Theory of metallic transport in strongly coupled matter

4. Magnetotransport

Andrew Lucas
Stanford Physics

Geometry and Holography for Quantum Criticality; Asia-Pacific Center for Theoretical Physics

August 18-19, 2017



Drude Magnetotransport

A Ward Identity

» what are the conductivities in a magnetic field?

» magnetic field breaks time reversal symmetry; possibly
rotational symmetry



Drude Magnetotransport

A Ward Identity

» what are the conductivities in a magnetic field?
» magnetic field breaks time reversal symmetry; possibly
rotational symmetry
» do we learn anything new? easy experimentally



Drude Magnetotransport

A Ward Identity

» what are the conductivities in a magnetic field?
» magnetic field breaks time reversal symmetry; possibly
rotational symmetry
» do we learn anything new? easy experimentally
» Ward identity for momentum conservation, in a general
QFT
OT" + 0T = F'"],, = pE" + By;J;.



Drude Magnetotransport

A Ward Identity

» what are the conductivities in a magnetic field?

» magnetic field breaks time reversal symmetry; possibly
rotational symmetry
» do we learn anything new? easy experimentally

» Ward identity for momentum conservation, in a general
QFT . I |
OT" + 9;T7" = F'"J, = pE' + B;;J;.

» in d = 2 spatial dimensions, B;; = Be;j; as w — 0:
d?x ” d?x ;

which gives

<J> —B pE = %GijEj.
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Drude Magnetotransport

The Hall Conductivity

» universal Hall conductivity for all d =2 QFTs:

O‘ij =

P
B

» the Hall conductivity is antisymmetric
Oij = —0j;
and so is non-dissipative: T's = E;o;; E; = 0.
» modified Onsager reciprocity:
0ij(B) = 0ji(=B)

» questions for this lecture:
» what happens at weak vs. strong magnetic fields?
» interplay of magnetic fields and disorder? dissipative
magnetotransport?
» generalize memory matrix formalism, hydrodynamics?
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Drude Magnetotransport

Drude Conductivity

» let’s return to our toy Drude model (d = 2):
. M
—1w./\/lv@- = pEZ' — T’U@' + BGiij,

with J; = pv;.
» conductivity matrix is

p? 1 —iw B
T ME T —w)?Z w2 T T M (r L —iw)? + w2
with oy, = =04y, Oyy = 024, and cyclotron frequency
_pB
We = m

» what about d = 3?7 04,0,y etc. unchanged, and

p°T

M )

Oypy = Oz, =0,...
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Drude Resistivity

» the Drude model gives simpler formula for resistivity:

M1 B
pmm:pyy:F ;_1(*) ) pmy:_pyx:_;-

> w=0:if wer > 1, we have

M p?
B e

Ogx =

and so 0., and py,; are proportional.



Some Experimental Puzzles

The Hall Angle

» the Drude model makes a very simple prediction:

Oy _PT Ogp

tan Oy = v
p

Oz |wy—0,B—0 B=0,0=0

where 6y is called the Hall angle

J
E



Some Experimental Puzzles

The Hall Angle

» the Drude model makes a very simple prediction:

Ozy

Mo p

T (o2
tanOH = = p— =

Oz B=0,w=0

w—0,B—0

where 6y is called the Hall angle

J
E

» this relation is violated in the strange metal phase of
cuprates [Chien, Wang, Ong (1991)] among other materials:

Ogpy ™ T, tanHH ~ 172



Some Experimental Puzzles

Universal Dissipative Transport?

» the magnetic field may give ‘universal’ corrections to
dissipative transport in certain strange metals:
[Hayes et al; 1412.6484]
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Review of the Memory Matrix Approach

» recall: Drude formula becomes rigorous in weak disorder
limit
» for “slow” operators A, B, the conductivity is

oap = Xac(M(w) + N —iwx) X DB,

with M the memory matrix (we’ve discussed), and

1 .
NAB = T(A|B) = XAB'

» as magnetic fields break time reversal symmetry, Nagp # 0

» with long lived momentum: 4 “slow” operators (in d = 2):
Pza Py: J:Ea Jy
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The Memory Matrix Formalism

The N Matrix

» the most important elements of IV are

1 . B
» recall that if H = Hy + eHimp with [Ho, P;] = 0, then

Mpz.pj ~ €% and if B ~w ~ €%
0.0, = X5p,(M(w) + N — iwx)l_gklplxpﬂj + 0(€),
or

o= 2 (M —iwx) —Bp -
K Bp M(r71 —iwy)

» recover Drude formula when 77! ~ B ~ w ~ €2

» Mp,p;, and thus 7, not affected by B (to leading order in ¢)

[Lucas, Sachdev; 1502.04704]
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Exact Derivation of the Hall Conductivity

» the Drude limit is increasingly constrained (triple
perturbative expansion)
» thus let us
» specialize to w =0
» treat B non-perturbatively
» assume only weak momentum relaxation (due to disorder)

» if no disorder, then
i, .
Myp, = 7 (Ala(z = aLa)~'q| %)
i , _
= 7 Beij(Ala(= — aLa) 'q[J;) =0

for any A, because |J;) is a slow operator!
» we also have
(JilP;)

T

(Pi|Fy)
T

Nyp, = = €kXJJy, Npp, = = €jkXP,J;

[Lucas; in progress]



The Memory Matrix Formalism

Exact Derivation of the Hall Conductivity

» (assuming isotropy) the electrical conductivity is

~1
—Bxype  —Bxye ) ( XJP )
—Bxgje My;+ Ny XJJ

where € is a matrix corresponding to €;;

o=(xsp XJJ)(



The Memory Matrix Formalism

Exact Derivation of the Hall Conductivity

» (assuming isotropy) the electrical conductivity is

By jpe By e - X
B —bxgp —PXJJ P
o= xsp XJJ)(_BXJJe MJJ+NJJ) (XJJ)

where € is a matrix corresponding to €;;
» use block matrix inversion identities:

o =xsp(—Bxspe) 'xJp
+ X[My;+ Nyj— Bxjse(—Bxype) 'Bxse ' X
where we find

X = xy7 — (=Bxspe) (—=Bxss€)xsp = 0.



The Memory Matrix Formalism

Exact Derivation of the Hall Conductivity

» (assuming isotropy) the electrical conductivity is
-1
—Bxjpe  —Bxjje ) ( XJP )
o= P
(o xar) ( —Bxjje Mj;+ Ny XJJ
where € is a matrix corresponding to €;;
» use block matrix inversion identities:
o= xsp(—Bxspe) 'xsp
+ X[Myy+ Nyj— Bxyse(—Bxype) 'Bxyse] ' X
where we find

X = xy7 — (=Bxspe) (—=Bxss€)xsp = 0.

» thus we find the Hall conductivity
XJp P
O'ij = ?GZ] = Eﬁzj

Lucas; in progress
g
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The Memory Matrix Formalism

Adding Weak Momentum Relaxation

» what if we have weak inhomogeneity, so Mpp # 07
» a straightforward generalization of above argument gives
o =xsp(Mpp +8Npp — Bxype) "xsp + O(c*)

with 8 Npp arising from disorder corrections to (Py|P,).

» dissipative magnetotransport given by (e.g.)

My,

B2’

and with H — Hy = €Himp ~ € [ d¥xh(x)O(x):

Opy

i .
Myj = =(Pla(z — ala)~'q|P))
d?k 5. 1 R
“/Wkikﬂh(k)l lim ~Tm (G0 (k,w))

/

evalauted at B # 0

[Lucas; in progress]
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The Long Wavelength Limit

» thus we find that for weak inhomogeneity the Drude

picture qualitatively holds, with universal formulas for 7!

» for stronger inhomogeneity, let us again resort to a
hydrodynamic picture:

> s(x) >0

n(z) <0 n
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Magnetic Fields in Generalized Hydrodynamics

» recall: linearized generalized hydrodynamics:
(%JZA =0=09; (nAvi + EAB (EZB — 8iuB))
0 =n? (@i — Ef) — 0 (mijudkor).

» in the absence of disorder, require consistency with Hall
conductivity:
0=n°E; + BijJ;

» consistency with above equations:
0;J{* = 0= 0; (nv; + 4P (EP 4 §5°Bju; — 9;17))
0= nA(@uA — ElA) — B”ch — 8j(nijk18kvl).

» solve equations in inhomogeneous background, compute
[dix JA



Hydrodynamic Magnetotransport

Two Dimensions

» in d = 2: current conservation implies Oye,(Be;;J;) = 0:

€O (O™ — EY) = €30:0; (MijmnOmvn) ~ 10 €xidyvy,



Hydrodynamic Magnetotransport

Two Dimensions

» in d = 2: current conservation implies Oye,(Be;;J;) = 0:
ekiOn (O — BfY) = €1i0i0; (MijmnOmvn) ~ 0 exiOivy

» transport problem ill-posed without viscosity!
M d’k K2 9 1 R
o e )
2 [ g o im St (k)

d%k o, B?
~ / Sl
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Two Dimensions

» in d = 2: current conservation implies Oye,(Be;;J;) = 0:
ki (Oap™ — E{') = €4i0i0; (1ijmnOmvn) ~ 10°€idvi

» transport problem ill-posed without viscosity!
M d’k K2 9. 1 R
T [ oy OO liy i (G 0.9)
d%k B?
~ k)2 =
[ G

» conductivity may provide a good viscometer?

1 A%k |u(k)]?2 1 L
/ ()] log £

n

~— lo
(2m)? K2 U 3
~——

IR divergent!

Ozzx

[Patel, Davison, Levchenko; 1706.03775] [Lucas; in progress]
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Hydrodynamic Magnetotransport

Three Dimensions

» in d = 3, the current constraint is less severe:
Ok€nki(€ijmJjBm) = BOgJn # 0

and transport problem is well-posed without viscosity
» for viscous dominated transport:

1 [ &k (3 + cos? 0) B?p2k;k;
45 ~ —/ﬁfﬂ(kw 22 92 Af ’
n.J (2r) B“p“cos“ 0+ k

very anisotropic o;;!

» for diffusion dominated transport (generic situation):
d3k kik;
o~ | | u(k)? -
J / (2m)3 (o) k2 (by — by cos® 6)

minor anisotropy in o;;

[Baumgartner, Karch, Lucas; 1704.01592] [Lucas; in progress]
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Hydrodynamic Magnetotransport

Accounting for oq

» less rigorous: employ relaxation time approximation
Ji = pv; + O'Q(EZ‘ + Beij’l)j),
M
TUZ' = pEz + BEiij
» the conductivity matrix (d = 2):
B T "Moo+ p* + B2O'g M
Ozz = P2B2+ [ 1M+ B2 1
-1 2 2 2
- 217 Mog + p* + B0y
p?B? + [T M + B20)?

» poles in the conductivity at

Bp.

2 .
—— ——— T

cyclotron pole violation of Kohn’s theorem

[Hartnoll, Kovtun, Miiller, Sachdev; 0706.3215]
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Hydrodynamic Magnetotransport

Revisiting the Hall Angle

» this relaxation time model resolves our Hall angle puzzle if

tan 0 Oy pT 1 1

an = ~N— o~ — T~ —

" Bowlg,y M T? T2
s 1
Uzm|B=o:UQ+W%UQa o™

» unverified prediction: as T'— 0 (in strange metal),
o~1/T%?

» similar formulas hold in holographic models, even beyond
the hydrodynamic regime

[Blake, Donos; 1406.1659]



Thermoelectric Magnetotransport

Hydrodynamics with Conserved Charge/Heat

» ‘incoherent’ conductivities
Y — UQ TO[Q
Tag Tkg
together with relaxation time approximation give:

Jo (7'M + Blog)ag + ps M

Aoz = —0,T  p?B2+ [T M+ B20o)2 7
g — Jo T Mpag + (p? j— B%03 + UQMT_l)SB
—0,T p?B? + [T M + B20)?
~ Q. ~ (s> — B%a2)(B20q + 77 'M) — 2spa B
fae = Zg,0 — "0 + p?B? + [171M + B%0,)? T
Qs ps* — B?pad 4 2saq(Boq + T_lM)BT

TS0 T PB A Mt Bl
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to compute J* and Q' microscopically, we must subtract
out magnetization currents:

MY
Jinag
o 0 o 'O
as in textbook electromagnetism:

JZ 8j Mij’ Kbound M'LJ nj

mag

with M;; # 0 on the (inhomogeneous?) background

on first glance: Jyae does not contribute to transport?
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Thermoelectric Magnetotransport

Magnetization Currents: Review of Bound Currents

» to compute J* and @’ microscopically, we must subtract
out magnetization currents:

MY
l<> Q@ . 0 | ©
-4
o O o "0
> as in textbook electromagnetism:

JZ 8j Mij’ Kbound M'LJ nj

mag

with M;; # 0 on the (inhomogeneous?) background
» on first glance: Jyag does not contribute to transport?
dd

J;Vg—oijjC 7 8M”—0

» for a;j;, R;j: cannot ignore magnetization currents
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» a thermodynamic definition of M;;: (in d = 3)

opP
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Magnetization from Thermodynamics

» a thermodynamic definition of M;;: (in d = 3)

opP

M;; = ——
Y OBy’

P=PyT, X)

]. N ) ]_
=3 (e"P7uy, Fpy) (eu'/ ra ul,/Fp/U/) ~ §32

iy 0P
M — gl
0X

» as in first lecture, impose a “thermal drive” (;:

ds? = N dztdz” — 2t ¢dtdat.
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Magnetization from Thermodynamics

» a thermodynamic definition of M;;: (in d = 3)

oP
M;j = 2B P=PyT, X)
ij
_ 1 nvpo vp'o! 1 2
X = 5 (@7, ) (0"t Fryor ) ~ 5B
3 _oP
M — pgii 9
0X

» as in first lecture, impose a “thermal drive” (;:
ds? = N dztdz” — 2t ¢dtdat.
» X shifts in background gauge field F},, + (:
53X C —BYto8A;
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» the thermodynamic generating functional is
P
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» the current is
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Magnetization Currents for a

» the thermodynamic generating functional is
P
Z = exp[W g, Aul] = <exp {i/ddxf]>

» the current is

Ji— -2 - —0 (tBijgj op )

dA; 0X
» one arrives at [Cooper, Halperin, Ruzin; cond-mat/9607001]
i W
Ji= M+ -
and a similar equation for Q'

Qi:_MijEj—MtiﬁCj‘i‘“'



Thermoelectric Magnetotransport

Magnetization Currents for a

» the thermodynamic generating functional is

Z = exp|W g, Al = <eXP {i/ddxgb

» the current is

‘ 57 . oP
1 __ : 1] /.
J' = T = 8t<tB ¢ X)

» one arrives at [Cooper, Halperin, Ruzin; cond-mat/9607001]
i i
Ji= —MUC -
and a similar equation for Q'
A MY
Q'=-M"YE; — M;C; +

» these magnetization currents are thermodynamic; need to
be subtracted out
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What Have we Learned? A Rigorous Drude Model

the past 5 years have seen large advances in transport theory:

» formal ‘Drude’ theory for weakly disordered systems:

» precise formula for “Drude” relaxation time:

M 1

—~ ‘})I_)II%) ;Im (G};,P(w))
(also valid in background magnetic field)

» kinetic and hydrodynamic treatment of spectral weight in
quasiparticle systems

» scaling theories (many holographic) in non-quasiparticle
theories
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What Have we Learned? Hydrodynamics and Conductivity Bounds

» when the inhomogeneity length scale ¢ is large compared to
Lee, use hydrodynamics to compute transport:

8 I = 0= 8; (no; + 4P (EF — ;)
= nA(Oip? — Ef) — 0;(nijmdhvr).

» rigorous conductivity bounds!

< T'$avg
Pxx > 72 .
z |V.JA=0

» ‘universal’ semiclassical transport bound in kinetic theory
[Lucas, Hartnoll; 1706.04621]
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Summary of the Lectures

What is Left to Do?

» generic magnetotransport theory at weak disorder

[Lucas; in progress]

v

resistivity bounds beyond the semiclassical limit?

v

how is transport limited/bounded by quantum chaos?

v

experimental observations of electronic hydrodynamics:
» origin of the T-linear resistivity?
» ‘practical” applications: good viscous conductors
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