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» These lectures will not focus on holography. I will mostly keep discussion to

where holographic input can and has been useful.
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Define memory matrix. Quantum derivation of the Drude model.

August 19:

3. Hydrodynamics and conductivity bounds (5.4, 5.8-5.10)
Generalized hydrodynamics. Conductivity bounds, including in holography.

4. Magnetotransport (5.7)

Experimental puzzles in magnetic field. Memory matrix and hydrodynamics.
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» more generally, thermoelectric transport:
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» describes electrons in
ordinary metals

» interaction time
constrained by near-Fermi
surface phase space:
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(quantum) kinetic theory




Ordinary Metals: a Review

Metals are Disordered

» in ordinary metals, the effects of electron-electron
interactions are negligible:

ZL/cc < timp 2L/cc > ZL/imp

ultraclean metal (GaAs, graphene?) ordinary metal (iron etc.)

teo ~ 107 s timp ~ 107"



Ordinary Metals: a Review

The Drude Model

> p governed by ‘

scattering?
m 1
P err
impurities phonons electron interactions
(umklapp)
p~T° p~ T2 (low T) p~ T2

p ~ T (high T)



Ordinary Metals: a Review
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» p governed by .

scattering?
m 1
P err
impurities phonons electron interactions
(umklapp)
p~T° p~ T2 (low T) p~ T2

p ~ T (high T)

» scattering rates add (Mattheisen’s “rule”):

P = Pe,imp T Peph T Pee’
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» Wiedemann-Franz law in a Fermi liquid:

21.2
K Tk s W-Q
L=—n~—Bx245x107% ——.
ol 3e K
* Carrier concentration (cm)
10" 10" 10" 10" 107 10% 10% 10 10%
T — T T T T T
< 3.0 W\.\ cs a "
§ ) s \ 1Y
g 25 oy \ i ! ?4\
::’20 L) ste N \., A
§  eemecmmsem == 5
£ 30 \',.\ %5 g 7°~¢ v 4
0 i A74 \\1\\\\ \L-/ Z,/ \
8 TN // w2\ \\ i .§
S0 e ™ o,” ‘” / /
10? 10° * 16‘ 10’ 10‘ 10’ lo' 1os 10

Electrical conductivity (Q ' cm )

[Kumar, Prasad, Pohl; (1993)]



Ordinary Metals: a Review

All is Not Well

» Drude model: more scattering = more resistance



Ordinary Metals: a Review

All is Not Well

» Drude model: more scattering = more resistance
» more scattering off thermal excitations as T  increases



Ordinary Metals: a Review

All is Not Well

» Drude model: more scattering = more resistance
» more scattering off thermal excitations as T increases

> 8—; < 0 in metallic graphene constrictions:

[Kumar et al; 1703.06672]
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Momentum Conservation: A Theorem

J=nvand E=0

» if there is translation invariance:

g =00

(surprisingly, boost invariance is not needed)
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Momentum Conservation: Ward Ildentity

» Ward identity for momentum conservation in QFT in an
external electric field E':

OT" + ;T = F'*'J, =  pE"'
~~

Lorentz force

» Ohm’s law: no time dependence?

0;TV" = pE".

» integrate over space....

/ d9%9,T7" = 0 # E° / dx p

» transport problem is ill-posed so far!
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Drude Model Revisited

Momentum Relaxation

» momentum cannot be conserved if o is finite.
» let us use a relaxation time approximation:

. g T
T + 0;TV" = pE' — —
-

(T* should be small for this to make sense)

look for static and homogeneous response:

Tti — TpEl = M’Ui.

v

(relativistic: M = enthalpy; Galilean: M = Ztp)
compute conductivity:

v

. . 2 . .
J'=pu' = '[;M—TE’ =oFE".

» compare with before: M =nm, p = —ne
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Drude Model Revisited

Thermoelectric Transport

» analogue of Lorentz force for temperature gradient:

ti

T + ;T = —s0'T — TT
» the heat current is approximately
Q' = Tsv'
(we will define more precisely later)
» thus we find

N J Q spT Q Ts*r

= — = — R= — = ———.
-or TE M’ 0T M

» all transport coeflicients are linked to the conservation of
momentum
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Finite Frequency

» apply a time-dependent electric field E;e™“t:
2 1

PV S

M ol —iw

» this Drude peak can be seen experimentally in
exceptionally pure metals: [Scheffler et al (2005)]

Conductivity (1o om-)

Frequency (GHz)

» often there is no sharp Drude peak: 77! is too large, and so
there are competing effects: interband transitions, etc.
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Wiedemann-Franz Revisited: Finite Density

» recall that experimentalists often measure k, not &:

Qu @
“0.T |y’ —0,T

R =

)

J=0

» in our relaxation time approximation, we find

T2
n:ﬁ;—izo.
g

» when p # 0, x is finite even if momentum is conserved:
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Wiedemann-Franz Revisited: Zero Density

» when p =0:

Kk — 00, o = finite
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Drude Model Revisited

Wiedemann-Franz Revisited: Zero Density

» when p =0:

o
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Kk — 00, o = finite
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Two Experimental Puzzles

Electron-Electron Interaction Limited Resistivity in Fermi Liquids

» in a Fermi liquid:
hu 9 1
~— = AT~ — ...
Tee (kBT)2 ) p Tee

» B depends on thermodynamics (not disorder?):
[Jacko, Fjaerestad, Powell; 0805.4275]
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Two Experimental Puzzles

Linear Resistivity: A Challenge

» in a theory without quasiparticles:
h
Tee = ——.
™~ kpT
m 1 m kT
» “Drude” p=——5— ~ —5——:
ne Tee  Ne? h
[Bruin, Sakai, Perry, Mackenzie (2013)]
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Two Experimental Puzzles

How to Compute the Relaxation Time?

» summary (so far): our toy model gave

o a\ [ p? ps \ T
Ta & ) \Tps Ts* ) M
with 7 the momentum relaxation time
» questions I will answer (Lecture 2):

» when does this formula apply?
» how do we compute 77

» open questions (I will speculate on):
» why do we see a universal

1
p~—,
Tee
with Tee a momentum-conserving scattering time?
» how to think about transport beyond relaxation time
approximation (partial theory in Lecture 3)
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Formal Definitions and Green's Functions

Formally Applying an Electric Field

it is now time to be rigorous.
» how do we apply an electric field E? to a QFT?
» add a background, non-dynamical, gauge field A, that
couples to conserved current operator J*:

Z]AV] = <exp [i / ddﬂxﬂ(x)A,,(:c)] >QFT

here and forever, d is the number of spatial dimensions
» note that A;(x) = p — the chemical potential:

Gmk/ﬁﬁwﬂ@m}~>=¢MQ = VHoH-u0

» to get electric fields, choose

) e—iwt
A= —FE;jtdx*, or |A=

E;dz’, (w—0)

1w
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Formal Definitions and Green's Functions

Temperature as Compact Euclidean Time

» how do we apply a “thermal drive” (;?

o;T
T

G =

» partition function for QFT at temperature 7' = 1/7 is
R? x S! partition function — Euclidean time t ~ t + 3

» temperature gradient = “cone-like” space with metric

=dt? +da?, t~t+ LGt

@L
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Formal Definitions and Green's Functions

Temperature Gradient

» change coordinates to ¢ = t/f(z):

ds? ~ B(x)2di% + da? (52 +28% ) A2 + da?
» metric will not diverge at large x in different coordinates:
—iwt

foite, & =—iga'”

» using transformation rules for ¢, and A,:
w B

e*lwt 71wt

g5 = 6 5 95 ~ CZ/BQ 5 CZ

and converting back to physical coordinates:

e—lwt e—lwt

9 = G——, Ai=—ug
1w
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Is a Temperature Gradient a Gravitational Field?

» there is a common misconception (in condensed matter)
that VT is equivalent to a gravitational field

» the metric

e—lwt

Gdzidt

ds? = —dt? + da? + 2—
1w

is flat: Ropu = 0. (diffeomorphic to warped S' x R?)

» but consistency of QFT on curved space does give deep
relations between ‘gravity’ and VT'...

An Experiment in Zurich Brings Us Nearer to a Black
Hole’s Mysteries

IBM researchers used an exotic material known as a Weyl semimetal to confirm the
existence of a gravitational anomaly predicted in equations that describe the...

NYTIMES.COM
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Defining the Heat Current

» temperature gradients relate to metric perturbations, and

Zgu, Aul = <exp [i/ddﬂxv—g (%T’“’égw, + J“SAM)}>

» plugging in for the F; and (; perturbations:

—iwt

Z1Es ¢ = <exp [i / dd+1g;\/—_geiw (J'E; + (T" — pJ?) Q)D




Formal Definitions and Green's Functions

Defining the Heat Current

» temperature gradients relate to metric perturbations, and
A <exp [i/dd“x\/_( T8 g, + JHS A )D

» plugging in for the F; and (; perturbations:

(JPE; + (10— ) g)] >

—iwt

Z[B;, ] = <exp [i / A4+ le =g

1w

» response to perturbations:

VA4 - 4 , ,
— J = STt g =@
0 Ei g Cz
—_———
spatially averaged charge current spatially averaged heat current

(though note possible subtleties with “contact terms”)
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Formal Definitions and Green's Functions

Formal Definitions of Thermoelectric Conductivity Matrix

» for most purposes, it suffices to define:

JUN _( 0¥ TaV\ [ E
Q") \ Tay TgrY ¢

y GR, (w GR (W) o GR (W)
cr”(w)z—‘]i‘f)( ), Ta”z—‘]icij , TRU:—QjQ(,:

» with time reversal symmetry, Onsager reciprocity

o =l FYU=F1 oV =alt

» these “simple” two-point functions are very hard to
compute: remaining lectures will describe various
techniques and simplifying limits in interacting QFTs
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