Theory of metallic transport in strongly coupled matter

1. Introduction

Andrew Lucas

Stanford Physics

Geometry and Holography for Quantum Criticality; Asia-Pacific Center for Theoretical Physics

August 18-19, 2017

Advertisement

These lectures loosely follow Chapter 5 of

Hartnoll, Lucas, Sachdev: "Holographic quantum matter", arXiv:1612.07324

Sean Hartnoll Stanford Physics

Subir Sachdev Harvard Physics & Perimeter Institute

Advertisement

These lectures loosely follow Chapter 5 of

Hartnoll, Lucas, Sachdev: "Holographic quantum matter", arXiv:1612.07324

Sean Hartnoll Stanford Physics

Subir Sachdev Harvard Physics & Perimeter Institute

These lectures will not focus on holography. I will mostly keep discussion to where holographic input can and has been useful.

1. Introduction

$$(5.1-5.3)$$

Drude's model and shortcomings. Experimental puzzles. Formal definitions.

1. Introduction

$$(5.1-5.3)$$

Drude's model and shortcomings. Experimental puzzles. Formal definitions.

2. Memory matrix formalism

Define memory matrix. Quantum derivation of the Drude model.

1. Introduction

(5.1-5.3)

Drude's model and shortcomings. Experimental puzzles. Formal definitions.

2. Memory matrix formalism

(5.6)

Define memory matrix. Quantum derivation of the Drude model.

August 19:

3. Hydrodynamics and conductivity bounds (5.4, 5.8-5.10)

Generalized hydrodynamics. Conductivity bounds, including in holography.

1. Introduction

(5.1-5.3)

(5.6)

(5.7)

Drude's model and shortcomings. Experimental puzzles. Formal definitions.

2. Memory matrix formalism

Define memory matrix. Quantum derivation of the Drude model.

August 19:

3. Hydrodynamics and conductivity bounds (5.4, 5.8-5.10)

Generalized hydrodynamics. Conductivity bounds, including in holography.

4. Magnetotransport

Experimental puzzles in magnetic field. Memory matrix and hydrodynamics.

▶ Ohm's law – the "simplest" experiment:

$$V = IR$$
 $R \sim \frac{1}{\sigma}$

▶ Ohm's law – the "simplest" experiment:

$$V = IR \qquad R \sim \frac{1}{\sigma}$$

▶ more generally, thermoelectric transport:

$$\left(\begin{array}{c} \mathbf{J} \\ \mathbf{Q} \end{array}\right) = \left(\begin{array}{cc} \sigma & \alpha \\ T\bar{\alpha} & \bar{\kappa} \end{array}\right) \left(\begin{array}{c} \mathbf{E} \\ -\nabla T \end{array}\right)$$

The Fermi Liquid

 describes electrons in ordinary metals

The Fermi Liquid

- describes electrons in ordinary metals
- interaction time constrained by near-Fermi surface phase space:

$$t_{\rm ee} \sim \frac{\hbar \mu}{(k_{\rm B}T)^2}$$

The Fermi Liquid

- describes electrons in ordinary metals
- interaction time constrained by near-Fermi surface phase space:

$$t_{\rm ee} \sim \frac{\hbar\mu}{(k_{\rm B}T)^2}$$

 long-lived quasiparticles; (quantum) kinetic theory

Metals are Disordered

▶ in ordinary metals, the effects of electron-electron interactions are negligible:

ultraclean metal (GaAs, graphene?)

ordinary metal (iron etc.) $t_{\rm ee} \sim 10^{-11} \, {\rm s} \qquad t_{\rm imp} \sim 10^{-14} \, {\rm s}$

The Drude Model

 ρ governed by scattering?

$$\rho = \frac{m}{ne^2} \frac{1}{\tau}$$

impurities

phonons

 $\rho \sim T^0$

$$\rho \sim T^{d+2} \text{ (low } T$$
 $\rho \sim T \text{ (high } T)$

electron interactions $(\text{umklapp}) \\ \rho \sim T^2$

The Drude Model

 $\triangleright \rho$ governed by scattering? $\rho = \frac{m}{ne^2} \frac{1}{\tau}$ phonons impurities electron interactions (umklapp) $ho \sim T^0 \qquad
ho \sim T^{d+2} \ (\text{low } T)$ $\rho \sim T^2$ $\rho \sim T \text{ (high } T \text{)}$

► scattering rates add (Mattheisen's "rule"):

 $\rho = \rho_{\rm e,imp} + \rho_{\rm e,ph} + \rho_{\rm ee}?$

Ordinary Metals: a Review

Wiedemann-Franz Law

• thermal conductivity κ ; electrical conductivity σ :

$$\mathbf{Q}|_{\mathbf{J}=\mathbf{0}} \equiv -\kappa \nabla T, \quad \mathbf{J}|_{\nabla T=\mathbf{0}} = \sigma \mathbf{E}.$$

Ordinary Metals: a Review

Wiedemann-Franz Law

• thermal conductivity κ ; electrical conductivity σ :

$$\mathbf{Q}|_{\mathbf{J}=\mathbf{0}} \equiv -\kappa \nabla T, \quad \mathbf{J}|_{\nabla T=\mathbf{0}} = \sigma \mathbf{E}.$$

▶ Wiedemann-Franz law in a Fermi liquid:

[Kumar, Prasad, Pohl; (1993)]

All is Not Well

 \blacktriangleright Drude model: more scattering \implies more resistance

Ordinary Metals: a Review

All is Not Well

- Drude model: more scattering \implies more resistance
- \blacktriangleright more scattering off thermal excitations as T increases

Ordinary Metals: a Review

All is Not Well

- Drude model: more scattering \implies more resistance
- more scattering off thermal excitations as T increases $\partial \rho$
- ► $\frac{\partial \rho}{\partial T} < 0$ in metallic graphene constrictions: [Kumar *et al*; 1703.06672]

а

Momentum Conservation: A Theorem

$$J = 0$$

Momentum Conservation: A Theorem

Momentum Conservation: A Theorem

▶ if there is translation invariance:

$$\sigma = \infty$$

(surprisingly, boost invariance is not needed)

10

► Ward identity for momentum conservation in QFT in an external electric field Eⁱ:

$$\partial_t T^{ti} + \partial_j T^{ji} = F^{i\mu} J_\mu = \underbrace{\rho E^i}_{\text{Lorentz force}}$$

•

Ward identity for momentum conservation in QFT in an external electric field Eⁱ:

$$\partial_t T^{ti} + \partial_j T^{ji} = F^{i\mu} J_\mu = \underbrace{\rho E^i}_{\text{Lorentz force}}$$

▶ Ohm's law: no time dependence?

$$\partial_j T^{ji} = \rho E^i.$$

.

Ward identity for momentum conservation in QFT in an external electric field Eⁱ:

$$\partial_t T^{ti} + \partial_j T^{ji} = F^{i\mu} J_\mu = \underbrace{\rho E^i}_{\text{Lorentz force}}$$

▶ Ohm's law: no time dependence?

$$\partial_j T^{ji} = \rho E^i.$$

▶ integrate over space....

$$\int \mathrm{d}^d \mathbf{x} \partial_j T^{ji} = 0 \neq E^i \int \mathrm{d}^d \mathbf{x} \ \rho$$

.

Ward identity for momentum conservation in QFT in an external electric field Eⁱ:

$$\partial_t T^{ti} + \partial_j T^{ji} = F^{i\mu} J_\mu = \underbrace{\rho E^i}_{\text{Lorentz force}}$$

.

▶ Ohm's law: no time dependence?

$$\partial_j T^{ji} = \rho E^i.$$

▶ integrate over space....

$$\int \mathrm{d}^d \mathbf{x} \partial_j T^{ji} = 0 \neq E^i \int \mathrm{d}^d \mathbf{x} \ \rho$$

transport problem is ill-posed so far!

Momentum Relaxation

• momentum cannot be conserved if σ is finite.

Momentum Relaxation

- momentum cannot be conserved if σ is finite.
- ▶ let us use a **relaxation time approximation**:

$$\partial_t T^{ti} + \partial_j T^{ji} = \rho E^i - \frac{T^{ti}}{\tau}$$

 $(T^{ti}$ should be small for this to make sense)

Momentum Relaxation

- momentum cannot be conserved if σ is finite.
- ▶ let us use a **relaxation time approximation**:

$$\partial_t T^{ti} + \partial_j T^{ji} = \rho E^i - \frac{T^{ti}}{\tau}$$

(T^{ti} should be small for this to make sense)
▶ look for static and homogeneous response:

$$T^{ti} = \tau \rho E^i \equiv \mathcal{M} v^i.$$

(relativistic: $\mathcal{M} = \text{enthalpy}; \text{ Galilean: } \mathcal{M} = \frac{m}{q}\rho$)

Momentum Relaxation

- momentum cannot be conserved if σ is finite.
- ▶ let us use a **relaxation time approximation**:

$$\partial_t T^{ti} + \partial_j T^{ji} = \rho E^i - \frac{T^{ti}}{\tau}$$

(T^{ti} should be small for this to make sense)
▶ look for static and homogeneous response:

$$T^{ti} = \tau \rho E^i \equiv \mathcal{M} v^i.$$

(relativistic: $\mathcal{M} = \text{enthalpy};$ Galilean: $\mathcal{M} = \frac{m}{q}\rho$) \blacktriangleright compute conductivity:

$$J^{i} = \rho v^{i} = \frac{\rho^{2} \tau}{\mathcal{M}} E^{i} = \sigma E^{i}.$$

Momentum Relaxation

- momentum cannot be conserved if σ is finite.
- ▶ let us use a **relaxation time approximation**:

$$\partial_t T^{ti} + \partial_j T^{ji} = \rho E^i - \frac{T^{ti}}{\tau}$$

(T^{ti} should be small for this to make sense)
▶ look for static and homogeneous response:

$$T^{ti} = \tau \rho E^i \equiv \mathcal{M} v^i.$$

(relativistic: $\mathcal{M} = \text{enthalpy}$; Galilean: $\mathcal{M} = \frac{m}{q}\rho$) \triangleright compute conductivity:

$$J^{i} = \rho v^{i} = \frac{\rho^{2} \tau}{\mathcal{M}} E^{i} = \sigma E^{i}.$$

• compare with before: $\mathcal{M} = nm, \, \rho = -ne$

▶ analogue of Lorentz force for temperature gradient:

$$\partial_t T^{ti} + \partial_j T^{ji} = -s\partial^i T - \frac{T^{ti}}{\tau}$$

▶ analogue of Lorentz force for temperature gradient:

$$\partial_t T^{ti} + \partial_j T^{ji} = -s \partial^i T - \frac{T^{ti}}{\tau}$$

▶ the **heat current** is approximately

$$Q^i \equiv Tsv^i$$

(we will define more precisely later)

▶ analogue of Lorentz force for temperature gradient:

$$\partial_t T^{ti} + \partial_j T^{ji} = -s \partial^i T - \frac{T^{ti}}{\tau}$$

▶ the **heat current** is approximately

$$Q^i \equiv Tsv^i$$

(we will define more precisely later)

▶ thus we find

$$\alpha = \frac{J}{-\partial T} = \frac{Q}{TE} = \frac{s\rho\tau}{\mathcal{M}}, \quad \bar{\kappa} = \frac{Q}{-\partial T} = \frac{Ts^2\tau}{\mathcal{M}}$$

▶ analogue of Lorentz force for temperature gradient:

$$\partial_t T^{ti} + \partial_j T^{ji} = -s \partial^i T - \frac{T^{ti}}{\tau}$$

▶ the **heat current** is approximately

$$Q^i \equiv Tsv^i$$

(we will define more precisely later)

▶ thus we find

$$\alpha = \frac{J}{-\partial T} = \frac{Q}{TE} = \frac{s\rho\tau}{\mathcal{M}}, \quad \bar{\kappa} = \frac{Q}{-\partial T} = \frac{Ts^2\tau}{\mathcal{M}}.$$

▶ all transport coefficients are linked to the conservation of momentum

Finite Frequency

• apply a time-dependent electric field $E_i e^{-i\omega t}$:

$$\sigma(\omega) = \frac{\rho^2}{\mathcal{M}} \times \frac{1}{\tau^{-1} - \mathrm{i}\omega}$$

Finite Frequency

• apply a time-dependent electric field $E_i e^{-i\omega t}$:

$$\sigma(\omega) = \frac{\rho^2}{\mathcal{M}} \times \frac{1}{\tau^{-1} - \mathrm{i}\omega}$$

► this Drude peak can be seen experimentally in exceptionally pure metals: [Scheffler et al (2005)]

Finite Frequency

• apply a time-dependent electric field $E_i e^{-i\omega t}$:

$$\sigma(\omega) = \frac{\rho^2}{\mathcal{M}} \times \frac{1}{\tau^{-1} - \mathrm{i}\omega}$$

► this Drude peak can be seen experimentally in exceptionally pure metals: [Scheffler et al (2005)]

▶ often there is no sharp Drude peak: τ⁻¹ is too large, and so there are competing effects: interband transitions, etc. Wiedemann-Franz Revisited: Finite Density

▶ recall that experimentalists often measure κ , not $\bar{\kappa}$:

$$\bar{\kappa} = \left. \frac{Q_x}{-\partial_x T} \right|_{E=0}, \quad \kappa = \left. \frac{Q_x}{-\partial_x T} \right|_{J=0},$$

Wiedemann-Franz Revisited: Finite Density

▶ recall that experimentalists often measure κ , not $\bar{\kappa}$:

$$\bar{\kappa} = \frac{Q_x}{-\partial_x T} \bigg|_{E=0}, \quad \kappa = \frac{Q_x}{-\partial_x T} \bigg|_{J=0},$$

▶ in our relaxation time approximation, we find

$$\kappa = \bar{\kappa} - \frac{T\alpha^2}{\sigma} = 0.$$

Wiedemann-Franz Revisited: Finite Density

▶ recall that experimentalists often measure κ , not $\bar{\kappa}$:

$$\bar{\kappa} = \frac{Q_x}{-\partial_x T} \bigg|_{E=0}, \quad \kappa = \frac{Q_x}{-\partial_x T} \bigg|_{J=0},$$

▶ in our relaxation time approximation, we find

$$\kappa = \bar{\kappa} - \frac{T\alpha^2}{\sigma} = 0.$$

• when $\rho \neq 0$, κ is *finite* even if momentum is conserved:

Wiedemann-Franz Revisited: Zero Density

• when
$$\rho = 0$$
:

$$\kappa \to \infty$$
, $\sigma = \text{finite}$

Wiedemann-Franz Revisited: Zero Density

• when
$$\rho = 0$$
:

$$\kappa \to \infty$$
, $\sigma = \text{finite}$

[Crossno *et al*; **1509.04713**]

Electron-Electron Interaction Limited Resistivity in Fermi Liquids

▶ in a Fermi liquid:

$$\tau_{\rm ee} \sim \frac{\hbar\mu}{(k_{\rm B}T)^2}, \qquad \rho = AT^2 \sim \frac{1}{\tau_{\rm ee}} \dots$$

Two Experimental Puzzles

Electron-Electron Interaction Limited Resistivity in Fermi Liquids

▶ in a Fermi liquid:

$$\tau_{\rm ee} \sim \frac{\hbar\mu}{(k_{\rm B}T)^2}, \qquad \rho = AT^2 \sim \frac{1}{\tau_{\rm ee}} \dots$$

► B depends on thermodynamics (not disorder?): [Jacko, Fjaerestad, Powell; 0805.4275]

Two Experimental Puzzles

Linear Resistivity: A Challenge

▶ in a theory without quasiparticles:

$$\tau_{\rm ee} \gtrsim \frac{\hbar}{k_{\rm B}T}.$$

Two Experimental Puzzles

Linear Resistivity: A Challenge

▶ in a theory without quasiparticles:

$$au_{
m ee} \gtrsim rac{\hbar}{k_{
m B}T}$$

• "Drude"
$$\rho = \frac{m}{ne^2} \frac{1}{\tau_{ee}} \sim \frac{m}{ne^2} \frac{k_{\rm B}T}{\hbar}$$
:
[Bruin, Sakai, Perry, Mackenzie (2013)]

How to Compute the Relaxation Time?

▶ summary (so far): our toy model gave

$$\left(\begin{array}{cc}\sigma&\alpha\\T\alpha&\bar{\kappa}\end{array}\right) = \left(\begin{array}{cc}\rho^2&\rho s\\T\rho s&Ts^2\end{array}\right)\frac{\tau}{M}$$

with τ the momentum relaxation time

How to Compute the Relaxation Time?

▶ summary (so far): our toy model gave

$$\left(\begin{array}{cc}\sigma&\alpha\\T\alpha&\bar{\kappa}\end{array}\right) = \left(\begin{array}{cc}\rho^2&\rho s\\T\rho s&Ts^2\end{array}\right)\frac{\tau}{M}$$

with τ the momentum relaxation time

- questions I will answer (Lecture 2):
 - ▶ when does this formula apply?
 - how do we compute τ ?

How to Compute the Relaxation Time?

▶ summary (so far): our toy model gave

$$\left(\begin{array}{cc}\sigma&\alpha\\T\alpha&\bar{\kappa}\end{array}\right) = \left(\begin{array}{cc}\rho^2&\rho s\\T\rho s&Ts^2\end{array}\right)\frac{\tau}{M}$$

with τ the momentum relaxation time

- questions I will answer (Lecture 2):
 - ▶ when does this formula apply?
 - how do we compute τ ?
- open questions (I will speculate on):
 - why do we see a universal

$$\rho \sim \frac{1}{\tau_{\rm ee}},$$

with τ_{ee} a momentum-conserving scattering time?

▶ how to think about transport beyond relaxation time approximation (partial theory in Lecture 3)

Formal Definitions and Green's Functions

Formally Applying an Electric Field

it is now time to be rigorous.

• how do we apply an electric field E^i to a QFT?

Formally Applying an Electric Field

it is now time to be rigorous.

- how do we apply an electric field E^i to a QFT?
- ► add a background, non-dynamical, gauge field A_µ that couples to conserved current operator J^µ:

$$Z[A^{\mu}] \equiv \left\langle \exp\left[i\int d^{d+1}x J^{\mu}(x)A_{\mu}(x)\right]\right\rangle_{\rm QFT}$$

here and forever, d is the number of *spatial* dimensions

Formally Applying an Electric Field

it is now time to be rigorous.

- how do we apply an electric field E^i to a QFT?
- ► add a background, non-dynamical, gauge field A_µ that couples to conserved current operator J^µ:

$$Z[A^{\mu}] \equiv \left\langle \exp\left[i\int d^{d+1}x J^{\mu}(x)A_{\mu}(x)\right]\right\rangle_{\rm QFT}$$

here and forever, d is the number of *spatial* dimensions • note that $A_t(x) = \mu \rightarrow$ the **chemical potential**:

$$\left\langle \exp\left[\mathrm{i}\int\mathrm{d}^{d+1}xJ^{t}(x)\mu\right]\cdots\right\rangle = \left\langle \mathrm{e}^{\mathrm{i}\mu Q}\cdots\right\rangle = \left\langle \cdots\right\rangle_{H\to H-\mu Q}$$

Formally Applying an Electric Field

it is now time to be rigorous.

- how do we apply an electric field E^i to a QFT?
- ▶ add a background, non-dynamical, gauge field A_µ that couples to conserved current operator J^µ:

$$Z[A^{\mu}] \equiv \left\langle \exp\left[i\int d^{d+1}x J^{\mu}(x)A_{\mu}(x)\right]\right\rangle_{\rm QFT}$$

here and forever, d is the number of *spatial* dimensions • note that $A_t(x) = \mu \rightarrow$ the **chemical potential**:

$$\left\langle \exp\left[i\int d^{d+1}x J^t(x)\mu\right]\cdots\right\rangle = \left\langle e^{i\mu Q}\cdots\right\rangle = \langle\cdots\rangle_{H\to H-\mu Q}$$

▶ to get electric fields, choose

$$A = -E_i t dx^i$$
, or $A = \frac{e^{-i\omega t}}{i\omega} E_i dx^i$, $(\omega \to 0)$

Temperature as Compact Euclidean Time

• how do we apply a "thermal drive" ζ_i ?

$$\zeta_i \equiv -\frac{\partial_i T}{T}$$

Temperature as Compact Euclidean Time

• how do we apply a "thermal drive" ζ_i ?

$$\zeta_i \equiv -\frac{\partial_i T}{T}$$

► partition function for QFT at temperature $T = 1/\beta$ is $\mathbb{R}^d \times \mathrm{S}^1$ partition function – Euclidean time $t \sim t + \beta$ Temperature as Compact Euclidean Time

• how do we apply a "thermal drive" ζ_i ?

$$\zeta_i \equiv -\frac{\partial_i T}{T}$$

- ► partition function for QFT at temperature $T = 1/\beta$ is $\mathbb{R}^d \times S^1$ partition function – Euclidean time $t \sim t + \beta$
- temperature gradient \implies "cone-like" space with metric

$$ds^{2} = dt^{2} + dx_{i}^{2}, \quad t \sim t + \beta \zeta_{i} x^{i}$$

Temperature Gradient

• change coordinates to
$$\tilde{t} = t/\beta(x)$$
:

$$\mathrm{d}s^2 \approx \beta(x)^2 \mathrm{d}\tilde{t}^2 + \mathrm{d}x_i^2 \approx \left(\beta^2 + 2\beta^2 \mathrm{e}^{-\mathrm{i}\tilde{\omega}\tilde{t}}\tilde{\zeta}_i x^i\right) \mathrm{d}\tilde{t}^2 + \mathrm{d}x_i^2$$

Temperature Gradient

• change coordinates to
$$\tilde{t} = t/\beta(x)$$
:

$$\mathrm{d}s^2 \approx \beta(x)^2 \mathrm{d}\tilde{t}^2 + \mathrm{d}x_i^2 \approx \left(\beta^2 + 2\beta^2 \mathrm{e}^{-\mathrm{i}\tilde{\omega}\tilde{t}}\zeta_i x^i\right) \mathrm{d}\tilde{t}^2 + \mathrm{d}x_i^2$$

• metric will not diverge at large x in different coordinates:

$$\tilde{t} \to \tilde{t} + \xi^{\tilde{t}}, \quad \xi^{\tilde{t}} = -i\zeta_i x^i \frac{e^{-i\tilde{\omega}\tilde{t}}}{\tilde{\omega}}.$$

Temperature Gradient

• change coordinates to
$$\tilde{t} = t/\beta(x)$$
:

$$\mathrm{d}s^2 \approx \beta(x)^2 \mathrm{d}\tilde{t}^2 + \mathrm{d}x_i^2 \approx \left(\beta^2 + 2\beta^2 \mathrm{e}^{-\mathrm{i}\tilde{\omega}\tilde{t}}\zeta_i x^i\right) \mathrm{d}\tilde{t}^2 + \mathrm{d}x_i^2$$

• metric will not diverge at large x in different coordinates:

$$\tilde{t} \to \tilde{t} + \xi^{\tilde{t}}, \quad \xi^{\tilde{t}} = -i\zeta_i x^i \frac{e^{-i\tilde{\omega}\tilde{t}}}{\tilde{\omega}}.$$

• using transformation rules for $g_{\mu\nu}$ and A_{μ} :

$$g_{\tilde{t}\tilde{t}} \approx \beta^2$$
, $g_{\tilde{t}i} \approx \zeta_i \beta^2 \frac{\mathrm{e}^{-\mathrm{i}\tilde{\omega}\tilde{t}}}{\mathrm{i}\tilde{\omega}}$, $A_i = -\zeta_i \frac{\mathrm{e}^{-\mathrm{i}\tilde{\omega}\tilde{t}}}{\mathrm{i}\tilde{\omega}} A_{\tilde{t}}$

and converting back to physical coordinates:

$$g_{ti} = \zeta_i \frac{\mathrm{e}^{-\mathrm{i}\omega t}}{\mathrm{i}\omega}, \quad A_i = -\mu\zeta_i \frac{\mathrm{e}^{-\mathrm{i}\omega t}}{\mathrm{i}\omega}$$

Is a Temperature Gradient a Gravitational Field?

• there is a common misconception (in condensed matter) that ∇T is equivalent to a gravitational field

Is a Temperature Gradient a Gravitational Field?

- there is a common misconception (in condensed matter) that ∇T is equivalent to a gravitational field
- ▶ the metric

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + \mathrm{d}x_i^2 + 2\frac{\mathrm{e}^{-\mathrm{i}\omega t}}{\mathrm{i}\omega}\zeta_i\mathrm{d}x^i\mathrm{d}t$$

is flat: $R_{\alpha\beta\mu\nu} = 0$. (diffeomorphic to warped $S^1 \times \mathbb{R}^d$)

Is a Temperature Gradient a Gravitational Field?

- there is a common misconception (in condensed matter) that ∇T is equivalent to a gravitational field
- ▶ the metric

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + \mathrm{d}x_i^2 + 2\frac{\mathrm{e}^{-\mathrm{i}\omega t}}{\mathrm{i}\omega}\zeta_i\mathrm{d}x^i\mathrm{d}t$$

is flat: $R_{\alpha\beta\mu\nu} = 0$. (diffeomorphic to warped $S^1 \times \mathbb{R}^d$)

▶ but consistency of QFT on curved space *does* give deep relations between 'gravity' and ∇T ...

An Experiment in Zurich Brings Us Nearer to a Black Hole's Mysteries

IBM researchers used an exotic material known as a Weyl semimetal to confirm the existence of a gravitational anomaly predicted in equations that describe the...

NYTIMES.COM

Defining the Heat Current

▶ temperature gradients relate to metric perturbations, and

$$Z[g_{\mu\nu}, A_{\mu}] = \left\langle \exp\left[i\int d^{d+1}x\sqrt{-g}\left(\frac{1}{2}T^{\mu\nu}\delta g_{\mu\nu} + J^{\mu}\delta A_{\mu}\right)\right]\right\rangle$$

Defining the Heat Current

▶ temperature gradients relate to metric perturbations, and

$$Z[g_{\mu\nu}, A_{\mu}] = \left\langle \exp\left[i\int d^{d+1}x\sqrt{-g}\left(\frac{1}{2}T^{\mu\nu}\delta g_{\mu\nu} + J^{\mu}\delta A_{\mu}\right)\right]\right\rangle$$

• plugging in for the E_i and ζ_i perturbations:

$$Z[E_i, \zeta_i] = \left\langle \exp\left[i \int d^{d+1}x \sqrt{-g} \frac{e^{-i\omega t}}{i\omega} \left(J^i E_i + \left(T^{ti} - \mu J^i\right)\zeta_i\right)\right] \right\rangle$$

Defining the Heat Current

▶ temperature gradients relate to metric perturbations, and

$$Z[g_{\mu\nu}, A_{\mu}] = \left\langle \exp\left[i\int d^{d+1}x\sqrt{-g}\left(\frac{1}{2}T^{\mu\nu}\delta g_{\mu\nu} + J^{\mu}\delta A_{\mu}\right)\right]\right\rangle$$

▶ plugging in for the E_i and ζ_i perturbations:

$$Z[E_i, \zeta_i] = \left\langle \exp\left[i \int d^{d+1}x \sqrt{-g} \frac{e^{-i\omega t}}{i\omega} \left(J^i E_i + \left(T^{ti} - \mu J^i\right)\zeta_i\right)\right] \right\rangle$$

response to perturbations:

spatially averaged charge current

spatially averaged heat current

(though note possible subtleties with "contact terms")

Formal Definitions of Thermoelectric Conductivity Matrix

▶ for most purposes, it suffices to define:

$$\begin{pmatrix} J^{i} \\ Q^{i} \end{pmatrix} = \begin{pmatrix} \sigma^{ij} & T\alpha^{ij} \\ T\bar{\alpha}^{ij} & T\bar{\kappa}^{ij} \end{pmatrix} \begin{pmatrix} E_{j} \\ \zeta_{j} \end{pmatrix}$$
$$\sigma^{ij}(\omega) = \frac{G_{J^{i}J^{j}}^{R}(\omega)}{i\omega}, \quad T\alpha^{ij} = \frac{G_{J^{i}Q^{j}}^{R}(\omega)}{i\omega}, \quad T\bar{\kappa}^{ij} = \frac{G_{Q^{i}Q^{j}}^{R}(\omega)}{i\omega}$$

Formal Definitions of Thermoelectric Conductivity Matrix

▶ for most purposes, it suffices to define:

$$\begin{pmatrix} J^{i} \\ Q^{i} \end{pmatrix} = \begin{pmatrix} \sigma^{ij} & T\alpha^{ij} \\ T\bar{\alpha}^{ij} & T\bar{\kappa}^{ij} \end{pmatrix} \begin{pmatrix} E_{j} \\ \zeta_{j} \end{pmatrix}$$
$$\sigma^{ij}(\omega) = \frac{G_{J^{i}J^{j}}^{R}(\omega)}{i\omega}, \quad T\alpha^{ij} = \frac{G_{J^{i}Q^{j}}^{R}(\omega)}{i\omega}, \quad T\bar{\kappa}^{ij} = \frac{G_{Q^{i}Q^{j}}^{R}(\omega)}{i\omega}$$

▶ with time reversal symmetry, **Onsager reciprocity**

$$\sigma^{ij}=\sigma^{ji}, \quad \bar{\kappa}^{ij}=\bar{\kappa}^{ji}, \quad \alpha^{ij}=\bar{\alpha}^{ji}.$$

Formal Definitions of Thermoelectric Conductivity Matrix

▶ for most purposes, it suffices to define:

$$\begin{pmatrix} J^{i} \\ Q^{i} \end{pmatrix} = \begin{pmatrix} \sigma^{ij} & T\alpha^{ij} \\ T\bar{\alpha}^{ij} & T\bar{\kappa}^{ij} \end{pmatrix} \begin{pmatrix} E_{j} \\ \zeta_{j} \end{pmatrix}$$
$$\sigma^{ij}(\omega) = \frac{G_{J^{i}J^{j}}^{R}(\omega)}{i\omega}, \quad T\alpha^{ij} = \frac{G_{J^{i}Q^{j}}^{R}(\omega)}{i\omega}, \quad T\bar{\kappa}^{ij} = \frac{G_{Q^{i}Q^{j}}^{R}(\omega)}{i\omega}$$

▶ with time reversal symmetry, **Onsager reciprocity**

$$\sigma^{ij} = \sigma^{ji}, \quad \bar{\kappa}^{ij} = \bar{\kappa}^{ji}, \quad \alpha^{ij} = \bar{\alpha}^{ji}.$$

► these "simple" two-point functions are very hard to compute: remaining lectures will describe various techniques and simplifying limits in interacting QFTs