
Theory of metallic transport in strongly coupled matter

4. Magnetotransport

Andrew Lucas

Stanford Physics

Geometry and Holography for Quantum Criticality; Asia-Pacific Center for Theoretical Physics

August 18-19, 2017



Drude Magnetotransport 77

A Ward Identity

I what are the conductivities in a magnetic field?
I magnetic field breaks time reversal symmetry; possibly

rotational symmetry

I do we learn anything new? easy experimentally

I Ward identity for momentum conservation, in a general
QFT

∂tT
ti + ∂jT

ji = F iµJµ = ρEi +BijJj .

I in d = 2 spatial dimensions, Bij = Bεij ; as ω → 0:∫
ddx

Vd
∂jT

ji = 0 =

∫
ddx

Vd

[
ρEi +BijJj

]
which gives

〈Ji〉 = −B−1ij ρEj =
〈ρ〉
B
εijEj .



Drude Magnetotransport 77

A Ward Identity

I what are the conductivities in a magnetic field?
I magnetic field breaks time reversal symmetry; possibly

rotational symmetry
I do we learn anything new? easy experimentally

I Ward identity for momentum conservation, in a general
QFT

∂tT
ti + ∂jT

ji = F iµJµ = ρEi +BijJj .

I in d = 2 spatial dimensions, Bij = Bεij ; as ω → 0:∫
ddx

Vd
∂jT

ji = 0 =

∫
ddx

Vd

[
ρEi +BijJj

]
which gives

〈Ji〉 = −B−1ij ρEj =
〈ρ〉
B
εijEj .



Drude Magnetotransport 77

A Ward Identity

I what are the conductivities in a magnetic field?
I magnetic field breaks time reversal symmetry; possibly

rotational symmetry
I do we learn anything new? easy experimentally

I Ward identity for momentum conservation, in a general
QFT

∂tT
ti + ∂jT

ji = F iµJµ = ρEi +BijJj .

I in d = 2 spatial dimensions, Bij = Bεij ; as ω → 0:∫
ddx

Vd
∂jT

ji = 0 =

∫
ddx

Vd

[
ρEi +BijJj

]
which gives

〈Ji〉 = −B−1ij ρEj =
〈ρ〉
B
εijEj .



Drude Magnetotransport 77

A Ward Identity

I what are the conductivities in a magnetic field?
I magnetic field breaks time reversal symmetry; possibly

rotational symmetry
I do we learn anything new? easy experimentally

I Ward identity for momentum conservation, in a general
QFT

∂tT
ti + ∂jT

ji = F iµJµ = ρEi +BijJj .

I in d = 2 spatial dimensions, Bij = Bεij ; as ω → 0:∫
ddx

Vd
∂jT

ji = 0 =

∫
ddx

Vd

[
ρEi +BijJj

]
which gives

〈Ji〉 = −B−1ij ρEj =
〈ρ〉
B
εijEj .



Drude Magnetotransport 78

The Hall Conductivity

I universal Hall conductivity for all d = 2 QFTs:

σij =
ρ

B
εij

I the Hall conductivity is antisymmetric

σij = −σji

and so is non-dissipative: T ṡ = EiσijEj = 0.
I modified Onsager reciprocity:

σij(B) = σji(−B)

I questions for this lecture:
I what happens at weak vs. strong magnetic fields?
I interplay of magnetic fields and disorder? dissipative

magnetotransport?
I generalize memory matrix formalism, hydrodynamics?
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I modified Onsager reciprocity:

σij(B) = σji(−B)

I questions for this lecture:
I what happens at weak vs. strong magnetic fields?

I interplay of magnetic fields and disorder? dissipative
magnetotransport?

I generalize memory matrix formalism, hydrodynamics?



Drude Magnetotransport 78

The Hall Conductivity

I universal Hall conductivity for all d = 2 QFTs:

σij =
ρ

B
εij

I the Hall conductivity is antisymmetric

σij = −σji

and so is non-dissipative: T ṡ = EiσijEj = 0.
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Drude Conductivity

I let’s return to our toy Drude model (d = 2):

−iωMvi = ρEi −
M
τ
vi +BεijJj ,

with Ji ≈ ρvi.

I conductivity matrix is

σxx =
ρ2

M
τ−1 − iω

(τ−1 − iω)2 + ω2
c

, σxy =
ρ3B

M2[(τ−1 − iω)2 + ω2
c ]
,

with σyx = −σxy, σyy = σxx, and cyclotron frequency

ωc ≡
ρB

M
.

I what about d = 3? σxx, σxy etc. unchanged, and

σzz =
ρ2τ

M
, σxz = 0, . . .
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Drude Resistivity

I the Drude model gives simpler formula for resistivity:

ρxx = ρyy =
M
ρ2

(
1

τ
− iω

)
, ρxy = −ρyx = −B

ρ
.

I ω = 0: if ωcτ � 1, we have

σxx =
M
τB2

=
ρ2

B2
ρxx

and so σxx and ρxx are proportional.
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The Hall Angle

I the Drude model makes a very simple prediction:

tan θH ≡
σxy
Bσxx

∣∣∣∣
ω→0,B→0

=
ρτ

M
=
σxx
ρ

∣∣∣∣
B=0,ω=0

.

where θH is called the Hall angle

∼ θH
E

J

I this relation is violated in the strange metal phase of
cuprates [Chien, Wang, Ong (1991)] among other materials:

σxx ∼
1

T
, tan θH ∼

1

T 2
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Universal Dissipative Transport?

I the magnetic field may give ‘universal’ corrections to
dissipative transport in certain strange metals:
[Hayes et al; 1412.6484]

ρxx =
M

ρ2τDrude
∼

√(
T

T0

)2

+

(
B

B0

)2

.
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Review of the Memory Matrix Approach

I recall: Drude formula becomes rigorous in weak disorder
limit

I for “slow” operators A, B, the conductivity is

σAB = χAC(M(ω) +N − iωχ)−1CDχDB,

with M the memory matrix (we’ve discussed), and

NAB =
1

T
(A|Ḃ) = χAḂ.

I as magnetic fields break time reversal symmetry, NAB 6= 0

I with long lived momentum: 4 “slow” operators (in d = 2):
Px, Py, Jx, Jy
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(A|Ḃ) = χAḂ.
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The N Matrix

I the most important elements of N are

−NPyPx = NPxPy =
1

T
(Px|Ṗy) = −B

T
(Px|Jx) = −Bρ

I recall that if H = H0 + εHimp with [H0, Pi] = 0, then
MPiPj ∼ ε2; and if B ∼ ω ∼ ε2:

σJiJj = χJiPk
(M(ω) +N − iωχ)−1PkPl

χPlJj + O(ε0),

or

σij = ρ2
(
M(τ−1 − iωχ) −Bρ

Bρ M(τ−1 − iωχ)

)−1
I recover Drude formula when τ−1 ∼ B ∼ ω ∼ ε2
I MPiPj , and thus τ , not affected by B (to leading order in ε)

[Lucas, Sachdev; 1502.04704]
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(Px|Ṗy) = −B

T
(Px|Jx) = −Bρ

I recall that if H = H0 + εHimp with [H0, Pi] = 0, then
MPiPj ∼ ε2; and if B ∼ ω ∼ ε2:

σJiJj = χJiPk
(M(ω) +N − iωχ)−1PkPl

χPlJj + O(ε0),

or

σij = ρ2
(
M(τ−1 − iωχ) −Bρ

Bρ M(τ−1 − iωχ)

)−1

I recover Drude formula when τ−1 ∼ B ∼ ω ∼ ε2
I MPiPj , and thus τ , not affected by B (to leading order in ε)

[Lucas, Sachdev; 1502.04704]



The Memory Matrix Formalism 84

The N Matrix

I the most important elements of N are

−NPyPx = NPxPy =
1

T
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Exact Derivation of the Hall Conductivity

I the Drude limit is increasingly constrained (triple
perturbative expansion)

I thus let us
I specialize to ω = 0
I treat B non-perturbatively
I assume only weak momentum relaxation (due to disorder)

I if no disorder, then

MAPi =
i

T
(Ȧ|q(z − qLq)−1q|Ṗi)

=
i

T
Bεij(Ȧ|q(z − qLq)−1q|Jj) = 0

for any A, because |Jj) is a slow operator!
I we also have

NJiPj =
(Ji|Ṗj)
T

= εjkχJiJk , NPiPj =
(Pi|Ṗj)
T

= εjkχPiJk

[Lucas; in progress]
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Exact Derivation of the Hall Conductivity

I (assuming isotropy) the electrical conductivity is

σ =
(
χJP χJJ

)( −BχJP ε −BχJJε
−BχJJε MJJ +NJJ

)−1(
χJP
χJJ

)
where ε is a matrix corresponding to εij

I use block matrix inversion identities:

σ = χJP (−BχJP ε)−1χJP
+X[MJJ +NJJ −BχJJε(−BχJP ε)−1BχJJε]−1X

where we find

X = χJJ − (−BχJP ε)−1(−BχJJε)χJP = 0.

I thus we find the Hall conductivity

σij =
χJP
B

εij =
ρ

B
εij .

[Lucas; in progress]
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Adding Weak Momentum Relaxation

I what if we have weak inhomogeneity, so MPP 6= 0?

I a straightforward generalization of above argument gives

σ = χJP (MPP + δNPP −BχJP ε)−1χJP + O(ε4)

with δNPP arising from disorder corrections to (Px|Ṗy).
I dissipative magnetotransport given by (e.g.)

σxx ≈
Myy

B2
,

and with H −H0 = εHimp ∼ ε
∫

ddxh(x)O(x):

Mij =
i

T
(Ṗi|q(z − qLq)−1q|Ṗj)

≈
∫

ddk

(2π)d
kikj |h(k)|2 lim

ω→0

1

ω
Im
(
GR
OO(k, ω)

)
︸ ︷︷ ︸

evalauted at B 6= 0

[Lucas; in progress]
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≈
∫

ddk

(2π)d
kikj |h(k)|2 lim

ω→0

1

ω
Im
(
GR
OO(k, ω)

)
︸ ︷︷ ︸

evalauted at B 6= 0

[Lucas; in progress]



The Memory Matrix Formalism 87

Adding Weak Momentum Relaxation

I what if we have weak inhomogeneity, so MPP 6= 0?
I a straightforward generalization of above argument gives

σ = χJP (MPP + δNPP −BχJP ε)−1χJP + O(ε4)

with δNPP arising from disorder corrections to (Px|Ṗy).
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The Long Wavelength Limit

I thus we find that for weak inhomogeneity the Drude
picture qualitatively holds, with universal formulas for τ−1

I for stronger inhomogeneity, let us again resort to a
hydrodynamic picture:

x

✏

nn(x) < 0

n(x) > 0

s(x) > 0
lee

⇠
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Magnetic Fields in Generalized Hydrodynamics

I recall: linearized generalized hydrodynamics:

∂iJ
A
i = 0 = ∂i

(
nAvi +ΣAB

(
EBi − ∂iµB

))
0 = nA(∂iµ

A − EAi )− ∂j(ηijkl∂kvl).

I in the absence of disorder, require consistency with Hall
conductivity:

0 = ncEi +BijJ
c
j

I consistency with above equations:

∂iJ
A
i = 0 = ∂i

(
nAvi +ΣAB

(
EBi + δBcBijvj − ∂iµB

))
0 = nA(∂iµ

A − EAi )−BijJc
j − ∂j(ηijkl∂kvl).

I solve equations in inhomogeneous background, compute∫
ddx JAi
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Two Dimensions

I in d = 2: current conservation implies ∂kεki(BεijJj) = 0:

εki∂kn
A(∂iµ

A − EAi ) = εki∂i∂j(ηijmn∂mvn) ∼ η∂2εki∂ivk

I transport problem ill-posed without viscosity!

M
τ
∼
∫

d2k

(2π)2
k2

2
|µ(k)|2 lim

ω→0

1

ω
Im
(
GR
Ṗ Ṗ

(k, ω)
)

∼
∫

d2k

(2π)2
|µ(k)|2 B

2

ηk2

I conductivity may provide a good viscometer?

σxx ∼
1

η

∫
d2k

(2π)2
|µ(k)|2

k2
∼ 1

η
log

L

ξ︸ ︷︷ ︸
IR divergent!

[Patel, Davison, Levchenko; 1706.03775] [Lucas; in progress]
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Three Dimensions

I in d = 3, the current constraint is less severe:

∂kεnki(εijmJjBm) = Bk∂kJn 6= 0

and transport problem is well-posed without viscosity

I for viscous dominated transport:

σij ∼
1

η

∫
d3k

(2π)3
|µ(k)|2 (3 + cos2 θ)B2ρ2kikj

B2ρ2 cos2 θ + k4︸ ︷︷ ︸
very anisotropic σij !

I for diffusion dominated transport (generic situation):

σij ∼ Σ
∫

d3k

(2π)3
|µ(k)|2 kikj

k2(b1 − b2 cos2 θ)︸ ︷︷ ︸
minor anisotropy in σij

[Baumgartner, Karch, Lucas; 1704.01592] [Lucas; in progress]
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Accounting for σq

I less rigorous: employ relaxation time approximation

Ji = ρvi + σq(Ei +Bεijvj),

M
τ
vi = ρEi +BεijJj

I the conductivity matrix (d = 2):

σxx =
τ−1Mσq + ρ2 +B2σ2q
ρ2B2 + [τ−1M+B2σq]2

M
τ
,

σxy =
2τ−1Mσq + ρ2 +B2σ2q
ρ2B2 + [τ−1M+B2σq]2

Bρ.

I poles in the conductivity at

ω = ±ρB
M︸ ︷︷ ︸

cyclotron pole

−i
B2σq
M︸ ︷︷ ︸

violation of Kohn’s theorem

− i

τ

[Hartnoll, Kovtun, Müller, Sachdev; 0706.3215]
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Revisiting the Hall Angle

I this relaxation time model resolves our Hall angle puzzle if

tan θH ≡
σxy
Bσxx

∣∣∣∣
B→0

∼ ρτ

M
∼ 1

T 2
, τ ∼ 1

T 2

σxx|B=0 = σq +
ρ2τ

M
≈ σq, σq ∼

1

T

I unverified prediction: as T → 0 (in strange metal),
σ ∼ 1/T 2?

I similar formulas hold in holographic models, even beyond
the hydrodynamic regime

[Blake, Donos; 1406.1659]
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Hydrodynamics with Conserved Charge/Heat

I ‘incoherent’ conductivities

Σ =

(
σq Tαq

Tαq T κ̄q

)
together with relaxation time approximation give:

αxx =
Jx
−∂xT

=
(τ−1M+B2σq)αq + ρs

ρ2B2 + [τ−1M+B2σq]2
M
τ

αxy =
Jx
−∂yT

=
τ−1Mραq + (ρ2 +B2σ2q + σqMτ−1)s

ρ2B2 + [τ−1M+B2σq]2
B

κ̄xx =
Qx
−∂xT

= κ̄q +
(s2 −B2α2

q)(B2σq + τ−1M)− 2sραqB
2

ρ2B2 + [τ−1M+B2σq]2
T,

κ̄xy =
Qx
−∂yT

=
ρs2 −B2ρα2

q + 2sαq(B2σq + τ−1M)

ρ2B2 + [τ−1M+B2σq]2
BT,
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Magnetization Currents: Review of Bound Currents

I to compute J i and Qi microscopically, we must subtract
out magnetization currents:

J i
mag

M ij

I as in textbook electromagnetism:

J imag = ∂jMij , Ki
bound = Mijnj

with Mij 6= 0 on the (inhomogeneous?) background
I on first glance: Jmag does not contribute to transport?

J iavg = σijEj ⊂
∫

ddx

Vd
∂jMij = 0.

I for αij , κ̄ij : cannot ignore magnetization currents
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Magnetization from Thermodynamics

I a thermodynamic definition of Mij : (in d = 3)

Mij =
∂P

∂Bij
, P = P (µ, T,X)

X ≡ 1

8
(εµνρσuνFρσ)

(
εµ
ν′ρ′σ′

uν′Fρ′σ′

)
∼ 1

2
B2

M ij = Bij ∂P

∂X

I as in first lecture, impose a “thermal drive” ζi:

ds2 = ηµνdxµdxν − 2tζidtdx
i.

I X shifts in background gauge field Fµν + ζi:

δX ⊂ −Bijζit∂tδAj
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Magnetization Currents for α

I the thermodynamic generating functional is

Z = exp[W [gµν , Aµ]] =

〈
exp

[
i

∫
ddx

P

T

]〉

I the current is

J i = −iT
δZ

δAi
⊂ −∂t

(
tBijζj

∂P

∂X

)
I one arrives at [Cooper, Halperin, Ruzin; cond-mat/9607001]

J i = −M ijζj + · · ·

and a similar equation for Qi:

Qi = −M ijEj −M ij
thζj + · · ·

I these magnetization currents are thermodynamic; need to
be subtracted out
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What Have we Learned? A Rigorous Drude Model

the past 5 years have seen large advances in transport theory:

I formal ‘Drude’ theory for weakly disordered systems:

σ(ω) =
ρ2

M
× 1

1

τ
− iω

.

I precise formula for “Drude” relaxation time:

M
τ
≈ lim

ω→0

1

ω
Im
(
GR

Ṗ Ṗ
(ω)
)

(also valid in background magnetic field)
I kinetic and hydrodynamic treatment of spectral weight in

quasiparticle systems
I scaling theories (many holographic) in non-quasiparticle

theories
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What Have we Learned? Hydrodynamics and Conductivity Bounds

I when the inhomogeneity length scale ξ is large compared to
`ee, use hydrodynamics to compute transport:

∂iJ
A
i = 0 = ∂i

(
nAvi +ΣAB

(
EBi − ∂iµB

))
0 = nA(∂iµ

A − EAi )− ∂j(ηijkl∂kvl).

I rigorous conductivity bounds!

ρxx ≤
T ṡavg
J2
x

∣∣∣∣
∇·JA=0

.

I ‘universal’ semiclassical transport bound in kinetic theory
[Lucas, Hartnoll; 1706.04621]
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Summary of the Lectures 100

What is Left to Do?

I generic magnetotransport theory at weak disorder
[Lucas; in progress]

I resistivity bounds beyond the semiclassical limit?

I how is transport limited/bounded by quantum chaos?

I experimental observations of electronic hydrodynamics:
I origin of the T -linear resistivity?
I ‘practical’ applications: good viscous conductors
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