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1. Introduction



Motivation

S(x)
potential barrier

60

Consider the action

S(X) = g(x2 -1)* (B>1)

Separation of A— B and that of B _C
are almost the same in X space.

However, in Markov chain Monte Carlo (MCMC) simulations,
A can be reached from B easily “close” in MC
C cannot be reached from B easily “far” in MC

Can one enumerate this distance?



Main results

- We introduce a “distance between configurations”
which satisfies desired properties as distance

- This definition is universal for MCMC algorithms
that generate local moves in configuration space

- The distance gives an AdS-like geometry
when a simulated tempering is implemented

for multimodal distributions

original config space {x}

VAR

1 +

S(X) = g(x2 -1 (B>1)

> X

extended config space {(x, 8)}

geodesic in AdS-like space
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2. Definition of distance
- preparation
- definition of distance
- universality of distance



Preparation 1: MCMC simulation (1/3)
M ={x}: configuration space
S(x): action
We want to estimate VEVs of operators O(x):

(0) = %I dx e O(x) (2 =[dxe™ )

In MCMC simulations:
- Regard p,(x) E%e‘s(x) as a PDF

- Introduce a Markov chain

P2 () = P, () = [ dy P(x| ) P,s(y) = [ dy P" (x| y) Py ()
s.t. p,(x) converges uniquely to p_,(x) in the limit n — o

[i.e., P (X y) = Peg(x) (N2 No)}



Preparation 1: MCMC simulation (2/3)

- Starting from an initial value x,, generate x;,x,,...
following the transition matrix P(x. | x._,)

P P P P P P P P
Xo > X = > Xy > Xy g > Ky, > > Xy
= yl = y2 = yN
\ ' J \ ' J
relaxation generated with ~ p_,(X)

- Estimate VEVs of operators O(x) as
1 N
(O(x)) = WZC’)(yi)
i=1

We first would like to establish a mathematical framework
which enables the systematic understanding of relaxation



Preparation 1: MCMC simulation (3/3)

We assume that

(1) P(x|y) satisfies the detailed balance condition:

P(X| Y) Pag (¥) = P(Y %) Pog () (& P(x] Y)Y = P(y| x)e )
(2) all of the eigenvalues of P are positive

NB : (1) can be written as
|3€—S(>2) _ S |3T (

P(x]y)=(x|P|y)
>“<z_[dXX|x><x|

NB : (2) I1s not too restrictive
In fact, if P has negative eigenvalues,

then we instead can use P’ as the elementary transition matrix,
for which

- all the eigenvalues are positive

- the same detailed balance condition is satisfied as P :

P(x] )& = P(y | )¢




Preparation 2: Transfer matrix (1/2)

[MF-Matsumoto-Umedal]
We introduce the “transfer matrix” :

-I’-‘ _ eS(f()/z Ise—soz)/z (<:> T (X | y) _ eS(x)/Z P(X | y)e—S(y)IZ)

properties:
(1) T=T" (e Pe® = WpT)
(2) same eigenvalue set as P (thus all positive)

We order the EVs as
A=1>A421,2--->0

spectral decomposition:

T =Y 2 |kxk|=[0X0[+) A [k)(K]

k>0 k>1

where
-S(x)/2

(x|0>:%e



Preparation 2: Transfer matrix (2/2)

Note that P" < T" =|0)0[+> A7 [KXK| (4 =1>4 >4, >-->0)

k>1

relaxation to equilibrium

& relaxation of T" to |0X0] in the limit n — o
< decoupling of modes |k) with k>1

NB:
decoupling occurs earlier for higher modes (i.e. for larger k)

N B:

relaxation time 7 can be estimated from 4, ~e ™"
slow relaxation < 4, ~1



Preparation 3: Connectivity between configs (1/3)
[MF-Matsumoto-Umedal]

= (set of sequences of n processes in M) (\/<}C_'7
X, (X, %,)
_( set of sequences of n processes in M X2
| that start from x, and end at x, X

We define the connectivity between two configs as

X, (% %)
X,
= (prob to obtain x;, from x )x(prob to have x,)

_pn( l _S(XS balance o)
=P D)o S| = PPt %) e = 1, 0, )

fo (%, X,) =




Preparation 3: Connectivity between configs (2/3)

normalized connectivity (“half-time overlap”): | f(x.x) .
ACES =Plala)z e
: n 1 -S(x%)
VI (%) £, %) =Pl
_ JP“(sz)P“(xgxl) K (6%
PP (% [ X) P (% 1%) K, (%, %) K, (X, %,)

(Kn (X0, %) = (X%, |-|,:n | X2>)

|:n (Xl’ XZ) =

F (X, X,) is actually the overlap between two normalized
"half-time" elapsed states:

(X,,n/2|x,,n/2) n/2 M
F. (%, %) = . X, n/2 - X
1%, N 2)[[[I[%,,n/ 2)| 2

(|x,n/2>z'f”’2|x>) %




Preparation 3: Connectivity between configs (3/3)

properties of F (X, X,)

(1) Fn (X1’ Xz) = Fn (Xz’ Xl)
(2) 0<F (Xx,X%,)<1

(3) F,(x,%)=1<x =X, (when n is finite)
(4) NImF,(x, %) =1 (v, %)

N

((A) If x, can be easily reached from x, in n steps,
then F (x,X,) =1
(B) If x, and x, are separated by high potential barriers,
then F (x,X,) <1
proof of (4):
In the limitn — oo, T" —|0){0|, and thus,
Ko 06,%) = O 1T %) = (6 1001 %) =K, (%, %) K, (%, %,).

N




Definition of distance
[MF-Matsumoto-Umedal]

0, (%, X,) = arccos(F, (X, X, ))
properties of 6. (x,,X,)

(1) ‘9n (X1’ Xz) — ‘9n (Xz’ X1)
2) 6,(%,%)20

(3) 6,(x,%,)=0<x =X, (whenn is finite)
(4) 1im@,(x,%,)=0(vx,X,)
\(5) en(xl’x2)+9n(X2’X3)Zen(xl’xia)

N\

((A) If x, can be easily reached from x, in n steps,
then 6 (x;,X,): small

(B) If x, and x, are separated by high potential barriers,
then 6 (x,,%,): large




Alternative definition of distance

Instead of & (x;,x,)=arccos(F. (x;,X,)),
one can also use the following as distance:

d?(x,%,)=-2InF (x,X,) we will mainly use this

or | Dy (%, %) =2[1-InF, (X, X,)]

/Fn(xl’xz) )

0050, (x, X,) =& %) =1-ZD2(x, x,)

 They agree when 6, =0 )
NB: analogy in quantum information

X .,Nn/[2 nl2
for two pure states p,, = % % |

{Hn (X, X,) : Bures length

D. (x;,X,) : Bures distance 1% o, N 2| I[% 5,0/ 2|



Universality of distance (1/4)

[MF-Matsumoto-Umedal]
The above distance is expected to be universal
for MCMC algorithms that generate local moves in config space.

"universal” in the sense that differences of distance
between two such local MCMC algorithms
can alway be absorbed into a rescaling of n

In fact,
universality of d’(x,, X,) < univ. of K_(X,,%,) = (X |T" | X,)

auniv.of T=e ™
and,

If algorithms are sufficiently local,

then H are expected to be local operators
acting on functions over M in almost the same way.

The wave functions {x|k) must be almost the same for small k



Universality of distance (2/4)

This expectation can be explicitly checked using a simple model.

algorithm 1: Langevin
X, =X, +ev, —eS'(x,) with (v,v,), =25,

1 2_oy[ XY
1 e 4€(X ) V( 2 j

(XITy)=(x|e" |y)=
drre
with V (x) = (1/ 4)(S'(x))" = (1/ 2)S"(x)

algorithm 2: Metropolis (with Gaussian proposal of variance o*)

KIT 1Y) = (x| By etz
2
— min (1 e—S(x)+S(Y)) 1 e 27 « @S(0/2-5(y)12

\27mo¢

1 , 1
1 — 5 20y =28 (0-S (¥)

\ 2710t




Universality of distance (3/4)
With the identification o° ~ ¢,

both Hamiltonians H (z —llnfj become local in the limit e —» 0,
€

and have the same tendency to enhance transitions
when [x—y| and |S(x)—S(y)| are small.

The low energy structure of H should be almost the same.

The global structure of distance should be almost the same.

The argument for universality are more trustworthy
as the DOF of the system become larger.

In fact,
the universality actually holds more than expected
even for a single DOF



Universality of distance (4/4)
S(x):g(xz—l)2 (8 =20)

eigenvalues :
E, (Lang) E,/E, (Lang) E, (Met) E, /E (Met)
0 0 0 0 0
1 7.81 x 107 (-4) 1 7.62 x 107 (-4) 1
2 36.2 463 x 10°4 34.2 449 x 10°N4
3 58.2 745 x10"4 54.7 /.17 x10"°4

eigenfunctions :
(x]0) (x]2) (x]2) (x]3)

1 —2“\—/11“25”

—— : Langevin
------ : Metropolis

=

(almost indistinguishable)




3. Examples
- unimodal case
- multimodal case



Transfer matrix for Langevin

Langevin equation (continuum)

s ., Q! : Xt:0:X0
K =msx) W'th{m V), =25(t—t)

X =% (X, [v])

R(x]%,) = (8 (x=%%.[V]))) =(x|e™ | x,)
with H., =20 [0, +S'(X)]

K, (x,y) =" (x| y)e*% =(x|e™" | y)
with H = e3®2H_e %2 = _52 Ly (R)

[V(x) = (1/4)(S'(x))’ - (L/ 2)S”(x)}

Kt (Xl’ XZ) e—%dtz(xbxz)

%) = JK (0 ) K (9, %,)




Example 1. Unimodal distribution (Gaussian)

S(x) = sz subtracts zero-point energy
2
H =-02 +V () with V() =%x2 ‘%

K, (X, y) = (xle™ | y)

)
_ h ot —2
\/27z(1—e2wt)eXp[ 4S|nha)t[(xl+x)cos “ XXZ]}

dtz(X1’X2)_ |X1 |2 - e_a)tlx1_xz |2

25|nh ot

We see that:

- geometry is flat and translationally invariant
- relaxation time 7 is given by 7 ~1/w [a)z ~V”(x)]



Example 2: Unimodal dist. (hon-Gaussian)

S(x)=2x2+ix4
2 4

perturbative expansion in 4 :

A
d2(x. %) =|x —x, P{Z —
F04%) =% =% P -2

+ (s’ +3s —3mtc)(X, — X,)’
+30(s° + 35 — 3otc + 3ot — 3sC + 20ts?) (X, + X,)°1+O(43) }
(c =coshwt, s =sinh wt)

—[12(s° —3s°c + 3wt + 20ts® — wts°c)

We see that:

- geometry is no longer flat or translationally invariant
- relaxation time 7 is again given by 7 ~1/ w [a)z ~V”(x)]



S(x)=§(x2—1>2 (5>1)
) H=-8+V(X)

with V (x) = B2x° —=28%x* + (B2 -3B)X% + 3
= B°x*(x* =1)* + O(p)

S(X) V(%)

a0

60




Example 3: Multimodal dist. (double well) (2/2)

For #=20:
E, =0
E, =7.81x10™
E, =36.2
E, =58.2

instanton e °¥

(x]k) (k=2,3,...) : decouple quickly
(x|1) : decouples very slowly

H =-82+V (X)
V (x)

10000

8000

6000

-15

In fact, " dy (=1,+1)
10 39.1
50 19.2
100 16.9
500 13.2
1,000 117

5,000 8.46

\'}(ﬂz)m

decreases only very slowly



4. Distance for simulated tempering
- simulated tempering
- emergence of AdS-like geometry



Simulated tempering (1/3)

Basic idea of tempering : [Marinari-Parisi]

Even when the original action S(x; £,) is multimodal,
it often happens that S(x; #) becomes less multimodal
if we take smaller g.

We extend the configuration space
s.t. configurations in different modes can be reached
from each other by passing through small £'s.

original config space {x} extended config space {(x, 5)}
A
p
V1 \V »
» X X
— +

S 60) =20 =17 (1)



Simulated tempering (2/3)

Realization \
- Extend the config space M ={x} p
to MxA={X=(x,6,)}(xe M;a=0,1,..., A),B
g X
- Introduce a stochastic process A
P,(X) > P, 4(X) 2 \/\/

s.t. Pn(X) N—0 > Peq()() — peq (X’:Ba) _ Wae—s(x;ﬂa)

- Estimate the VEV by only using the subsample with g,__,

—

NB : (appearance probability of a-th subsample)

— jdx Po(X.8,)=W,Z, (Z, = _[dX e >Ui/R)) consideration

| not necessary
for parallel

tempering
Umeda’s talk

w, is often setasw, «c1/Z_,
which ensures that the desired 0-th configs appear
with nonvanishing probability (=1/(A+1))

—



Simulated tempering (3/3)

Algorithm

(1) Generate a transition in the x direction, £,

x :(X’ﬂa)_)X’:(X,’lBa) ﬁo
with some proper algorithm
(such as Langevin or Metropolis) y;

(2) Generate a transition in the f direction,
X — (XUBa) — X’ — (X!/Ba’zail)

. o (westsr Y P "
with the probability mm[l, we SO j
(3) Extract a subsample with g, _,, {(x,5,)} (i=1,...,N)
1 N

(4) Evaluate VEVs as (O(x)) = WZ O(x.)

NB : a-dependence of g, should be chosen
s.t. the transition in the S-direction is easy.
This adjustment is usually done manually or adaptively.



Distance for simulated tempering
[MF-Matsumoto-Umedal]

The introduction of tempering should be seen
as the reduction of distance.

In fact,
w/0 tempering w/ tempering

n o d -1+ d2(~1,+1)

10 39.1 26.5

50 19.2 7.16
100 16.9 435 rapid decreasing
500 13.2 0.708
1,000 11.7 0.106

5,000 8.46 2.78 x 107 (-8)



Emergence of AdS-like geometry (1/3)

[MF-Matsumoto-Umedal,2]
In MCMC simulations, |
the most expensive part is the transitions
between configs in different modes,
and thus, configs in the same mode can be 11+
effectively treated as a point.

This leads us to the idea of "coarse-grained config space" M

We would like to show that

when the original config space is multimodal
with high degeneracy,

the extended coarse-grainined config space Mx.A
naturally has an AdS-like geometry




Emergence of AdS-like geometry (2/3)

S(x)
I

ST
coarse-grained config space: 10 05 05 T
M = (1D lattice with cutoff ¢) ﬂ ﬂ'

900000000 0000000000009

—— ]

action: S(x; 5,) = £, {1_ COS(ZﬂXﬂ

€

original config space: M =R

il

+ sim temp

N4

extended coarse-grained config space:
MxA={X = (x, 8,)} [x € (1D lattice with cutoff ¢)]

<




Emergence of AdS-like geometry (3/3)

We flnd -.-.-‘Q...‘-Q'X'.Q.)-(._I_ a-)?QQC'Q'X
d?((x, B), (x+dx, S))=const. 5 dx*

If we set
dy ((x,B),(x, B+dB))=T(B)dS* ---- (#) B

then we have Y
ds? = d2((x, B), (x+dx, B+d 3)) oEUney

= const. S dx* + f (B)d B°

horizon

If (#) is scale invariant (i.e., f(B) <1/ %),

this gives an AdS metric:

2 2
ds® = const. B dx* + const. d,82 = iz (dx2 + dzz) (,3 oc1/ 22)
(This is actually an AdS BH)



AdS geometry as a result of optimization (1/2)

. [MF-Matsumoto-Umeda2]
If g, (a=0,1,...,A) is chosen as

B = Py [%‘j ) mmmmmmmmmmmmmeee- (##)

one can show that geometry in 8 direction becomes
scale invariant, so that we will obtain an AdS geometry,
as we saw in the previous slide.

One can actually confirm that (##) is the best choice
for minimizing the distance in simulated tempering:

[ Consider the action : Jix
2

S ) = 203 (x2 ~1y?

2 |

(8, =10°)

obeying (##) !

Search for {3, 5, ;. i} ! ,
| that minimize d; ((-1, £,), (+1, 5,)) | o1 2 3 a8




AdS geometry as a result of optimization (2/2)
That Is,

optimize S, s.t. the distance is minimized

IBA alA
=g | 22 =0,1,..., A
on[B] i

0

AdS metric :

2 2 dﬂz 62 2 2 2
ds” = const. B dx” +const.——— = = (dx +dz ) (,Bocl/z )
This is the first example of the “emergence

of AdS geometry” in nonequilibrium systems.



5. Conclusion and outlook



Conclusion and outlook

What we have done:

- We introduced the concept of “distance between configs”
in MCMC simulations

- The distance satisfies desired properties as distance
- This may be used for the optimization of parameters
Future work:

- Establish a systematic method for optimization (such as I[4,])

- Investigate whether such distance can also be introduced
to systems with complex actions

- Extend the framework to general nonequilibrium systems,
and compare the obtained dynamics with GR.

“What if our world is in the process of relaxation
of some unknown dynamics, and if we recognize
distance as the extent of difficulty of communication?”




Thank you.
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