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)(
E
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Metals are Disordered

I in ordinary metals, the effects of electron-electron
interactions are negligible:

tee ⌧ timp tee � timp

ordinary metal (iron etc.)ultraclean metal (GaAs, graphene?)

tee ⇠ 10�11 s timp ⇠ 10�14 s

@⇢

@t
+ r · J = 0

@np

@t
= mess
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The Drude Model

I ρ governed by
scattering?

ρ =
m

ne2

1

τ

impurities phonons electron interactions
(umklapp)

ρ ∼ T 0 ρ ∼ T d+2 (low T ) ρ ∼ T 2

ρ ∼ T (high T )

I scattering rates add (Mattheisen’s “rule”):

ρ = ρe,imp + ρe,ph + ρee?
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Wiedemann-Franz Law

I thermal conductivity κ; electrical conductivity σ:

Q|J=0 ≡ −κ∇T, J|∇T=0 = σE.

I Wiedemann-Franz law in a Fermi liquid:

L ≡ κ

σT
≈ π2k2

B

3e2
≈ 2.45× 10−8 W · Ω

K2
.

[Kumar, Prasad, Pohl; (1993)]
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All is Not Well

I Drude model: more scattering =⇒ more resistance

I more scattering off thermal excitations as T increases

I
∂ρ

∂T
< 0 in metallic graphene constrictions:

[Kumar et al; 1703.06672]
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(surprisingly, boost invariance is not needed)
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Momentum Conservation: Ward Identity

I Ward identity for momentum conservation in QFT in an
external electric field Ei:

∂tT
ti + ∂jT

ji = F iµJµ = ρEi︸︷︷︸
Lorentz force

.

I Ohm’s law: no time dependence?

∂jT
ji = ρEi.

I integrate over space....∫
ddx∂jT

ji = 0 6= Ei
∫

ddx ρ

I transport problem is ill-posed so far!
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Momentum Relaxation

I momentum cannot be conserved if σ is finite.

I let us use a relaxation time approximation:

∂tT
ti + ∂jT

ji = ρEi − T ti

τ

(T ti should be small for this to make sense)

I look for static and homogeneous response:

T ti = τρEi ≡Mvi.

(relativistic: M = enthalpy; Galilean: M = m
q ρ)

I compute conductivity:

J i = ρvi =
ρ2τ

M Ei = σEi.

I compare with before: M = nm, ρ = −ne
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Thermoelectric Transport

I analogue of Lorentz force for temperature gradient:

∂tT
ti + ∂jT

ji = −s∂iT − T ti

τ

I the heat current is approximately

Qi ≡ Tsvi

(we will define more precisely later)

I thus we find

α =
J

−∂T =
Q

TE
=
sρτ

M , κ̄ =
Q

−∂T =
Ts2τ

M .

I all transport coefficients are linked to the conservation of
momentum
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Finite Frequency

I apply a time-dependent electric field Eie
−iωt:

σ(ω) =
ρ2

M × 1

τ−1 − iω

I this Drude peak can be seen experimentally in
exceptionally pure metals: [Scheffler et al (2005)]

I often there is no sharp Drude peak: τ−1 is too large, and so
there are competing effects: interband transitions, etc.
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Wiedemann-Franz Revisited: Finite Density

I recall that experimentalists often measure κ, not κ̄:

κ̄ =
Qx
−∂xT

∣∣∣∣
E=0

, κ =
Qx
−∂xT

∣∣∣∣
J=0

,

I in our relaxation time approximation, we find

κ = κ̄− Tα2

σ
= 0.

I when ρ 6= 0, κ is finite even if momentum is conserved:
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Wiedemann-Franz Revisited: Zero Density

I when ρ = 0:

κ→∞, σ = finite

E�rT

I effect seen in charge neutral
graphene:
[Crossno et al; 1509.04713]
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Two Experimental Puzzles 17

Electron-Electron Interaction Limited Resistivity in Fermi Liquids

I in a Fermi liquid:

τee ∼
~µ

(kBT )2
, ρ = AT 2 ∼ 1

τee
. . .

I B depends on thermodynamics (not disorder?):
[Jacko, Fjaerestad, Powell; 0805.4275]
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Linear Resistivity: A Challenge

I in a theory without quasiparticles:

τee &
~
kBT

.

I “Drude” ρ =
m

ne2

1

τee
∼ m

ne2

kBT

~
:

[Bruin, Sakai, Perry, Mackenzie (2013)]
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How to Compute the Relaxation Time?

I summary (so far): our toy model gave(
σ α
Tα κ̄

)
=

(
ρ2 ρs
Tρs Ts2

)
τ

M

with τ the momentum relaxation time

I questions I will answer (Lecture 2):
I when does this formula apply?
I how do we compute τ?

I open questions (I will speculate on):
I why do we see a universal

ρ ∼ 1

τee
,

with τee a momentum-conserving scattering time?
I how to think about transport beyond relaxation time

approximation (partial theory in Lecture 3)
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Formal Definitions and Green’s Functions 20

Formally Applying an Electric Field

it is now time to be rigorous.
I how do we apply an electric field Ei to a QFT?

I add a background, non-dynamical, gauge field Aµ that
couples to conserved current operator Jµ:

Z[Aµ] ≡
〈

exp

[
i

∫
dd+1xJµ(x)Aµ(x)

]〉
QFT

here and forever, d is the number of spatial dimensions
I note that At(x) = µ → the chemical potential:〈

exp

[
i

∫
dd+1xJ t(x)µ

]
· · ·
〉

=
〈
eiµQ · · ·

〉
= 〈· · · 〉H→H−µQ

I to get electric fields, choose

A = −Eitdxi, or A =
e−iωt

iω
Eidx

i, (ω → 0)
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]〉
QFT

here and forever, d is the number of spatial dimensions
I note that At(x) = µ → the chemical potential:〈

exp

[
i

∫
dd+1xJ t(x)µ

]
· · ·
〉

=
〈
eiµQ · · ·

〉
= 〈· · · 〉H→H−µQ

I to get electric fields, choose

A = −Eitdxi, or A =
e−iωt

iω
Eidx

i, (ω → 0)
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Temperature as Compact Euclidean Time

I how do we apply a “thermal drive” ζi?

ζi ≡ −
∂iT

T

I partition function for QFT at temperature T = 1/β is
Rd × S1 partition function – Euclidean time t ∼ t+ β

I temperature gradient =⇒ “cone-like” space with metric

ds2 = dt2 + dx2
i , t ∼ t+ βζix

i

x

t
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Temperature Gradient

I change coordinates to t̃ = t/β(x):

ds2 ≈ β(x)2dt̃2 + dx2
i ≈

(
β2 + 2β2e−iω̃t̃ζix

i
)

dt̃2 + dx2
i

I metric will not diverge at large x in different coordinates:

t̃→ t̃+ ξ t̃, ξ t̃ = −iζix
i e
−iω̃t̃

ω̃
.

I using transformation rules for gµν and Aµ:

gt̃t̃ ≈ β2, gt̃i ≈ ζiβ2 e−iω̃t̃

iω̃
, Ai = −ζi

e−iω̃t̃

iω̃
At̃

and converting back to physical coordinates:

gti = ζi
e−iωt

iω
, Ai = −µζi

e−iωt

iω
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Is a Temperature Gradient a Gravitational Field?

I there is a common misconception (in condensed matter)
that ∇T is equivalent to a gravitational field

I the metric

ds2 = −dt2 + dx2
i + 2

e−iωt

iω
ζidx

idt

is flat: Rαβµν = 0. (diffeomorphic to warped S1 × Rd)
I but consistency of QFT on curved space does give deep

relations between ‘gravity’ and ∇T ...
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Defining the Heat Current

I temperature gradients relate to metric perturbations, and

Z[gµν , Aµ] =

〈
exp

[
i

∫
dd+1x

√−g
(

1

2
Tµνδgµν + JµδAµ

)]〉

I plugging in for the Ei and ζi perturbations:

Z[Ei, ζi] =

〈
exp

[
i

∫
dd+1x

√−g e−iωt

iω

(
J iEi +

(
T ti − µJ i

)
ζi
)]〉

I response to perturbations:

δZ

δEi
→ J i︸ ︷︷ ︸

spatially averaged charge current

δZ

δζi
→ T ti − µJ i ≡ Qi︸ ︷︷ ︸

spatially averaged heat current

(though note possible subtleties with “contact terms”)
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Formal Definitions of Thermoelectric Conductivity Matrix

I for most purposes, it suffices to define:(
J i

Qi

)
=

(
σij Tαij

T ᾱij T κ̄ij

)(
Ej
ζj

)

σij(ω) =
GR
JiJj (ω)

iω
, Tαij =

GR
JiQj (ω)

iω
, T κ̄ij =

GR
QiQj (ω)

iω

I with time reversal symmetry, Onsager reciprocity

σij = σji, κ̄ij = κ̄ji, αij = ᾱji.

I these “simple” two-point functions are very hard to
compute: remaining lectures will describe various
techniques and simplifying limits in interacting QFTs
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