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1. Introduction
Discrete model of quantum gravity   —  An approach to QG

★ The most successful case — 2 dim.

Random surface
Dual

Matrix model
Triangulated surfaces Feynman diagrams

Spacetime (and other fundamental degrees of freedom) are 
described by discrete variables.



★ D>2 dim.

Random volume Dual
Tensor models
Original models  ‘91

Colored tensor model  ‘09

Dynamical triangulation

Ambjorn et al, NS, Gross et al

Gurau



However, these Euclidean gravity discrete models in D>2 
suffer from generation of singular spaces.

Branched polymer phase   or   Crumpled  phase 

No emergence of macroscopic spaces

cf. But, recently, relation to SYK model was pointed out (Witten ‘16).  
     Related to gravity by holography ? This is still an open problem.



On the other hand,

Causal dynamical triangulation —

Emergence of macroscopic spacetime in 3+1 dim (and 2+1)

J. Ambjorn, J. Jurkiewicz, R. Loll,
Phys.Rev.Lett. 93 (2004) 131301 

Time is important !

Dynamical triangulation
with time direction

Seems essential for
emergence of macroscopic
spacetime.

https://inspirehep.net/author/profile/Ambjorn%2C%20J.?recid=648758&ln=ja
https://inspirehep.net/author/profile/Jurkiewicz%2C%20J.?recid=648758&ln=ja
https://inspirehep.net/author/profile/Loll%2C%20R.?recid=648758&ln=ja


Proposal of Canonical Tensor Model (CTM)

Motivation : Formulate a tensor model with time

• Use canonical formalism
• Time must be a gauge direction (not a physical observable)

Strategy:

NS, Int.J.Mod.Phys. A27 (2012) 1250020  

Hamiltonian is a constraint (first-class)

Very similar structure as ADM formalism of GR

H = NaHa +NabJab

{H,H} ⇠ J
{J ,H} ⇠ H
{J ,J } ⇠ J

: First-class constraints
(Poisson algebra of 
constraints is closed)

H,J

Na, Nab : Non-dynamical multipliers



Guarantees mutual consistencies of locally defined time-evolutions
→ General covariance

t

{H,H} ⇠ J
{J ,H} ⇠ H
{J ,J } ⇠ J

ADM formalism of GR

H(x)

J i(x)

: Hamiltonian constraint
: Momentum constraint

N(x)

Ni(x)

HADM =

Z
dDx

�
N(x)H(x) +Ni(x)J i(x)

�

: Lapse
: Shift

(Spatial diffeo)

First class



NS,Int.J.Mod.Phys. A27 (2012) 1250096

So, we just need to study one such model. 

If CTM does not work at some point, then it should be discarded 
right away. 

Very nice. Life is short.

CTM is unique under some reasonable assumptions.
(Details later)



Classical properties of CTM work very nicely so far.

★ N=1 classical CTM = Mini-superspace treatment of GR
NS, Y.Sato, Phys.Lett. B732 (2014) 32-35

★ Classical CTM in a formal continuum limit→GR system

Constraint algebra Algebra of ADM constraints
Hypersurface deformation algebra
(Spacetime diffeomorphism symmetry)

EOM → GR+scalar+higher spins in Hamil.-Jacobi formalism 

→
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Z
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NS, Y.Sato, JHEP 1510 (2015) 109 

H.Chen, NS, Y.Sato, Phys.Rev. D95 (2017) no.6, 066008

(FRW)



• Continuous indices

P
abc

! P
xyz

x, y, z 2 RD

• Locality

A formal continuum limit

P

xyz

= �(x)�D(x� y)�D(x� z)

+�

µ(x)@µ�
D(x� y)�D(x� z) + · · ·

+�

µ⌫(x)@µ�
D(x� y)@⌫�

D(x� z) + · · ·
+ · · ·

Implicitly N→∞

P
xyz

6= 0 only at x ⇠ y ⇠ z

More specifically, a derivative expansion is assumed.



Rather, we want to derive it as a peak of a wave function of 
quantum CTM. Emergence of macroscopic spaces.

Formal continuum limit   ≈ Presetting a macroscopic space 
with continuity and locality

Pabc

| (P )|2 Macroscopic space

Classically, it can be regarded as a sort of an initial condition, and is 
therefore a consistent treatment.

Ideally,



Instead, in this talk, we will show

Pabc

| (P )|2

A wave function of quantum CTM has the preference 
of Lie-group symmetric configurations.

Encouraging, because Lie group symmetries determine global 
structures of spacetimes. Eg. translation, rotation, etc.

PH1

PH2

PH3
PH : Invariant configuration

  under Lie group  H



2. Formalism of CTM

★ Dynamical variables

A conjugate pair of real symmetric rank-3 tensors

{Qabc, Pdef} =
X

�

�a�d�b�e�c�f

Permutations

a, b, . . . = 1, 2, . . . , N

NS, Int.J.Mod.Phys. A27 (2012) 1250020  
NS, Int.J.Mod.Phys. A27 (2012) 1250096

{Qabc, Qdef} = {Pabc, Pdef} = 0

Rank-3, because
• The simplest. Try the simplest first !
• Higher tensors may be composites of rank-3.

Rank-4,…



★ Hamiltonian

H = NaHa +NabJab

Ha

Jab

Nab

Na

: Hamiltonian constraint
: Momentum constraint

: Lapse
: Shift

Non-dynamical multipliers

Following the names in ADM.

First-class constraints

: so(N) generators — Rotation of indices
  Analogous to spatial diffeomorphism

Jab



★ Constraints and Poisson algebra

� = 0,±1

N = 1 ⇤ = �( = FRW
with )

Form a first-class constraint Poisson algebra (closed)

{H(⇠1),H(⇠2)} = J
⇣
[⇠̃1, ⇠̃2] + 2� ⇠1 ^ ⇠2

⌘

{J (⌘),H(⇠)} = H(⌘⇠)

{J (⌘1),J (⌘2)} = J
�
[⌘1, ⌘2]

�

H(⇠) = Ha⇠a J (⌘) = Jab⌘ab ⇠̃ab = Pabc⇠c

(⇠1 ^ ⇠2)ab = ⇠a⇠b � ⇠b⇠a [ , ] : Matrix commutator
⇠a, ⌘ab : c-auxiliary variables

Non-linearity exists
similarly to ADM

Ha =
1

2
(PabcPbdeQcde � �Qabb)

so(N)

Jab = �Jba =
1

4
(QacdPbcd �QbcdPacd)



★ Uniqueness

Assumptions for the proof of the uniqueness
• Dynamical variables : A conjugate pair of rank-3 real symmetric 

tensors 
• SO(N) kinematical symmetry, 
• There is a constraint with one index
•      is at most cubic.
• The constraints form a closed Poisson algebra (First-class)
• Time reversal symmetry 
• Connected (Locality)

Jab

Ha

Ha

NS,Int.J.Mod.Phys. A27 (2012) 1250096

P
P

Q
P

P

Q

P ! �P, Q ! Q



★ Quantization

Straightforward by the canonical way

Qabc, Pabc ! Q̂abc, P̂abc { , } ! 1

i
[ , ]

Ĵab =
1

4

⇣
Q̂acdP̂bcd � Q̂bcdP̂acd

⌘

No anomalies ! 
Quantum constraint algebra is the same as classical.
In particular, it is closed — Consistency guaranteed.

Normal ordering term
�H =

1

2
(N + 2)(N + 3)

Determined by hermiticity

Ĥa =
1

2

⇣
P̂abcP̂bdeQ̂cde + i�H P̂abb � � Q̂abb

⌘

NS, Int.J.Mod.Phys. A28 (2013) 1350111 



★ Physical states

Ĥa| i = Ĵab| i = 0

★ Wave functions

Analogue to Wheeler-DeWitt eq.

Qabc ! iDabc

A set of linear 1st order partial differential eqs.

In Q-rep., a set of linear 2nd order partial differential eqs.

(PabcPbdeDcde + �HPabb � �Dabb) phys(P ) = 0

(PacdDbcd � PbcdDacd) phys(P ) = 0

DabcPdef =
X

�

�a�d�b�e�c�fIn P-rep, 



3. A  wave function
Looks very difficult to solve the equations. But, one can find an 
exact solution for general N, which looks very interesting.

P�3 = Pabc�a�b�c

 (P ) =

Z

RN+1

d�d�̃ ei(P�3+�2�̃� 4
27� �̃3)

Found by being inspired by an intimate connection between 
CTM and randomly connected tensor networks.

 phys(P ) =  (P )
�H
2

�2 = �a�a d� =
NY

a=1

d�a

G.Narain, NS, Y.Sato, JHEP 1501 (2015) 010 

Normal ordering constant
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1st order phase-trans. 
line

Hamilton vector flow of 
CTM 

Connection between CTM and randomly connected tensor networks
Cf.

Looks very much like 
an RG flow. 
(Not yet proven)

NS, Y.Sato, PTEP 2014 (2014) no.5, 053B03; PTEP 2015 (2015) no.4, 043B09

2nd order phase-trans.
point

N=2 + yet to appear



• Proof of the solution
What is necessary is essentially the validity of 
the partial integration over        .

eg: The first term of      

PabcPbdeDcde

Z

C
d�d�̃ ei(P�3+�2�̃� 4

27� �̃3)

= 6i

Z

C
d�d�̃ PabcPbde�c�d�ee

i(P�3+�2�̃� 4
27� �̃3)

�, �̃

= 2

Z

C
d�d�̃ Pabc�c

⇣
@�
b e

iP�3
⌘
ei(�

2�̃� 4
27� �̃3)

Ĥa

= �2Pabb (P )�4i

Z

C
d�d�̃ Pabc�b�c�̃ ei(P�3+�2�̃� 4

27� �̃3)

= …

Partial
integration

Contributions from the boundaries have been ignored.
(Discussed shortly)



• Convergence of the expression and regularization
Conditionally convergent for generic         except for 
special        discussed later. The convergence is due to the 
infinitely fast oscillation of integrand at infinity.

Pabc

eg. 
Z

x

2+y

2R

dxdy e

i(x3�y

3)

R

We rather use ε-prescription with a similar role as R :

 (P ) = lim
✏!+0

Z

RN+1

d�d�̃ ei(P�3+�2�̃� 4
27� �̃3)�✏(�2+�̃2)

Airy function, Fresnel integral
Well-known eg.:

Eg:

Pabc



• The ε-prescription

The violation of the constraints

✏

Z

RN+1

d�d�̃
⇣
c1Pabc�b�c + c2 �a�̃

⌘
ei(P�3+�2�̃� 4

27� �̃3)�✏�2�✏�̃2

c1, c2 : Numerical constants
→ 0  for ε→+0

because the integral converges.

Numerical studies (later) also support the result. 

Ha (P )
~ 10-8 for N=2

~ 10-2 for N=3



• λ>0 is required for the physical sensibility of the wave 
function

For λ=0  (P ) =

Z

RN

d� eP�3

⇠ |P |�N
3 f(⌦P )

Pabc ! 0 is favored. Physically, nothing is favored.

For λ<0
No critical (stationary) points exist, as shown later.
→ No apparent peaks of the wave function 

 λ=Λ: Positive cosmological constant (N=1 CTM        FRW) 

For λ>0, various peaks and structures exist.



Summary of my part

• Time is introduced to tensor model. 
Time is gauged : CTM ～ ADM

• Classical CTM → GR system in H-J formalism
～ presetting a macroscopic space

• λ>0 required for the sensibility

In a formal continuum limit

• Want to find the formal continuum limit as a peak of wave function

 (P ) =

Z

RN+1

d�d�̃ ei(P�3+�2�̃� 4
27� �̃3)


