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Motivation: sigh problem

Monte Carlo calculation (real action)

(0(x)) = %jdx O(x)e 5™ <Z = fdxe—S(x)>
= | dxp(x)0(x) <p(x) = le—s(x)>

Z
1 N
ZN; O(Xi)\

But, if S(x) is complex,
p(x) can no longer be regarded as probability distribution.

Reweighting
(O(0) = (e_iImS(X)O(X»ReS(x)
— (e—iImS(x)> .
Res(x) | (local) sign problem:
1 e ~1ImS(x) gscillates if [ImS(x)| become large.
(O())s, =5~ J dxO(x)e RS 3o =
R

= complex Langevin method, Lefschetz thimble method, ...



Lefschetz thimble method (1/4)

Idea: take better integration contours in complex plane

x=((x)ERN 5z=(z)ecCV

Im

Lefschetz thimble Lefschetz thimble — ,_ |i
(Im[S(z)] = const.) |
{ o az(t) aS(z(t)) 2t = —0) =z(°>} 1
\ Saddle pt
« N —dimensional submanifold in CV saddle pt. oy s e ' Pe
 Defined by anti-holomorphic gradient flow ‘ j ' ‘
* ImS(z) = const. on each thimble [0
Transform the integration contour: 2
, U 9=S) ) S(z) = ——z +- z (c=§+%i)
= X e
]RN

= z naf dz e 52
= - (J5: Lefschetz thimble, n,: intersection number)

_ znae iImS(z,) f dz ¢—Res@)
- = the sign problem can be avoided.

o



Lefschetz thimble method (2/4)

We can use the gradient flow to change the variables:

azi (X; t) — aS(Z(x; t)) Lefschetz thimble .
ot B 0Zi (Im[S(z)] = const.) | |i
ajl](x, t) _ aZS(Z(X; t)) 1i
ot B 0z;0z; ]kj (x; t) Saddle pt. |
Zi(x;t=0) = X, ]U(Xt=0) =6ij S/ )
(Jij = Jacoblan) f Xty
| l Z¢, (t2 > t)
Z=| dxeS® It
RN Ex)S(z)=——zZ+iz4 (c=§+%)
= dz e_S(Z)
Xt
= | dxdet/(x;t)eS(zx)
RN x dey/(x; t)e (Seff(x; t) = ReS(z(x; t)) — logIdet]I)

dx e ~Sefr(x;t) pilargdet]—ImS(z(x;0))]

RN ™ No need to compute intersection numbers

. effective action + residual phase
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Lefschetz thimble method (3/4)

f

dx e_Seff(x;t]

Effective action

ptlargdet/—ImsS(z(x;t))]

Correlation functions can be estimated by using Sq¢s:

(O00)) = % j dx e—5@ — €

This is t-independent.
= The sign problem can be avoided for sufficiently large t.

i[argdet/-ImS(zC0)l 0 (2(x; £))) g
(eilargdet/-ImS(z(x:D)]y

( (empirically) the residual phase do not cause additional problems.)



Lefschetz thimble method (3/4)

However, there are some problems.

* Forlarge t, configurations will be trapped on one thimble.

We can avoid this by introducing tempering algorithm.

d2s : : :
. If@ = 0 (Hesse matrix have 0 eigenvalues) on saddle points,

Lefschetz thimble is not well-defined.
(i.e. the thimbles can not be regarded as an N-dimensional manifold.)

However, the antiholomorphic gradient flow is well-defined even in this case.
We can use LTM without any change.

: topics of my talk
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Multimodal problem

(Before reviewing the parallel tempering, | review the simulated tempering method.)

(S(x) = pV(x))

Multimodal problem

: : . High potential barrier
If the action have potential barriers, '8N P | |

the configuration is trapped /
at a local minimum.
Large
ge Tm/{smoxi
>

The idea of the tempering algorithm

Expand configuration space:
x—->X=(xp)
— we can evade the potential barrier
passing through the configs with smaller §.| ¢, B

| Transition O

Low potential barrier



Simulated tempering (2/2)

Simple approach: simulated tempering

Expand configuration space: x = X = (x, )
(i.e. regard [ as an additional dynamical variable.)
where, [ can take discrete variables: § € {8, 51, -+, Ba} (Bo > P1 > - > L4)

(= total equilibrium distribution: P (x,a) = A_-1|-1 e_S(x;ﬁa)/Z(,Ba))

Algorithm

Define two transition matrix:

P;: X = (x, ,Ba) - X' = (x’,ﬁa) (ordinary transition matrix for fixed 8 = ,)

Py: X = (x,Bq) = X' = (x,By1)
Accept/reject with probability min{1, P, (x,a") /P, (x, a)}

and apply P; and P, alternately. Finally we calculate correlation functions
by using a subset of configurations (x, 8 = ;) .

Problem
We must (at least roughly) estimate Z(f,) a priori. - Parallel tempering



Parallel tempering

Parallel tempering

Consider replicas of configuration spaces: X = {x;}4=01...4
The configuration of replica a explores with 5,
and be exchanged among replicas at fixed intervals.

Algorithm

Define two transition matrix:

Pi: X =(x,B,) » X = (x',B,) (ordinary transition matrix for fixed 8 = B,)
P,: exchange configurations between replica a; and a,
with probability min{1, e 745}
(45 = S(xay Bay) + S(Xa Bay) = S(Xay Bay) = S(Xay Ba,))
and apply P; and P, alternately.

We need not to estimate Z(,).
(= All we need is to choose the set of {£,}.)



Parallel tempering for LTM (1/2)

Multimodal problem in Lefschetz Thimble Method

If we take the flow time (=T) large,
there are infinitely (or exponentially) high potential barrier in So¢e(x;t = T):

ReS(x) Serr(x;t =T)
j X N
Flow time (= T) large small | middle «_ Previous approach
Sign problem O X A
Multimodal problem X O \ A Need fine-tuning

N



Parallel tempering for LTM (2/2)

Our approach:
We introduce parallel tempering algorithm
by regarding the flow time t as a tempering parameter.

Consider several number of flow time t,(t, =T >ty > - >t, = 0)
= parallel tempering

> No need to fine-tune. (All we need is to take sufficiently large T (and A). )

Flow time (=T) large small middle Parallel tempering

Sign problem O X JAN O

Multimodal problem X O JAN O
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(0+1)D massive Thirring model (1/3)

Example 1 : (O+1)-dimensional massive Thirring model at finite density

This model is defined from (1+1)-dimensional massive Thirring model
by dimensional reduction:

Z= f [dp (D)) f [d&(r)dw(ﬂ]e-ﬂwwl
PBC ABC

B
Slo, ¥, 9] = j [P (y° (9 + i + ) + m)y t53 ¢ ] (YO _ (0 1))

10
‘Dlscretlze ¢p(t) > p,(n=1,---,N)

7 = jd(p e~S(®) e

1 1, . .
S(¢) = z—gzz [1 — E(el¢n + e—l‘Pn)] —logdetD < * Analytically solvable even for finite N
n

e Sign problem occurs for u # 0

e More than two thimbles can have

1 . .
Dnl (¢) = E (el¢n+M6n+1,l - e_l¢n_1_ﬂ5n—1,l o ) )
—ei¢"’+”5n,1v5z,1 +emONHE 5 ) \ non-negligible contributions to Z

+m5n,l




(0+1)D massive Thirring model (2/4)

This model can be solved analytically even for finite N:

Z = f dp e=S®
S(p) = iz 1 _l(ei‘l’n + e_i‘rbn) — logdetD e ® N N
— o> 13 g Z = & [cosh(N) 1 (@) + py 1 (@)]
n
D _ 1 ipntug —ipn-1-ug§ 1

(@) = E (e n+1l — € n-1, a = 257 I,: modified Bessel function of 1st kind
—e!PNTIE, 61 + eTIONTHES, 168 \) 2p, = ( m? + 1+ m)N + (\/TH - m)N
+m5n,l

Chiral condensation

1
(Xx) = (NU‘D_l(U))
_ p_I (@)
Vm? + 1[cosh(NW IV (a) + p 1Y ()]

mm) Ve calculate the chiral condensation numerically by using LTM.



(0+1)D massive Thirring model (3/4)

We calculate the region 0 < u < 2
with N = 8, g% = %,andm = 1.

The integration contours stick to thimbles
whenT = 1.

Im(z)
detD =0 | saddle pt.

/AN

B WesetT = 2.

— 02 - ——t=0.2
01 t=0.1
— & & Re®

The main contribution is that from the saddle point Re(z) = Re (% X Zn) = 0.
However, the neighboring saddle points have non-negligible contributions.

= ordinary algorithm gives wrong results.

blue: T=0 (reweighting)

dotted: analytic solution
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(0+1)D massive Thirring model (4/4)

We set {ta} = {to = 0; i, = 01; v, b9 = 191 tro = 20} Re.

08

and introduce parallel tempering algorithm. R S . S
0.6: { I\'\i
blue: T=0 (reweighting) 0'45 l ‘\
; \
red: T=2 (with PT) . Y
dotted: analytic solution gl .
, AN
= The results agree with the analytic solution. » ? ° ?
. 1
The histogram of ¢p = ﬁZn b
"H(without PT) ! (with PT)
s 0.0 s ¢ 7(‘)3 0.0 lo‘s ¢ (# = 13)

Several thimbles contribute correctly.
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One matrix model

Example 2 (one-matrix model with quartic potential)

S(M) = Np trV(M)
c , 1, .
V(ix) = —5X + 2% (M:N x N Hermitian matrix, ¢ = e'?)

* sign problem occurs if ¢ € C.
e Analytically solvable in N — oo limit.
* Continuous symmetry (SU(N)) =) Lefschetz thimble is not well-defined.

However, antiholomorphic gradient flow is well-defined even without Lefschetz thimble.

= LTM can work in this case.

Furthermore, there can be a 3-cut solution for ¢ € C.

The topic of the rest of my talk



Matrix model (real, 1/2)

First | review the real case of this model.

S(M) = N trV(M)
¢ 2,1 4
Vix) = —Ex + Zx (M: N X N Hermitian matrix, c = +1)

N — oo limit

* Eigenvalues distribute continuously = p(x)

1

* We can solve this model by using the resolvent w(z) = <% tr (m» = [dx

p(x)
Z—X

EOM give quadratic equation of w(z):

w(z)* = pV'(2)w(z) — Q(2) =0

(Q(Z) =

V(z): 4t order = (polynomial): 6" order

L (V@-ven
NI' s — M - polynomial o1 z

= w(z) = §V’(Z) — \/polynomial



Matrix model (real, 2/2)

Properties of w(z)

w(@) -~ (2] > o)

w(x +ie) — w(x —ie) = 2mip(x)

.—— Eigenvalues distribute in the potential V(x) = —gxz + ix‘*
Two types of solution

1-cut solution: w(z) = §<V’(z) — \/(ZZ + a?z — C)Z (z% — a2)> <a2 = §C<1 —Jit 12[);2 ))

2-cut solution: w(z) = §<V'(Z) - \/ZZ (ZZ —ct \/%) (ZZ -7 J%))

e ¢ = —1: only 1-cut solution is realized.
* ¢ =+41: 1-cutsolutionis realized for § < 4,
2-cut solution is realized for § > 4.

Especially, 379-order phase transition occurs at § = 8, = 4.



Matrix model (complex, 1/4)

Complex case

S(M) = N trV(M)
c , 1, _
V(x) = _Ex T Zx (M: N x N Hermitian matrix, c = e'?)

* The cut of w(2) is no longer on the real axis.

* However, we can find the form of resolvent w(z) = g V'(z) — \/polynomial).

~

6t order polynomial: in general there should be the 3-cut solution.

We can again solve the model by two steps:

1. Assume the number of cuts
2. Determine the form of w(z) by w(z) — i (|z]| = o).



\.

Matrix model (complex, 2/4)

Complex case

S(M) = NB trV(M)

C 1
— 2 4 .
V(x) = _Ex T Zx (M: N x N Hermitian matrix, c = e'?)

result

1-cut solution: w(z) =

N ™

(ror-Jr e - o) (s o)
R e e )

(V’(Z) — \/26 — 2cz* + (c2 — g) z? —u(p, c))

There remains 1 (complex) parameter.

2-cut solution: w(z) =

N |

3-cut solution: w(z) =

N |



Matrix model (complex, 3/4)

The parameter u(f, ¢) can be determined as following:

David’s discussion

The real part of free energy should be minimized

with constraint that Ba
filling fraction n, € [0,1] (especially n, € R, X ,n, = 1) m
dz \
. : _ — az < /
Filling fraction (for cut I,) : N, an Py a)(z) < v

Minimize Re(free energy) & Re(chemical potential u,) = u (a-indep.)

Difference between chemical potentials: Uy+1 — Ug — f —,a)(z)

Im[f (Z)] =0, Re[f (Z)] =0 |:> u(p, c) is determined.



Phase diagram (prospection)

The phase diagram is prospected as follows:

C>9/7‘[ (c = e'9)

0.8
l

1-cut solution

0.6
l

- 0=mn/2
3-cut solution
S - -0 =mn/4
g I I I I I I I ﬁ

0 5 10 15 20 25 30



Matrix model (complex, 4/4)

Red: 1-cut soln.

On [ = 20 line, three types of solution should be appear.

Blue: 3-cut soln.

Re Im (c = e'?)
dF "’
o U; = T u‘e - O/m 6/m
df =20
2 0t o 6/7-[ ‘A 9/77:
d*F |
dB? 1p=20 o]

In particular, (probably) 37-order phase transitions occur at @ ~ 0.2mw, 0.47.



Numerical results (1/2)

We calculate Z—; = (%trV(M)) of this model by using LTM.

Parameters
(e N =6
« =20, 6 €[0,] (c=e?
< =) Sign problem
* We introduce two types of tempering parameter: (5, t)
set of 8: {8} = {5,10, 15,20}, setof t: {t} = {0%%% 1}

\_ * Dynamical variables: N X N Hermitian matrix (not diagonalized)
=) The models have SU(N) symmetry.




Numerical results (2/2)

Results

Green: 2-cut solution
Blue: 3-cut solution
Purple: numerical results
(c = e'®)

Re [(% trV (M) )] Red: 1-cut solution

=
.ot

Numerical results correctly agree with analytical solutions.




Summary

We introduce the parallel tempering algorithm to LTM
by regarding the flow time t as a tempering parameter.

This method is quite versatile:
We can calculate any models (in principle)
without the fine-tuning of t.

e which have multi-thimble contributions.

i.e. we can calculate the models _ _
* which have continuous symmetry.

Future problems
 LTM is Costly

Computational cost « (degrees of freedom)?
* Residual sign problem
* Global sign problem



