 2u + 1 2
[ 5)
0 u2+%+(%)

jogo



Quadratic terms of action

For the Berezin symbol (©2|®|2) = ©(£2) |
we obtain the following relations

(QI[Li, @]|Q) = Lip() , 5 [ T and
(QP1|Q) x (2]|D2[€2) N_>—°O> (QP1|Q) (Do) « ordinary product

If we set ¢(£2) = () | the guadratic terms of

ds} 1

1 1 5 2 A o fafrg L s, M 2 A 4
Sne = 7 tr (_5[%‘1’] +7‘I’2+Zq’4) and %= [ G (5lE0@) + o+ Joo)

agree with each other. The guartic terms agree at tree level,
but including the quantum correction, they do not agree.



¢’ <0
u%are — ,uf)hys — (quantum correction) and our u? are pg, .-

Classically, u? = 0.
However, at quantum theory,

u? < 0 due to the quantum correction.



