
Anderson	localization	study
via	deep	learning

Physics	division
Sophia	University

Tomi	Ohtsuki

J.	Phys.	Soc.	Jpn.	85,	123706	(2016)à2D,	open	access
J.	Phys.	Soc.	Jpn.	86,	044708	(2017)à3D,	open	access
T.	Mano	and	T.	Ohtsuki:	in	preparation

with	Tomoki	Ohtsuki,	NTT	data	mathematical	systems
and	T.	Mano,	Sophia	univ.

Machine	learning

neural	network
multilayer

convolutional
neural	network
(deep	learning)



Machine	learning	method	in	
condensed	matter	physics

• Though	still	restricted	to	standard	simplified	models,	
machine	learning	methods	seem	to	be	gradually	accepted	
among	solid	state	physics	community	from	2016.
• arXiv1605.01735 (Nat.	Phys.	‘17)	:	2D	Ising	model
• arXiv1606.02318	(Science	‘17):	Heisenberg	model
• arXiv:1610.02048	(Nat.	Phys.	‘17):	Kitaev	chain,	Ising,	disordered	
quantum	spin	chain
• arxiv1609.09087	(JPSJ	‘17):	2D	Ising	model,	the	most	beautiful
• arXiv1608.07848:	2D	Hubbard	model,	G(E,	x, y)
• arXiv1609.02552 :	3D	Hubbard model,	temperature	transition
• arXiv1611.01518:	Chern insulator,	bulk	(PRL	’17)
• arXiv1609.03705	(PRB	‘17):	DFT	with	machine	learning
• JPSJ	86,	093001	(2017):	Bose-Hubbard	model



Classification	of	wave	functions	in
random	systems

• Random	electron	systems	show	various	phases	with	
specific	wave	functions->Regard	|ψ(x)|2 as	image
• Use	multilayer	(four-weight	layer)	convolutional	neural	
network	(deep	learning)	to	classify	the	pattern	of	|ψ(x)|2
and	draw	the	phase	diagram	of	quantum	phase	transition
• 2D	metal	(delocalization)-insulator	(localization)	
transition	(Anderson	transition)
• 2D	topological	insulator-Anderson	insulator	transition
• 3D	Anderson	transition
• 3D	strong/weak	topological	insulator-ordinary	insulator	
transition
• Weyl	semimetal
• magnon Hall	effect
• Quantum	percolation



Image	recognition	by	deep	learning

A	Practical	Introduction	to	Deep	Learning	with	Caffe and	Python
http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/

In	short,	we	don’t	teach	machine	the	features	of	cat.		The		machine	captures	the	features
by	supervised	learning.



http://demo.caffe.berkeleyvision.org/classify_upload

Let’s	use	image	recognition	for	physics.
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A	kind	of	renormalization	group



Each	phase of	random	electron	systems	
exhibits	specific	wave	functions
• non-interacting	random	systems
• nontrivial	phases
• large	scale	samples	by	changing	the	seed	of	random	
number

• Extended
• Localized	(Anderson	localization)
• Edge	states	(2d	topological	insulator)
• Dirac	Surface	states	(3d	topological	insulator),	STI,	
WTI
• Fermi	arc	(3d	Weyl	semimetal)



2D	Localization-Delocalization	
transition
• SU(2)	model

metal metal insulator insulator

Indistinguishable	at	first	sight

εi=[-W/2,W/2]

Asada,	Slevin,	TO,	PRL	‘02



Deep	learning
• Training	phase
• Prepare	1000	eigenstates	for	W<Wc,	teach	the	machine	that	the	
eigenfunction	is	“delocalized	(metal	phase)”
• Prepare	1000	eigenstates	for	W>Wc,	teach	the	machine	that	the	
eigenfunction	is	“localized	(insulator	phase)”
• minimize	-Σi pi’	log	pi=-Σ’ log	pi
• 1800	for	training,	200	for	testing.

• Prediction	phase
• Diagonalize	independent	100	samples	and	let	the	machine	
judge	whether	they	are	delocalized	or	localized	with	probability	
Pdeloc and	Ploc=1- Pdeloc .

hidden	layers,	iterate	if	necessary



technical	note
• no	supercomputers
• needs	a	lot	of	eigenfunctions for	training	and	
testingàcluster workstations
• sparse	matrix	diagonalization	algorithm	is	sometimes	better
• typically	10-100	GB	storage	is	required	à binary	format	to	
read	and	write

• single	workstation	with	GPU	(Tesla	K40	or	Geforce
1080/1080	ti)	is	enough	for	training	and	testing.		
Training	takes	at	most	an	hour	with	GPU,	but	a	few	
days	without	GPU.
• deep	learning	tools:	
• Caffe
• Keras (front	end)	+	tensorflow(backend)



Results
• P:	probability	that	the	wave	function	is	delocalized

E=0



Applications	to	3D	topological	
system	(3D	TI	and	3D	WSM)
• focus	on	the	existence	of	surface	states
• choose	proper	boundary	conditions
• integrate	over	one	direction	to	have	2D	image



How	we	teach	what	TI’s	are.
• Topological	insulator	is	characterized	by	surface	states
• Choose	proper	boundary	condition,	integrate	over	one	
direction

WTI(001)OI STI metal
pbc

integration
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1 × PCI + 2 × PWSM + 3 × PDM

Liu,	Ohtsuki,	Shindou,	PRL16

Ohtsuki,	JPSJ	17

J. Phys. Soc. Jpn. FULL PAPERS
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Fig. 5. (Color) Color map of PCI, PWSM, and PDM. The intensity 1 × PCI + 2 × PWSM + 3 × PDM is plotted.

Bars with errors and circles (◦) indicate the transfer matrix estimate of the critical points,16) and dotted lines

are guide to the eye. Cross (×) at (β,W) ≈ (0.6, 2.0) indicates the WSM/DM phase boundary estimated by the

scaling of density of states.16, 42)

quantum percolation46–49) and fractal lattice50) are important future topics.

For the analysis of Anderson transition, we have used the known value of critical disorder

Wc for training CNN. Natural question arises whether we can determine the critical disorder

Wc ≈ 16.54 by the current method instead of relying on other methods. One possibility for

detecting the critical disorder might be to prepare the Fourier transformed wave functions. Af-

ter Fourier transformation, localized states become delocalized in k-space while delocalized

ones become localized. This duality is broken if we estimate Wc wrong. Careful monitoring

of validation error of CNN for real-space and k-space wave functions would enable us to

detect the wrong choice of Wc.

Machine learning has recently been applied to several problems of condensed mat-

ter physics such as Ising and spin ice models,51, 52) 2D topological system,53) and strongly

correlated systems.54–59) Applications to interacting electron systems with disorder such as

Anderson-Hubbard model60, 61) as well as topological systems of dirty boson such as quan-

tum magnon Hall insulator62) and topological photonic insulator63) are interesting problems

to be studied.

Acknowledgments

The authors would like to thank Koji Kobayashi for useful comments and for showing

us a phase diagram corresponding to Fig. 3(a) obtained via the transfer matrix method prior

to publication. Tomi Ohtsuki thanks Keith Slevin, Ken-Ichiro Imura, Shang Liu and Ryuichi

Shindou for fruitful collaborations on 3D random electron systems treated in this paper. This

work was partly supported by JSPS KAKENHI Grant No. JP15H03700.

11/15



3D	Anderson	localization	and	3D	
quantum	percolation
• New	challenge:	3D	image	recognition
• Method:	3D	deep	convolutional	neural	network	(6	
weight	layer	network)
• global	phase	diagram	in	W-E plane.		(conventionally,	
we	fix	the	energy	E and	vary	W.)
• Byproduct:	phase	diagram	for	3D	quantum	
percolation	(QP),	i.e.,	geometrically	random	systems
• transfer	matrix	method	is	not	applicable	for	QP



model	and	method
• Anderson	model

• quantum	percolation,	bond	percolation.
• 𝐻 = ∑ 𝑉%&,%|𝑗*⟩⟨𝑗|

� ,			𝑉%*,%=0	or	1	with	probability	p.

• for	site	percolation,	site	is	randomly	deleted	with	probability	
p.
• We	first	train	the	neural	network	for	Anderson	model,	E=0,	
then	use	the	trained	network	to	obtain	the	phase	diagrams	
in	W-E	(Anderson	model),	p-E (quantum	percolation)	planes.
• deeper	the	network,	the	better	the	phase	diagram.

H = ε j j j +
j
∑ Vj ', j j ' j

j ', j
∑   ,    −W

2
< ε j <

W
2



Brief	introduction	to	percolation

• Bonds	or	sites	are	randomly	connected	with	
probability	p.
• For	d>1,	an	infinite	cluster	appears	p>pc	,	with	pc
the	percolation	threshold.	
• If	the	particle	is	quantum,	p>pq>pc
• pq is	the	quantum	percolation	threshold.
• Due	to	Anderson	localization,	pq>pc

• Due	to	the	random	structure	of	lattices,
• transfer	matrix	is	not	applicable
• spiky	density	of	states

https://en.wikipedia.org/wiki/Percolation_theory



transfer	matrix
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Energy	level	statistics	or	
multifractal	+	finite	size	scaling

• even	when	the	transfer	matrix	is	not	applicable,	we	can	
diagonalize the	Hamiltonian
• energy	level	statistics	for	the	nearest	energy	spacing	P(s)
• localized	states:	Poisson,	P(s)=exp(-s)
• delocalized	states:	Wigner-Dyson,	P(s)≒A	sβexp(-s2),	β=1,	2,	and	
4	depending	on	the	universality	class

• multifractal	analysis	(A.	Rodriguez	et	al.,	PRL	(‘10),	PRB	(‘11),	Ujfalusi
and	Varga,	PRB	‘14)



dos	and	level	spacing	for	quantum	
percolation

LÁSZLÓ UJFALUSI AND IMRE VARGA PHYSICAL REVIEW B 90, 174203 (2014)

FIG. 1. Left side: Density of states of the quantum percolation model at different site-filling probabilities: (a) p = 0.35, (b) p = 0.4, (c)
p = 0.5, and (d) p = 0.6. (e) Small clusters corresponding to special energies taken from the review of Schubert and Fehske [6].

below 1, states are perturbed Bloch states, and the sample is
a metal. In between, there exists a mobility edge, pQ

c (E), that
is an energy-dependent quantum critical point, below which
electronic eigenstates are Anderson-localized giving rise to an
insulator, and above which they are extended forming a metal.
Along the mobility edge, pQ

c (E), the states are supposed to
be multifractals. In Sec. III B, we argue that the Anderson
model and the quantum percolation model belong to the same
universality class.

The organization of the paper is the following. In Sec. II
we examine the peculiar properties of the density of states in
quantum percolation, and we provide an overview about mul-
tifractality together with an introduction about the finite-size
scaling analysis of the corresponding generalized dimensions.
In Sec. III A we give a short overview of the technique of
the latter analysis in the case of the three-dimensional (3D)
Anderson transition, in Sec. III B we present the methods
applied in the present work, and in Sec. IV we give the results
of our analysis for the multifractal analysis. Finally, Sec. V is
left for a summary.

II. THEORETICAL AND NUMERICAL BACKGROUND

Electronic conduction is only possible on an infinite cluster,
so pQ

c > pC
c is expected; therefore, the infinite cluster should

be investigated, so only the p > pC
c regime is interesting for

us. Since numerically we can deal with a finite lattice only,
we restricted our work to the largest finite cluster found by
a Hoshen-Kopelman algorithm [10]. In a finite-size sample,
the Hamiltonian Eq. (2) is a huge sparse matrix. To obtain the
spectrum and eigenfunctions, we used the Jacobi-Davidson
method encoded in the PRIMME package [11] with ILU
preconditioning using the ILUPACK package [12].

We will first examine the density of states (DOS), because
for the quantum percolation problem it deserves a special
attention.

A. Density of states

The DOS of the giant cluster has an unusual form. The
evolution of this function with p is depicted in Fig. 1.
With increasing disorder, which in the present case means
decreasing p, more and more sharp peaks appear in the spec-
trum. These peaks correspond to special so-called “molecular
states,” which are localized to a few sites [7]. These states are
nonzero on a few sites only and exactly zero on every other one
due to exact destructive interference. Therefore, they are not
localized in the sense of Anderson localization, because there is
no exponential decay in the wave-function envelope. Typical
few-site structures and corresponding energies are given on
the right side of Fig. 1. Since the value E = 0 appears for
most clusters as an eigenvalue, the highest peak of the DOS
is at the middle of the band, and there is also a pseudogap
around it.

Considering other few-site clusters, there is no reason
for the eigenvalues to avoid any part of the band, therefore
peaks in the DOS corresponding to molecular states should
appear densely in the thermodynamic limit. The energy of a
molecular state is a strict value, thus the peaks in the DOS
appear as a series of Dirac δs. As we can see, the spectrum
consists of two parts: a dense point spectrum due to molecular
states, and a continuous one due to all other states [7]. This
statement has been rigorously proven recently in the case of
a two-dimensional (2D) square lattice, and for tree graphs
corresponding to an effective infinite dimension, therefore it
is conjectured to be true in any dimension [13].

Since molecular states are strongly localized, they cannot
contribute to conduction. Therefore, we restrict our investi-
gation to the continuous part of the spectrum only. With the
numerical method described above, we are able to compute one
single eigenstate of the Hamiltonian having an eigenenergy
close to a given value of E. In Fig. 1 it is shown that in a finite
system, molecular states appear frequently at a few special
energies only, e.g., E = 0, ± 1, ±

√
2, . . . , therefore for our

174203-2

Fig. 1. Normalized density of states of the quantum percolation
problem for the non-TRS model. The solid line is for the maxi-
mally connected cluster, while the dashed line corresponds to all
the energy levels including small clusters.

Fig. 2. Level spacing distribution P (s) for the TRS model (a)
and the non-TRS model (b) for L = 21. With an increase in p,
the transition from a Poisson distribution to that of Gaussian
orthogonal ensemble is seen in (a), while the transition from a
Poisson distribution to that of Gaussian unitary ensemble is seen
in (b).

tum percolation model and discuss the effect of the
breaking of TRS. To be specific, we restrict ourselves
to the bond percolation problems. A peculiar form of
the universal function of the level distribution at
the critical point, which is related to the sensitivity to
the boundary conditions, is also reported.
To describe the 3D quantum bond percolation model,

we consider the following simple Hamiltonian,

H =
∑

⟨ij⟩

(tija
†
iaj + h.c), (1)

where ⟨ij⟩ denotes the nearest neighbors. The transfer
integral is defined as

tij =

{
exp(−2π iφij) (for connected bond)

0 (for disconnected bond),
(2)

where the energy unit is the absolute value of the trans-
fer energy between connected bonds. Bonds are ran-
domly connected with a probability p. φij is the Peierls
phase due to magnetic fields. When all the Peierls phases
are set to 0, the Hamiltonian is time reversal symmet-
ric, and we call it the time reversal symmetric (TRS)
model. When the phases are not vanishing, the Hamil-
tonian is generally not time reversal symmetric. We set
−π < φij < π randomly, and call this situation non-
TRS model hereafter. The underlying lattice is a three-
dimensional cube of length L with periodic boundary
conditions imposed.
For each realization of connected bonds, we first iden-

tify the maximally connected percolating cluster, and
then we diagonalize the Hamiltonian corresponding to
this cluster by Lanczos method. The calculation is per-
formed for N different realizations of random bond con-
figurations, where N = 580, 300, 175 and 110 for sizes
L3 = 123, 153, 183 and 213, respectively. These param-
eters are chosen so that the number of eigenvalues for
each system size exceeds 106.
We analyze the eigenenergies in the region where the

density of states is smooth (Fig. 1). In the actual simu-
lation, we take |E| = 0.2 ∼ 0.8. Energy spectra are then
unfolded,31, 32) and the distribution function P (s) of ad-
jacent level spacings s is calculated, which is normalized

spacing

as ∫ ∞

0
dsP (s) = 1,

∫ ∞

0
dssP (s) = 1. (3)

For a sufficiently large size, we expect the Poisso-
nian behavior PP(s) = exp(−s) for localized states,
while it should be the Wigner-Dyson type for extended
states31, 33) where PWig(s) ∝ sβ exp(−Aβs2) (β = 1 in
the presence of TRS and β = 2, otherwise). Varying the
probability p and the size L, we extract the information
of the quantum percolation transition.
Plots of P (s) as a function of the bond occupation

probability for the TRS model and the non-TRS model
(L = 21) are displayed in Fig. 2. It is clearly seen that the
expected crossover from a Poissonian behavior to that
of Wigner-Dyson type is manifested as we increase the
value of p.
In order to obtain the critical value of the probability

I(s) =

∫ s

0
P (s′) ds′, (4)

and

Λ(p, L) =

∫ s0
0 I(s) ds−

∫ s0
0 IP(s) ds∫ s0

0 IWig(s) ds−
∫ s0
0 IP(s) ds

. (5)

Here we set s0 = 1.2. We also use other quantities to

pq and the critical exponent for the divergence of the
localization length ν, we define I(s) and Λ(p, L) as24)

1489Letters
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multifractality
LÁSZLÓ UJFALUSI AND IMRE VARGA PHYSICAL REVIEW B 90, 174203 (2014)

FIG. 3. (Color online) First row: Eigenvectors of the Anderson model at E = 0 (a) on the metallic side at W = 14, (b) close to criticality
W = 16.5, and (c) on the insulating side at W = 20. Second row: eigenvectors of the quantum percolation model at energy E = 0.1, (d) on
the metallic side at p = 0.5, (e) close to criticality, p = 0.4535, and (f) on the insulating side at p = 0.4. Box sizes correspond to (a),(d)
400 ×

√
|!|2; (b),(e) 70 ×

√
|!|2; and (c),(f) 20 ×

√
|!|2. Multiplying factors were tuned to best sight but without overlapping cubes. System

size, L = 120, for all subfigures. Coloring is due to the x coordinate.

entropy, Hq = (q − 1)−1 ln Rq , which in the limit q → 1
yields the well-known Shannon entropy, i.e., −

∑
k µk ln µk .

This is the reason why D1 is also referred to as information
dimension:

D1 = lim
q→1

1
q − 1

lim
λ→0

ln Rq

ln λ

L′H= α1 = lim
λ→0

1
ln λ

λ−d∑

k=1

µk ln µk, (10)

while another frequently used dimension is the correla-
tion dimension, D2. The latter dimension appeared often
in recent studies of the physical relevance of multifractal
eigenstates [17].

There is another way to characterize the multifractal nature
of the wave functions. For that purpose, the box probability
µ can be transformed into another variable, α = ln µ/ ln λ,
assuming the fractal scaling

µ ∼ λα. (11)

Let us denote the probability density function of the number
of boxes having a value α with P(α). The scaling of P(α) is
described through the singularity spectrum f (α), which is the
fractal dimension of the number of boxes having a value α:

P(α) ∼ λf (α). (12)

Function f (α) is merely the Legendre transform of τq :

f (αq) = qαq − τq . (13)

According to recent results, a symmetry relation exists for
αq and %q given in the form [18]

%q − %1−q = 0, αq + α1−q = 2d. (14)

This relation was first obtained for some random matrix en-
semble numerically, and using the supersymmetric nonlinear
sigma model analytically [18] it was later confirmed for several
two-dimensional [19,20] and three-dimensional systems [21].
However, deviations have been detected in other cases [23,24].
The robustness of this relation has been investigated also for
many-body localization [25].

174203-4
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3D	Anderson	transition

�

Ğ 	� (3�2�� fêġaÔğţŷfękðk¥x�cb�¦
��w¨�tìjaśţŷjbfękðk¥x�cg|c�
¤�x�5×5×5f��¢x�1C©ífękðk¥x�cg
|c�¤�x�3×3×3f��¢x�1C�c£¨�¥x�c
guia|c�¤�x�2×2×2f��¢x� 
a0I<O[G<OUT
egôãf¥x�cfk ;UL<SG] ÇğCĺg "KI<OLOKJ�:OTKG:�
BTO<�"K:B tŽi]a»ÄċŲÿf]lCŜƃtšūćaq
3:UVUZ< tip`mf¥x�cĭeĆıt]a�

ta 2�� eŚkðjwCÑö�ťÑöfŠŋtsw]a�
� v¨�c̈¨��¤fÄċƂ®gťÑöƂ®t* ∈ 14.0,16.0 CÑöƂ®t* ∈
17.0,19.0 ctaC7T<KR��9:�540#A tŽiaxryr )��� Ŵv`ĽÃ¶t]arrt
Îþ�c�ctaÁ��¤f½Ĥtìd_]a����c�fĽÃ¶gĮz�¤}cfâ
ŻĘľtŘqŷŌb :0!029 tüŽt]a�

�
ƈ�� ĜįÄċenq½ĤÚºcë÷�
(�	 � v¨�c̈¨Ñö�ťÑöfİĞ�

� Ğ 
 eĄunjeİĞnŘorC> = 0fco*%ŨÓbĢtpŐ¬t]a*f*%eliaC
�¨�f¿ĴgƁýŌdÅđenqæºnpm��¨��¤enqæºbÑötalpE(FC
Ž«t]�¨�ň³fÎþ�c�cŤiaƁýŌdÅđthjpşsdiarf­ien
p¯ũf���§c~bgäŠŋtt]� �Ů�ux¤fŨƄ� 
�	�
 ùĒ nCñ¾Ži]Ĝ
i���§c~bŘ]İĞg»ÌfÚºE)Fcmnp¯ņtCxfŻæĠnĄsr]a�

�
Ğ 
� øăÞv¨�c̈¨��¤fİĞaz�¤}cfôŀńcôĐńt 
�� œūtCĬÖ
ÓĀta|¢c�¦��t]mfaĦĚgÑöCģĚgťÑöfƂ®tŧua*/*%t ���

mo 	�

 jb ���
 ïkb 	( ¾ů¶swC
 �¨�¤ŭÒt]a�
�

*
*%

�

>�

delocalized

localized

transfer	matrix	+	FSS

Deep	(6	weight	layer)	CNN



Applying	the	results	of	3D	Anderson	
transition	to	quantum	percolation
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Comparing	the	methods	of	drawing	
phase	diagram

• Finite	size	scaling (Slevin and	Ohtsuki,	NJP	‘14)
• Define	a	nondimensional quantity	Λ(L,	E,	W,	..)	such	as	conductance.
• Plot	Λ(L,	E,	W,	..)	as	a	function	of	E,	W,	etc.	with	different	system	sizes	
L.

• Analyze	Λ(L,	E,	W,	..)	.		Scaling	invariant	point	is	the	phase	boundary.
• Precise	estimate	of	critical	point	and	critical	exponents.

• Machine	learning	method:	complementary	to	FSS
• Simple	analysis.

• [python	train.py;]	python	test.py;	python	dataArrange.py;	python	plot.py
• Wider	applicability.
• Once	trained,	can	draw	phase	diagrams	for	different	parameters.
• Detection	of	states	on	the	phase	boundary.
• Only	rough	estimate	of	the	phase	boundaries.		No	critical	exponent.
• Too	many	tuning	parameters	like	number	of	hidden	layers,	convolution	
size,	pooling	size,	bias,	padding,	….


