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where 77! is the momentum relaxation rate

» this lecture: with ‘mild’ assumptions, we prove that this
result is exact for any QFT, to leading order in a
perturbatively weak amount of disorder.

a (mostly complete) proof: [Hartnoll, Hofman; 1201.3917], but a few subtleties

only addressed later...
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Summary of the Result

The Momentum Relaxation Time

>

consider a many-body quantum system with

H = Hy + EHimpa [H07Pz] =0, [Himpa Pa:] 7é 0

example: random potential disorder for fermions:

iy — / A% Vimp(x) 91 ()9(x).

not constant
we will show that (here h = 1)

11 " o
—~ mi%zlm@&%( ))—i—O(&? ), P, =ilH, P).

the momentum relaxation time is given by the spectral
weight of [H, P,)
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An “Operator Hilbert Space”

we now embark on a rather technical derivation:

» define an “operator Hilbert space” spanned by operators
|A), |B) etc., with inner product

1T

(AB) =T / ax{ATBGY)

0

» define (A(t)|B) = Cap(t). basic manipulations give
O(t)9Cap(t) = —TOW)([A(t), B)r = ~TGjip(t).

> integrate above from ¢ = 0 to t = co:

Cap(t=0)=TG% —0) = T
AB( ) AB(W ) XAB

static susceptibility
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n “Operator Hilbert Space”

» Laplace transform related to conductivity:

Cap(z dte'*Cap(t) (GgB (2) - Gip (0))

22

Toap(z) (up to contact terms)

» define the Liouvillian L:
iL|A) = |A), e|A) =|A(®t))

so that
Cap(z) = (Ali(z — L)"'|B)

1
our goal is to compute o(w) = TCJM(/Z =w+i0")



Memory Function Formalism

Conserved Quantities

» suppose that |P) is conserved — i.e., L|P) = 0. then
consider

AIP)(Pli(z — L)'|P)(P|B)
(PIP)?
(AIP)(PIB) i
(Plp)

(Afi(z — 1)) > *



Memory Function Formalism

Conserved Quantities

» suppose that |P) is conserved — i.e., L|P) = 0. then
consider

AIP)(Pli(z — L)'|P)(P|B)
(PIP)?
(AIP)(PIB) i
(Plp)

(Afi(z — 1)) > *

» these divergences are Drude divergences when 71 = 0!



Memory Function Formalism

Conserved Quantities

» suppose that |P) is conserved — i.e., L|P) = 0. then
consider

(AIP)(Pli(= — L)"|P)(P|B)
(PIP)?
(AIP)(PIB) i
(Plp)

(Ali(z = L)7"B) >

» these divergences are Drude divergences when 71 = 0!

» long lived quantities will lead to nearly singular Green’s
functions as w — 0
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Outline of the Rest of the Computation

assumption: momentum P, is the only (almost) conserved
operator where (P,|.J;) # 0.

1. formal re-writing of o4p (matrix indices only include J,., P;):

oap = Xac(M(w) + N — iwx)opXDB

» a component of the memory matrix Mpp ~ 77!
» N =0 until last lecture

2. show that perturbatively

2
XJ, Py
Mp,p,(w = 0) —iwxp,p,

OJpde =

and relate Mp,p, (w = 0) to spectral weight of P,

3. give more useful expressions for x . p,, Xr,P,, Mp,P,
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Memory Function Formalism

A Projection Matrix

we wish to separate degrees of freedom into:

slow (A Be{J,, P.}) fast (all others)
Z [A)xap(B g=1-p

e.g. p|Jy) =|Jz), and q|J;) =0

» this separation is arbitrary. good identification of “fast”
and “slow” operators makes it possible to evaluate formal
expressions later

» if we choose |J;) to be slow:

Croip(2) = (Jelp(L — iz) " 'p|J2).

» schematically: perform block matrix inversion and
“integrating out” fast degrees of freedom
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Integrating Out the Fast Modes

» since our basis |J,) is not orthogonal, it is easier to proceed
differently. note the identity

(z= L)' =(2~Lp—La)~" = (¢~ La) (1 +Lp(z — L))

(to prove: multiply RHS by (z — L))
» now we need some algebra:

p(z—La) 'p=p> 2z "(Lq)"p=2"p
n=0

ixas _ 1 - -t
OAB . —T(A|(Z Lq)” Lp(z — L)""|B)

slow only

= 7 >_(Al(z — La) ' LIO)xcpCos
cD

i _ _
= 7 Y (AIL+ La(z — La) ' LIC)xchCon
CD
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Memory Function Formalism

The Memory Matrix

» the antisymmetric matrix
Nap = ~(AILIB) = =(A|B) = — = (A B)
AB = T T

describes how slow operators mix among themselves

» the (symmetric) memory matrix
i _
Map(2) = (AlLa(z — aLa)~"qL|B)

describes coupling of slow and fast operators

» rearranging our results we obtain

oap(z) = xac(M(2) + N —iwx)cpXpB

» Nyp = 0 for us: J,, P, both time reversal odd
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Simplifications

» so far, manipulations are exact
» if L|P,;) =0 (exactly conserved), then

Mp,(z) = 0.
oap(w=10) = XAC’MCD(O)_IXDB ill-posed

» what we will show: if P, ~ ¢, for small e:
My.;. My,p, €
M PyJy M P, P, 62 62

-1
My.;. Mj.p, Ve
~ 0 -2
Mpw Ju Mpxpx € €

2

» taking w ~ €* small:

2
XJy Py oL
Mp,p, —iwxp,p, €

OJpde =
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Long Lived Momentum

Mp, p,

to compute Mp, p,, recall

H = HO + 8IJilTlp) [HOa Px] = Oa [Himp7 PCE] ;é 0

» the general form of Hiyp:

Himp =Y / A%% he (%) Oq ()

and as P, generates translations:

Py = i[eHip, P = —i 3 / A o ()0 O ()

» thus we write

B,) —ez/dk )k, (k)
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» translation invariance implies
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» thus we find:
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Long Lived Momentum

MPsz and MPsz

» translation invariance implies

(AK)|B(q)) x §(k + q)(A(k)|B(q))
and from above, | P,) consists of k # 0 operators
» thus we find:

i L
Mppze%(m(w—qm) 'IE,)

k)(a(=Kk)|(w — L)"'[B(k)hs(~k)

w—0 W

= 62§/Wk§ha(k)hﬁ(—k) lim L Tm (GRs(k,w)).

» similarly, using translation invariance we find:

ddk .
Mp, . ~ Z/ (w—qLg) " |Jy) = ex0+0(e?)
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Long Lived Momentum

XJ.P, and xp, P,

» from a deformed thermal density matrix

pv = exp|—f(Hy — pQ — v - P)]

we may define susceptibilities via linear response:

trlovJo(X)] = X pvat o, trlpe Po(X)] = xppvate
» from a hydrodynamic limit, we identify

XJ, Py = p s XPuPy = M

charge density generalized mass density
» thus we have derived

1
ow) =2 x <
- —iw
.

for any QFT where only almost conserved operator that
overlaps with J, is P,
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Straightforward Generalizations

» replace charge current J, with heat current Q,:

XQaPe = Is,
~ entropy density
To ) B ( 0? Tsp ) " 1
— —_— 2 N4
Tk Tsp (Ts) M ‘oM

T

» other long-lived conservation laws, e.g., supercurrent:
[Davison, Delacrétaz, Goutéraux, Hartnoll; 1602.08171]

» broken time-reversal symmetry (last lecture)
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QFT Deformed by One Operator

» conformal field theory at finite T', deformed by scalar
operator O of dimension A coupled to “random field”:

Hzmm—/ﬁmmm@y

(h(x))ais = 0, (h(x)h(y))ais = €% (x —y).

» momentum relaxation: [Lucas, Sachdev, Schalm; 1401.7993]

M e+ P

1
2 d 2 q; R 2m2A
€ /d kkxuljn%wlm (Goo(k,w)) ~ T

/N

~ Td+2 1 2A—d—1
~=xT
T

T T
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The Spectral Weight

The Harris Criterion

» in a CFT, we have
Ts=¢+ P ~T

» hence

o~ s~ g 2T2d+1-24

» this computation breaks down at low T if

1
—>T, or 1521?4742
-

» Harris criterion: disorder is relevant if

d
A<§+1
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The Spectral Weight

“Realistic” Quantum Critical Points

many quantum critical points are not CFTs:

» Fermi surface: p ~ M ~ TY

» Ising-nematic: » spin density wave:
[Hartnoll et al; 1401.7012] [Patel, Sachdev; 1408.6549]
(@) #0
(@) =0 —/ /
& Wy
&)~
Ya
(/ (@ Q
1 P~ o +m? T
pr =~ T—1/2 T imp imp
T
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ral Weight

Kinetic Theory: A Single Fermi Surface

empty » interactions always

decrease p:
filled 1 : ‘
& —krrE>1
0sh — k<1 |
’ & 0.6 §
U
» assume disorder couples to oul 1
density operator (random
Coulomb impurities) 02792 01 06 08 1
. . - &/l
» use semiclassical kinetic /
theory to compute GpRp(w) why? (next lecture)
[Lucas, Hartnoll; 1706.04621] toy model of single F'S kinetics from:

[Guo et al; PNAS, 1607.07269]
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Kinetic Theory: Two Fermi Surfaces

empty

» pockets have different vp
» conservation laws:

» charge in pocket 1
» charge in pocket 2
» total momentum

[Lucas, Hartnoll; 1706.04621]
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The Spectral Weight
Kinetic Theory: Two Fermi Surfaces
» numerical computation
gives:

krré <1

e UF,1/1)F,2 =0.3
e UF,l/UF,Z =0.5

vp1/vrg = 0.7

—vp1/vp2 =1

empty

I
1.5

05 1
g/eee

» pockets have different vp
» why does this happen?
(next lecture)

» conservation laws:
» charge in pocket 1

» charge in pocket 2

» total momentum

[Lucas, Hartnoll; 1706.04621]
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Holographic Models

a brief holographic aside: [Lucas; 1501.05656]

» consider
» scalar operator O dual to a field @ in the bulk of AdS
» a planar black hole in the bulk, with horizon r = ry
» the regular solution @(k,r) to linearized bulk equations of

motion
» the spectral weight of O is linked to the physics of @ at the
horizon:

.1 R s
ul}lgb ;Im (Goo(k,w)) ~ E(P(k, ri)?

with s the entropy density

» early holographic derivations of conductivity:
[Blake, Tong, Vegh; 1310.3832]

o(lw=0)n~ @(k,r+)_2

and are equivalent to more general formalism
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» we perturbatively derived universal Drude peak:

2
o 1
e )
-
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d
g = 62;3/%%(1{)%(—1{) lim ~Tm (Gas(k,w)).

w—0 W



Drude Peak: A Summary

» we perturbatively derived universal Drude peak:

1

o) =2 x 1
;—1(,0

and showed 7 is the momentum relaxation time:

d
22/ O () hs(—K) lim I (GRy(k,w)) .

w—0 W

» 771 sensitive to microscopic details: non-universal

T-scaling, possibly non-monotonic



Drude Peak: A Summary

» we perturbatively derived universal Drude peak:

1

o) =2 x 1
;—1(,0

and showed 7 is the momentum relaxation time:

d
22/ O () hs(—K) lim I (GRy(k,w)) .

w—0 W

» 771 sensitive to microscopic details: non-universal
T-scaling, possibly non-monotonic

» controlled (and useful!) but ultimately must go beyond
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