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Machine learning method in
condensed matter physics

* Though still restricted to standard simplified models,
machine learning methods seem to be gradually accepted
among solid state physics community from 2016.

e arXivl1605.01735 (Nat. Phys. ‘17) : 2D Ising model
e arXivl1606.02318 (Science ‘17): Heisenberg model

e arXiv:1610.02048 (Nat. Phys. ‘17): Kitaev chain, Ising, disordered
guantum spin chain

e arxivl1609.09087 (JPSJ “17): 2D Ising model, the most beautiful
e arXivl1608.07848: 2D Hubbard model, G(E, x, y)

e arXiv1609.02552 : 3D Hubbard model, temperature transition
e arXivl611.01518: Chern insulator, bulk (PRL"17)

e arXiv1609.03705 (PRB ‘17): DFT with machine learning

« JPSJ 86, 093001 (2017): Bose-Hubbard model




Classification of wave functions in
random systems

* Random electron systems show various phases with
specific wave functions->Regard | (x)|? as image

e Use multilayer (four-weight layer) convolutional neural
network (deep learning) to classify the pattern of |{(x)|?
and draw the phase diagram of quantum phase transition

e 2D metal (delocalization)-insulator (localization)
transition (Anderson transition)

e 2D topological insulator-Anderson insulator transition
* 3D Anderson transition

* 3D strong/weak topological insulator-ordinary insulator
transition

* Weyl semimetal
* magnon Hall effect
 Quantum percolation




Image recognition by deep learning

A Practical Introduction to Deep Learning with Caffe and Python
http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/

Classification

Click for a Quick Example

Maximally accurate Maximally specific
cat

feline

domestic cat

tabby

o e - o

domestic animal

In short, we don’t teach machine the features of cat. The machine captures the features
by supervised learning.



http://demo.caffe.berkeleyvision.org/classify _upload

Cafte Demos

The Caffe neural network library makes implementing state-of-the-art computer vision systems easy.

Classification

Click for a Quick Example

Maximally accurate Maximally specific
spitz
Pomeranian

dog

domestic animal

canine

CNN took 0.062 seconds

Let’s use image recognition for physics.
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Structure of a typical neuron
(source: Wikipedia)
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Image Convolutions
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Neurons of a convolutional layer, connected to their receptive field
(source: Wikipedia)
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Max pooling with a 2x2 filter and stride = 2
(source: Wikipedia)

N

A kind of renormalization group
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Each phase of random electron systems
exhibits specific wave functions

* non-interacting random systems
* nontrivial phases

* large scale samples by changing the seed of random
number

* Extended
* Localized (Anderson localization)
* Edge states (2d topological insulator)

* Dirac Surface states (3d topological insulator), STI,
WTI

* Fermi arc (3d Weyl semimetal)
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2D Localization-Delocalization
transition
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Indistinguishable at first sight



Deep learning

* Training phase

* Prepare 1000 eigenstates for W<W. teach the machine that the
eigenfunction is “delocalized (metal phase)”

* Prepare 1000 eigenstates for W>W, teach the machine that the
eigenfunction is “localized (insulator phase)”

* minimize -2, p/’ log p=-2"log p,
* 1800 for training, 200 for testing.

* Prediction phase

* Diagonalize independent 100 samples and let the machine
judge whether they are delocalized or localized with probability
'Ddeloc and 'Dloc=1_ 'Ddeloc .

hidden layers, iterate if necessary

A

pooll \

(MAX Pooling)
kemnel size: 2
stride: 2
pad: 0
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technical note

°* NO supercomputers

* needs a lot of eigenfunctions for training and
testing—> cluster workstations
e sparse matrix diagonalization algorithm is sometimes better

* typically 10-100 GB storage is required = binary format to
read and write

* single workstation with GPU (Tesla K40 or Geforce
1080/1080 ti) is enough for training and testing.
Training takes at most an hour with GPU, but a few
days without GPU.

* deep learning tools:
e Caffe
* Keras (front end) + tensorflow(backend)
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Results

* P: probability that the wave function is delocalized
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Applications to 3D topological
system (3D Tl and 3D WSM)

e focus on the existence of surface states
* choose proper boundary conditions

* integrate over one direction to have 2D image



How we teach what Tl’s are.

* Topological insulator is characterized by surface states

* Choose proper boundary condition, integrate over one
direction obe

ol STI integratic;?/ WTI(001) metal
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3D Anderson localization and 3D
guantum percolation

* New challenge: 3D image recognition

 Method: 3D deep convolutional neural network (6
weight layer network)

 global phase diagram in W-E plane. (conventionally,
we fix the energy E and vary W.)

* Byproduct: phase diagram for 3D quantum
percolation (QP), i.e., geometrically random systems
 transfer matrix method is not applicable for QP



model and method

 Anderson model
H =X | )2Vl
Jj J'sJ

e guantum percolation, bond percolation.
e H=) Vir ; " )jl, Vj, ;=0 or 1 with probability p.

W %4
, ——<E& < —
2 )

e for site percolation, site is randomly deleted with probability
p.

* We first train the neural network for Anderson model, E=0,
then use the trained network to obtain the phase diagrams
in W-E (Anderson model), p-E (quantum percolation) planes.

* deeper the network, the better the phase diagram.



Brief introduction to percolation

* Bonds or sites are randomly connected with
probability p.

* For d>1, an infinite cluster appears p>p_, with p_
the percolation threshold.

* If the particle is quantum, p>p >p,

. : Vo e DR G
* p, is the quantum percolation threshold. @ %ﬁ

* Due to Anderson localization, p >p.

 transfer matrix is not applicable
* spiky density of states

https://en.wikipedia. org/W|k|/PercoIat|on theory



transfer matrix

El//n — Hnl//n T Vn,n+1 n+l + Vn,n—l n—1

Vn+1,nl//n ! Vn,n—ll/jn—l ' U V;rl,n—}—l I 0

20



Energy level statistics or
multifractal + finite size scaling

* even when the transfer matrix is not applicable, we can
diagonalize the Hamiltonian

* energy level statistics for the nearest energy spacing P(s)
* localized states: Poisson, P(s)=exp(-s)
 delocalized states: Wigner-Dyson, P(s) = A sPexp(-s2), B=1, 2, and
4 depending on the universality class

* multifractal analysis (A. Rodriguez et al., PRL (“10), PRB (‘11), Ujfalusi
and Varga, PRB ‘14)
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multifractality

metal /extended critical /multifractal insulator/localized

Anderson
model

guantum
percolation

Ujfalusi and Varga, PRB ‘14



Deep (6 weight layer) CNN

3D Anderson transition
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Applying the results of 3D Anderson
transition to quantum percolation
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Comparing the methods of drawing
phase diagram

* Finite size scaling (Slevin and Ohtsuki, NJP ‘14)
 Define a nondimensional quantity A(L, E, W, ..) such as conductance.

* Plot A(L, E, W, ..) as a function of E, W, etc. with different system sizes
L

* Analyze A(L, E, W, ..) . Scaling invariant point is the phase boundary.
* Precise estimate of critical point and critical exponents.

 Machine learning method: complementary to FSS
e Simple analysis.
* [python train.py;] python test.py; python dataArrange.py; python plot.py
* Wider applicability.
* Once trained, can draw phase diagrams for different parameters.
* Detection of states on the phase boundary.
* Only rough estimate of the phase boundaries. No critical exponent.

* Too many tuning parameters like number of hidden layers, convolution
size, pooling size, bias, padding, ....




