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Drude Peak: A Review 27

I recall definition of σ (up to contact terms):

σ(ω) =
GR
JxJx

(ω)

iω
.

I in the previous lecture we saw that for small ω,

σ(ω) =
ρ2

M × 1
1

τ
− iω

.

where τ−1 is the momentum relaxation rate

I this lecture: with ‘mild’ assumptions, we prove that this
result is exact for any QFT, to leading order in a
perturbatively weak amount of disorder.

a (mostly complete) proof: [Hartnoll, Hofman; 1201.3917], but a few subtleties

only addressed later...
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Summary of the Result 28

The Momentum Relaxation Time

I consider a many-body quantum system with

H = H0 + εHimp, [H0, Px] = 0, [Himp, Px] 6= 0.

I example: random potential disorder for fermions:

Himp =

∫
ddx Vimp(x)︸ ︷︷ ︸

not constant

ψ†(x)ψ(x).

I we will show that (here ~ = 1)

1

τ
≈ 1

M lim
ω→0

1

ω
Im
(
GR
ṖxṖx

(ω)
)

+ O(ε3), Ṗx = i[H,Px].

the momentum relaxation time is given by the spectral
weight of [H,Px]
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Memory Function Formalism 29

An “Operator Hilbert Space”

we now embark on a rather technical derivation:

I define an “operator Hilbert space” spanned by operators
|A), |B) etc., with inner product

(A|B) ≡ T
1/T∫

0

dλ
〈
A†B(iλ)

〉
T
.

I define (A(t)|B) ≡ CAB(t). basic manipulations give

Θ(t)∂tCAB(t) = −iTΘ(t)〈[A(t), B]〉T = −TGR
AB(t).

I integrate above from t = 0 to t =∞:

CAB(t = 0) = TGR
AB(ω = 0) = TχAB︸ ︷︷ ︸

static susceptibility
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Memory Function Formalism 30

An “Operator Hilbert Space”

I Laplace transform related to conductivity:

CAB(z) =

∞∫

0

dteiztCAB(t) =
T

iz

(
GR
AB(z)−GR

AB(0)
)

≈ TσAB(z) (up to contact terms)

I define the Liouvillian L:

iL|A) = |Ȧ), eiLt|A) = |A(t))

so that
CAB(z) = (A|i(z − L)−1|B)

our goal is to compute σ(ω) =
1

T
CJxJx(z = ω + i0+)
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Memory Function Formalism 31

Conserved Quantities

I suppose that |P ) is conserved – i.e., L|P ) = 0. then
consider

(A|i(z − L)−1|B) ⊃ (A|P )(P |i(z − L)−1|P )(P |B)

(P |P )2

⊃ (A|P )(P |B)

(P |P )
× i

z

I these divergences are Drude divergences when τ−1 = 0!

I long lived quantities will lead to nearly singular Green’s
functions as ω → 0
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Memory Function Formalism 32

Outline of the Rest of the Computation

assumption: momentum Px is the only (almost) conserved
operator where (Px|Jx) 6= 0.

1. formal re-writing of σAB (matrix indices only include Jx, Px):

σAB = χAC(M(ω) +N − iωχ)−1
CDχDB

I a component of the memory matrix MPP ∼ τ−1

I N = 0 until last lecture

2. show that perturbatively

σJxJx ≈
χ2
JxPx

MPxPx(ω = 0)− iωχPxPx

and relate MPxPx(ω = 0) to spectral weight of Ṗx

3. give more useful expressions for χJxPx , χPxPx , MPxPx
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Memory Function Formalism 33

A Projection Matrix

we wish to separate degrees of freedom into:

slow (A,B ∈ {Jx, Px})

p =
1

T

∑

AB

|A)χ−1
AB(B|

fast (all others)

q = 1− p

e.g. p|Jx) = |Jx), and q|Jx) = 0.

I this separation is arbitrary. good identification of “fast”
and “slow” operators makes it possible to evaluate formal
expressions later

I if we choose |Jx) to be slow:

CJxJx(z) = (Jx|p(iL− iz)−1p|Jx).

I schematically: perform block matrix inversion and
“integrating out” fast degrees of freedom
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Memory Function Formalism 34

Integrating Out the Fast Modes

I since our basis |Jx) is not orthogonal, it is easier to proceed
differently. note the identity

(z−L)−1 = (z−Lp−Lq)−1 = (z−Lq)−1(1 +Lp(z−L)−1)

(to prove: multiply RHS by (z − L))

I now we need some algebra:

p(z − Lq)−1p = p

∞∑

n=0

z−1−n(Lq)np = z−1p

σAB︸︷︷︸
slow only

− iχAB

z
=

i

T
(A|(z − Lq)−1Lp(z − L)−1|B)

=
i

T

∑
CD

(A|(z − Lq)−1L|C)χ−1
CDCDB

=
i

Tz

∑
CD

(A|L+ Lq(z − Lq)−1L|C)χ−1
CDCDB
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Memory Function Formalism 35

The Memory Matrix

I the antisymmetric matrix

NAB =
i

T
(A|L|B) =

1

T
(A|Ḃ) = − 1

T
(Ȧ|B)

describes how slow operators mix among themselves

I the (symmetric) memory matrix

MAB(z) =
i

T
(A|Lq(z − qLq)−1qL|B)

describes coupling of slow and fast operators

I rearranging our results we obtain

σAB(z) = χAC(M(z) +N − iωχ)−1
CDχDB

I NAB = 0 for us: Jx, Px both time reversal odd
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Long Lived Momentum 36

Simplifications

I so far, manipulations are exact

I if L|Px) = 0 (exactly conserved), then

MPxB(z) = 0.

σAB(ω = 0) = χACMCD(0)−1χDB ill-posed

I what we will show: if Ṗx ∼ ε, for small ε:
(
MJxJx MJxPx

MPxJx MPxPx

)
∼
(
ε0 ε2

ε2 ε2

)

(
MJxJx MJxPx

MPxJx MPxPx

)−1

∼
(
ε0 ε0

ε0 ε−2

)

I taking ω ∼ ε2 small:

σJxJx =
χ2
JxPx

MPxPx − iωχPxPx

∼ 1

ε2
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Long Lived Momentum 37

MPxPx

to compute MPxPx , recall

H = H0 + εHimp, [H0, Px] = 0, [Himp, Px] 6= 0.

I the general form of Himp:

Himp =
∑

α

∫
ddx hα(x)Oα(x)

and as Px generates translations:

Ṗx = i[εHimp, Px] = −i
∑

α

∫
ddx hα(x)∂xOα(x)

I thus we write

|Ṗx) = ε
∑

α

∫
ddk

(2π)d
hα(−k)kx|α(k))
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Long Lived Momentum 38

MPxPx and MPxJx

I translation invariance implies

(A(k)|B(q)) ∝ δ(k + q)(A(k)|B(q))

and from above, |Ṗx) consists of k 6= 0 operators
I thus we find:

MPP = ε2
i

T
(Ṗx|(ω − qLq)−1|Ṗx)

≈ ε2 i

T

∑

αβ

∫
ddk

(2π)d
k2
xhα(k)(α(−k)|(ω − L)−1|β(k))hβ(−k)

= ε2
∑

αβ

∫
ddk

(2π)d
k2
xhα(k)hβ(−k) lim

ω→0

1

ω
Im
(
GR
αβ(k, ω)

)
.

I similarly, using translation invariance we find:

MPxJx ∼ ε
∑

α

∫
ddk

(2π)d
(α(k)|(ω−qLq)−1|J̇x) = ε×0+O(ε2)
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χJxPx and χPxPx

I from a deformed thermal density matrix

ρv = exp[−β(H0 − µQ− v ·P)]

we may define susceptibilities via linear response:

tr[ρvJx(x)] = χJxPxvx+· · · , tr[ρvPx(x)] = χPxPxvx+· · · .

I from a hydrodynamic limit, we identify

χJxPx = ρ︸︷︷︸
charge density

, χPxPx = M︸︷︷︸
generalized mass density

I thus we have derived

σ(ω) =
ρ2

M × 1
1

τ
− iω

.

for any QFT where only almost conserved operator that
overlaps with Jx is Px
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Straightforward Generalizations

I replace charge current Jx with heat current Qx:

χQxPx = Ts︸︷︷︸
∼ entropy density(

σ Tα
Tα T κ̄

)
=

(
ρ2 Tsρ
Tsρ (Ts)2

)
× 1
M
τ
− iωM

I other long-lived conservation laws, e.g., supercurrent:
[Davison, Delacrétaz, Goutéraux, Hartnoll; 1602.08171]

I broken time-reversal symmetry (last lecture)
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QFT Deformed by One Operator

I conformal field theory at finite T , deformed by scalar
operator O of dimension ∆ coupled to “random field”:

H = HCFT −
∫

ddx h(x)O(x).

〈h(x)〉dis = 0, 〈h(x)h(y)〉dis = ε2δ(x− y).

I momentum relaxation: [Lucas, Sachdev, Schalm; 1401.7993]

M
τ

=
ε+ P

τ
∼ ε2

∫
ddk k2

x lim
ω→0

1

ω
Im
(
GR
OO(k, ω)

)
∼ ε2T 2∆

∼ T d+2
∼ 1

T
× T 2∆−d−1
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The Harris Criterion

I in a CFT, we have

Ts = ε+ P ∼ T d+1

I hence
κ̄ ∼ sτ ∼ ε−2T 2d+1−2∆

I this computation breaks down at low T if

1

τ
> T, or 1 . ε2T 2∆−d−2

I Harris criterion: disorder is relevant if

∆ <
d

2
+ 1
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“Realistic” Quantum Critical Points

many quantum critical points are not CFTs:

I Fermi surface: ρ ∼M ∼ T 0

I Ising-nematic:
[Hartnoll et al; 1401.7012]

ρ ∼ 1

τ
∼ T−1/2

Z2

h�i = 0

h�i 6= 0

� ⇠
X

k

(cos(akx) � cos(aky)) c†
kc�k

I spin density wave:
[Patel, Sachdev; 1408.6549]

ρ ∼ 1

τ
∼ V 2

imp +m2
impT
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Kinetic Theory: A Single Fermi Surface

empty

filled

empty

filled

filled

kx

ky

kx

ky

I assume disorder couples to
density operator (random
Coulomb impurities)

I use semiclassical kinetic
theory to compute GR

ρρ(ω)

[Lucas, Hartnoll; 1706.04621]

I interactions always
decrease ρ:

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

ξ/`ee

ρ
/ρ

re
s

kTFξ � 1
kTFξ � 1

why? (next lecture)

toy model of single FS kinetics from:

[Guo et al; PNAS, 1607.07269]
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Kinetic Theory: Two Fermi Surfaces
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I numerical computation
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Holographic Models

a brief holographic aside: [Lucas; 1501.05656]

I consider
I scalar operator O dual to a field Φ in the bulk of AdS
I a planar black hole in the bulk, with horizon r = r+
I the regular solution Φ(k, r) to linearized bulk equations of

motion

I the spectral weight of O is linked to the physics of Φ at the
horizon:

lim
ω→0

1

ω
Im
(
GR
OO(k, ω)

)
∼ s

4π
Φ(k, r+)2

with s the entropy density
I early holographic derivations of conductivity:

[Blake, Tong, Vegh; 1310.3832]

σ(ω = 0) ∼ Φ(k, r+)−2

and are equivalent to more general formalism
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Drude Peak: A Summary

I we perturbatively derived universal Drude peak:

σ(ω) =
ρ2

M × 1
1

τ
− iω

.

and showed τ is the momentum relaxation time:

M
τ

= ε2
∑

αβ

∫
ddk

(2π)d
hα(k)hβ(−k) lim

ω→0

1

ω
Im
(
GR
αβ(k, ω)

)
.

I τ−1 sensitive to microscopic details: non-universal
T -scaling, possibly non-monotonic

I controlled (and useful!) but ultimately must go beyond



Outlook 47

Drude Peak: A Summary

I we perturbatively derived universal Drude peak:

σ(ω) =
ρ2

M × 1
1

τ
− iω

.

and showed τ is the momentum relaxation time:

M
τ

= ε2
∑

αβ

∫
ddk

(2π)d
hα(k)hβ(−k) lim

ω→0

1

ω
Im
(
GR
αβ(k, ω)

)
.

I τ−1 sensitive to microscopic details: non-universal
T -scaling, possibly non-monotonic

I controlled (and useful!) but ultimately must go beyond



Outlook 47

Drude Peak: A Summary

I we perturbatively derived universal Drude peak:

σ(ω) =
ρ2

M × 1
1

τ
− iω

.

and showed τ is the momentum relaxation time:

M
τ

= ε2
∑

αβ

∫
ddk

(2π)d
hα(k)hβ(−k) lim

ω→0

1

ω
Im
(
GR
αβ(k, ω)

)
.

I τ−1 sensitive to microscopic details: non-universal
T -scaling, possibly non-monotonic

I controlled (and useful!) but ultimately must go beyond


	Drude Peak: A Review
	Summary of the Result
	Memory Function Formalism
	Long Lived Momentum
	The Spectral Weight
	Outlook

