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Basics and properties 



From MPS to PEPS 
Matrix Product States (MPS) 1d systems 

But we want to go beyond 1d systems!!! 

Very painful for DMRG... 
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PEPS are not your friends… (M. Lubasch)  

MPS 

...but, after a lot of gymnastics,  
 they can be your allies! 

PEPS (initially) 

PEPS (in the end) 



Two exact examples 



star operator 

plaquette operator 
€ 

i

Simplest known model with “topological order” 

Kitaev, 1997 

Ground state (and in fact all eigenstates) are PEPS with D=2 
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And another tensor rotated 90 ̊

An exact example: Kitaev’s Toric Code 



Resonating Valence Bond State 

+ + … 

Equal superposition of all possible nearest-neighbor 
singlet coverings of a lattice (spin liquid) 

Proposed  to understand high-TC superconductivity 

SU(2) singlets Anderson, 1987 

It is a PEPS with D=3 
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PEPS… 

F. Verstraete, I. Cirac, cond-mat/0407066 



and infinite PEPS (iPEPS) 

assuming translation invariance 

J. Jordan, RO, G. Vidal, F. Verstraete, I. Cirac, Phys. Rev. Lett. 101, 250602 (2008)  



PEPS obey 2d area-law 
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prefactor size of the boundary 

1..D 



Exact contraction is inneficient 
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(double indices) 

1..D2 
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Exact contraction is inneficient 
N. Schuch et al, PRL 98, 140506 (2007) 



Exact contraction is inneficient 

times 

computing time ~  Exponential amount of time!  

Mathematical statement: exact contraction of a PEPS is a #P-Hard problem  
(harder than NP-Complete) 

Applies also to expectation values of observables 

N. Schuch et al, PRL 98, 140506 (2007) 



Critical correlation functions 

Expectation values are those of 
the classical 2d Ising model 

F. Verstraete et al, PRL 96, 220601 (2006) 



Critical correlation functions 

+ permutations 
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It is a PEPS with D=2 (left as exercise): 

At                               the correlation length is infinite: 

Expectation values are those of 
the classical 2d Ising model 

F. Verstraete et al, PRL 96, 220601 (2006) 



PEPS to/from Hamiltonians 
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World of states 

World of Hamiltonians 

PEPS to/from Hamiltonians 

Generic PEPS with finite D 

Ground state of a  
gapped Parent Hamiltonian  

with local interactions 

e.g. D. Perez-Garcia et al,  
QIC 8, 0650 (2008) 



World of states 

World of Hamiltonians 

PEPS to/from Hamiltonians 

Hamiltonian with 
 local interactions 

Generic PEPS with finite D 

Ground state of a  
gapped Parent Hamiltonian  

with local interactions 

e.g. D. Perez-Garcia et al,  
QIC 8, 0650 (2008) 

Thermal states can be approx. 
 by a PEPS with finite D 

M. Hastings, PRB 73, 
085115 (2006) 

PEPS target the relevant corner of the Hilbert space (area-law)  



Comparison 

efficient 

1d Ham. 

inefficient efficient 

finite finite & infinite finite & infinite 

2d Ham. 1d Ham. 

arbitrary arbitrary constrained 

MPS in 1d 

PEPS in 2d 
MERA in 1d 

Ent. entropy 

Exact  
contraction 

Corr. length 

To/from 

Tensors 



PEPS as ansatz:  
variational optimization 



Variational optimization (e.g. finite PEPS) 

Optimize over each tensor individually and  
sweep over the entire system (as in DMRG) 
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Variational optimization (e.g. finite PEPS) 

Optimize over each tensor individually and  
sweep over the entire system (as in DMRG) 

Minimization of quadratic function 

... ... 

... ... 

e.g. F. Verstraete, I. Cirac, cond-mat/0407066 



Variational optimization (e.g. finite PEPS) 

Optimize over each tensor individually and  
sweep over the entire system (as in DMRG) 

Minimization of quadratic function 

Generalized eigenvalue problem 

Once        and       are known, we can solve this problem efficiently  

Approximate calculation of        and      

... ... 

... ... 

e.g. F. Verstraete, I. Cirac, cond-mat/0407066 
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e.g. calculation of  

MPS 



e.g. calculation of  

MPS 
MPO 

1d problem: use a 1d method for MPS 
(e.g., DMRG or TEBD) 

1..D2 
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MPSup 
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e.g. calculation of  

1..χ 

MPSup 

MPSdown 

1..χ 

0d problem: exact! 



e.g. calculation of  

1..χ 

1..χ 

1..χ 
1..χ 

is the environment of tensor  
is computed similarly, but sandwitching with the Hamiltonian 

Valid also for any expectation value 

1d problem: use DMRG! 

0d problem: exact! 

2d problem 
Dimensional reduction 



Time evolution 
(real, imaginary) 



Time evolution (e.g. imaginary) 

Divide into small time-steps   

e.g. J. Jordan et al, PRL 101, 250602 (2008)  
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Divide into small time-steps   
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Split the Hamiltonian 
(e.g. 2-body n.n.) 

e.g. J. Jordan et al, PRL 101, 250602 (2008)  



Divide into small time-steps   

... ... 

... ... 

Time evolution (e.g. imaginary) 

Split the Hamiltonian 
(e.g. 2-body n.n.) 

e.g. J. Jordan et al, PRL 101, 250602 (2008)  



Divide into small time-steps   

... ... 

... ... 

Time evolution (e.g. imaginary) 

Split the Hamiltonian 
(e.g. 2-body n.n.) 

e.g. J. Jordan et al, PRL 101, 250602 (2008)  



Divide into small time-steps   

... ... 

... ... 

Time evolution (e.g. imaginary) 

Split the Hamiltonian 
(e.g. 2-body n.n.) 

e.g. J. Jordan et al, PRL 101, 250602 (2008)  



Divide into small time-steps   
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Time evolution (e.g. imaginary) 

Split the Hamiltonian 
(e.g. 2-body n.n.) 

e.g. J. Jordan et al, PRL 101, 250602 (2008)  



Time evolution (e.g. imaginary) 

2-body gates 

e.g. J. Jordan et al, PRL 101, 250602 (2008)  



2-body gates 

Time evolution (e.g. imaginary) 
e.g. J. Jordan et al, PRL 101, 250602 (2008)  



Time evolution (e.g. imaginary) 

evolved state 

e.g. J. Jordan et al, PRL 101, 250602 (2008)  



Main idea 
1..D 

Time evolution (e.g. imaginary) 

Different approaches to this problem: (fast) full update, simplified update, TPVA... 

Full update:  

 Finite systems: optimize over all tensors in the PEPS (as before)  

 Infinite systems: optimize over tensors in the PEPS unit cell (iPEPS)  

Require calculations of environments, like the one shown before.  

e.g. J. Jordan et al, PRL 101, 250602 (2008)  



Environments with infinite PEPS  



Infinite systems 

Finite PEPS 

e.g. J. Jordan et al, PRL 101, 250602 (2008) 
R. Orús, G. Vidal, PRB 80 094403 (2009) 

  

Unit cell of tensors is repeated  
periodically over the whole PEPS: 

translational invariance 

Infinite PEPS 
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A
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A*

(double indices) 

Let’s put it on the plane of the screen!  
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A
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A*

(double indices) 

Environment calculations Contraction of this infinite lattice 



Contracting the infinite 2d lattice  



1-dim transfer matrix: 
dominant eigenvector?  

Contracting the infinite 2d lattice  

Can be approximated 
using infinite MPS 

… … 
iTEBD, iDMRG, PWFRG, etc 

1..χ 



Contracting the infinite 2d lattice  

Coarse-graining approaches: 
TRG/SRG, HOSVD, TNR  



Contracting the infinite 2d lattice  

corner transfer matrix (Baxter, 1968) 

(nice spectral properties) 
 

 

half-row transfer matrix 

half-column transfer matrix 



Directional version of the corner transfer matrix renormalization group  
(faster than 1d transfer matrix methods) T. Nishino, K. Okunishi, JPS Jpn. 65, 891 (1996) 

Contracting the infinite 2d lattice  

Renormalized Corner Transfer Matrices 
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Renormalization 
(numerical) 

(Baxter, 1968,1978) 

1..χ 



Corner transfer matrix and iPEPS 
R. Orús, G. Vidal, PRB 80 094403 (2009), R. Orús, PRB 85, 205117 (2012) 
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Corner transfer matrix and iPEPS 
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3) renormalization 

Iterate in all directions until convergence 

R. Orús, G. Vidal, PRB 80 094403 (2009), R. Orús, PRB 85, 205117 (2012) 
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A typical example:  
Toric Code in arbitrary field 
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H= −J As − J Bp
p
∑

s
∑ − hx σ i

x

i
∑ − hy σ i
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i
∑ − hz σ i

z

i
∑
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s
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S. Dusuel et al., PRL 106, 107203 (2011) 



2nd order sheets, 
quantum Ising  

universality class 
 
 

1st order sheet  
 
 

Self-dual point 
 
 

Multicritical line 
 
 

Multicritical point 
 
 

Critical quantum 
Ising points 

 
 

‘bare’ Toric Code 
 
 

topological  
(deconfined) 

phase  

polarized  
phase 

Phase diagram 



 
Román Orús 
University of Mainz 

 

November 2nd 2017 
 

5) Fermionic PEPS, and the MERA 



Fermions with 2d PEPS 
e.g., P. Corboz, R. Orús, B. Bauer, G. Vidal, PRB 81, 165104 (2010)  



Fermionic 2d systems 

Fermionic systems are extremely interesting physical systems, e.g. the   
2d fermionic Hubbard model may be the key to understand the 
emergence of high-TC superconductivity 
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Unfortunately, fermionic systems are also amongst the most difficult to 
simulate, because of the sign problem in Quantum MonteCarlo 
(sampling of negative probabilities) 



Fermionic 2d systems 

Fermionic systems are extremely interesting physical systems, e.g. the   
2d fermionic Hubbard model may be the key to understand the 
emergence of high-TC superconductivity 

Fermions are a NUMERICAL MONSTER 
 for Quantum MonteCarlo because of the sign problem! 

but there is hope... 

Unfortunately, fermionic systems are also amongst the most difficult to 
simulate, because of the sign problem in Quantum MonteCarlo 
(sampling of negative probabilities) 
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Symmetric wavefunction 

Operators commute 

Fermions 

€ 

ΨF (x1,x2) = −ΨF (x2,x1)

€ 

cic j = −c jci

Antisymmetric wavefunction 

Operators anticommute 

Crossings  
in a TN + 

Ignore crossings 

_ 

Careful!!!! 



Tensor Network “fermionization” rules 
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Tensor Network “fermionization” rules 



The leading order of the computational cost  
is the same as in the bosonic case 
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fermionic order ~ graphical projection of a PEPS 



€ 

2

€ 

4€ 

3

€ 

7€ 

6

€ 

9

€ 

5

€ 

8

€ 

2

€ 

3

€ 

4

€ 

5

€ 

6

€ 

7

€ 

8

€ 

9

fermionic order ~ graphical projection of a PEPS 

1

1



physics is independent of the order  
  

physics is independent of graphical projection 

(different choices of Jordan-Wigner 
transformation, if mapping                

to a spin system) 
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Example: scalar product of 3x3 PEPS 
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Contract as 
 for bosons! 

Example: scalar product of 3x3 PEPS 



But... does it work?  



,,Tensor networks provide today the best variational 
energies for the Hubbard model in the strong 
coupling limit. iPEPS has really made it“.  
 
Matthias Troyer (at the Korrelationstage 2015) 

But... does it work?  

YES, it does 

P. Corboz, PRB 93 045116 (2016) 

J. Jordan, RO, G. Vidal, F. Verstraete, I. Cirac, PRL 101 250602 (2008) 
P. Corboz, RO, B. Bauer, G. Vidal, PRB 81 165104 (2010) 



Multiscale Entanglement  
Renormalization Ansatz (MERA) 



From MPS to MERA 
Matrix Product States (MPS) 1d systems 
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Also very painful for DMRG... 
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Multiscale Entanglement  
Renormalization Ansatz (MERA) 
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1d MERA 
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1d MERA 

spatial dimension 

holographic 
 dimension 

(RG) ... ... 

1..χ 



Tensors obey constraints 
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Unitaries  
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Isommetries 
(coarse-grainings) 



Reason:  
 

entanglement is built locally  
at all length scales 
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Extra dimension defines an RG flow: Entanglement Renormalization  
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Entanglement as boundary in holographic geometry:  
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Entanglement as boundary in holographic geometry:  

Constant contribution at every layer  

1d MERA can produce logarithmic violations to the area-law:  

(like 1d critical systems!) 
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The norm is just the contraction 
 of the top tensors 
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Expectation values 



Expectation values 

Only tensors inside of the causal cone  
contribute to the expectation value  

„causal cone“ with  
bounded width 



MPS vs 1d MERA 

MPS in 1d 

1d area law  

Exact contraction is efficient 

Finite correlation length 

to/from 1d Hamiltonians 

Beyond 1d area law  

Exact contraction is efficient 

Finite and infinite correlation lengths 

to/from 1d Hamiltonians 

MERA in 1d 

Arbitrary tensors Constrained tensors 



An example:  
1d critical systems 

G. Evenbly, G. Vidal, in "Strongly Correlated Systems. Numerical Methods", Springer, Vol. 176 (2013)   



Critical Energies 
Critical XX Correlators 



 
Román Orús 
University of Mainz 

 

November 2nd 2017 
 

6) Further topics 



TNs with symmetries 
e.g., S. Singh, R. N. C. Pfeifer, G. Vidal, PRA 82, 050301 (2010) 
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Symmetric tensors and Schur’s lemma 
symmetric tensor 

e.g., S. Singh, R. N. C. Pfeifer, G. Vidal, PRA 82, 050301 (2010) 
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Symmetric tensors and Schur’s lemma 
symmetric tensor 

degeneracy 

structural  
( ~ Clebsch-Gordan)  

degeneracy 

structural  
( ~ identity)  

2 legs 

3 legs 

Structural part depends only on the group properties (intertwiners)  

e.g., S. Singh, R. N. C. Pfeifer, G. Vidal, PRA 82, 050301 (2010) 
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Emergent spin networks 

Global and gauge symmetries come out naturally 

Ψ =

e.g., S. Singh, R. N. C. Pfeifer, G. Vidal, PRA 82, 050301 (2010) 
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Emergent spin networks 

Global and gauge symmetries come out naturally 

States of quantum geometry  
in loop quantum gravity... 

Ψ =

e.g., S. Singh, R. N. C. Pfeifer, G. Vidal, PRA 82, 050301 (2010) 
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Emergent spin networks 

Global and gauge symmetries are handled naturally 
 

Concerning numerics: HUGE computational savings, e.g., SU(2)-DMRG 

Ψ =

e.g., S. Singh, R. N. C. Pfeifer, G. Vidal, PRA 82, 050301 (2010) 



Example: U(1)-Gauge iDMRG 
Gauge-invariant iDMRG simulations 

H = translation invariant  
MPO, bond dimension = 4 

q,r indices for U(1) gauge 
symmetry sector (structural) 
 
Greek degeneracy indices   

fermion 
gauge  
boson 

degeneracy structural 
B. Buyens, K. Van Acoleyen, J. Haegeman,  
F. Verstraete, PoS(LATTICE2014)308.    

B+ C    
e+ 

B-  C    
e- 

A 

QED, (1+1)d 



PEPS & Entanglement Hamiltonians 
e.g. I. Cirac et al, PRB 83, 245134 (2011), N. Schuch et al, PRL 111, 090501 (2013) 



1..D 







(double indices) 

1..D2 



(double indices) 



(double indices) 

Boundary 
How is physics described here?  

 
 



(double indices) 

1-dim transfer matrix: 
dominant eigenvector?  

Can be approximated 
using infinite MPS 

… … 
iTEBD, iDMRG, PWFRG, etc 

Boundary 
How is physics described here?  

 
 



… … Remember it has  
double indices… 

Emergent Hamiltonians 



It is also hermitian and  
positive by construction 
(up to finite-χ effects) 

… … 

Virtual indices of bra 
1…D 

Virtual indices of ket 
1…D 

Boundary virtual index 1...χ 

Emergent Hamiltonians 



It is also hermitian and  
positive by construction 
(up to finite-χ effects) 

ρ = exp(−HE )
1d Entanglement Hamiltonian 

Who is         ???  HE

… … 

Virtual indices of bra 
1…D 

Virtual indices of ket 
1…D 

Boundary virtual index 1...χ 

Emergent Hamiltonians 



It is also hermitian and  
positive by construction 
(up to finite-χ effects) 

ρ = exp(−HE ) Who is         ???  HE

 Critical 2d systems                                                           1d Hamiltonian, long-range        

   Gapped 2d systems, trivial phase                                   1d Hamiltonian, short-range          

Gapped 2d systems, topological order Completely non-local (projector) 

… … 

Virtual indices of bra 
1…D 

Virtual indices of ket 
1…D 

Boundary virtual index 1...χ 

Bulk Boundary Correspondence 

Particles and energies from Hamiltonians, and Hamiltonians from 
networks of entanglement + bulk-boundary correspondence 

1d Entanglement Hamiltonian 

Chiral topological order, gapless (1+1)d Conformal field theory 

Emergent Hamiltonians 



“branching” MERA 
G. Evenbly, G. Vidal, arXiv:1210.1895 



RG 



RG 



RG 



RG 



RG 



1d MERA 
RG 



1d MERA 
RG 



1d branching MERA 
RG 



1d branching MERA 

Decoupling of degrees of freedom along RG  
(e.g. spin-charge separation), and allows  

arbitrary scalings of the entanglement entropy  

In 2d, ansatz for e.g., Fermi & Bose liquids,  

RG 



Increasing complexity...  



MERA & AdS/CFT 
e.g. B. Swingle, PRD 86, 065007 (2012), G. Evenbly, G. Vidal, JSTAT 145:891-918 (2011) 



Picture from M. Nozaki, S. Ryu, T. Takayanagi, JHEP10(2012)193 

MERA entropy ~ Ryu-Takayanagi prescription 

Emergent space-time 



Picture from G. Evenbly, G. Vidal, 
(2011) JSTAT 145:891-918  

(time slice)  



Bulk is a discretized  
AdS space 

Picture from G. Evenbly, G. Vidal, 
(2011) JSTAT 145:891-918  

(time slice)  



For a scale-invariant MERA, the tensors  
of a critical model with a CFT limit correspond to a  

„gravitational“ description in a discretized AdS space:  
„lattice“ realization of AdS/CFT correspondence 

Bulk is a discretized  
AdS space 

AdS2+1 

CFT1+1 

Picture from G. Evenbly, G. Vidal, 
(2011) JSTAT 145:891-918  

(and we were not thinking  
about gravity at all...)  

(time slice)  



Let‘s now play 
some jazz... 

(time slice)  
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Finite correlation length (gapped systems) = finite number of layers  
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Product state = 
trivial fixed point 
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(time slice)  

Let‘s now play 
some jazz... 

Finite correlation length (gapped systems) = finite number of layers  

Product state = 
trivial fixed point 

Same thermal spectrum (entanglement Hamiltonian)    
finite temperature, scale invariance broken  

If arbitrary, then 
we can have non-
trivial thermal 
states.  
 
If isommetry, then 
all information is 
encoded in the 
network of 
correlations and  
 
 



Let‘s now play 
some jazz... 

Finite correlation length (gapped systems) = finite number of layers  

Same thermal spectrum (entanglement Hamiltonian)    
finite temperature, scale invariance broken  

Toy model for a 
  

Black Hole: 
 

end of geometry 

Product state = 
trivial fixed point 

(time slice)  

If arbitrary, then 
we can have non-
trivial thermal 
states.  
 
If isommetry, then 
all information is 
encoded in the 
network of 
correlations and  
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MPO 

The thermofield double formalism is a trick to treat the thermal, mixed state ⇢ = e��H

as a pure state in a bigger system. First we double the degrees of freedom, i.e., we

consider a new QFT which is two copies of the original QFT. If the theory is defined

by a Lagrangian, then for every field � in the original QFT, there are two fields �
1

(x
1

)

and �
2

(x
2

) in the doubled QFT. These two fields live in di↵erent spacetimes x
1

and

x
2

, and are not coupled in the Lagrangian at all. The states of the doubled QFT are

|mi
1

|ni
2

. (17.3)

Now in this doubled system we consider the thermofield double state:

|TFDi = 1p
Z(�)

X
n

e��En/2|ni
1

|ni
2

. (17.4)

This is a particular pure state in the doubled system. The density matrix of the doubled

QFT in this state is

⇢total = |TFDihTFD| . (17.5)

The reduced density matrix of system 1 is

⇢
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Therefore, if we restrict our attention to system 1, this pure state in the doubled system

is indistinguishable from a thermal state. For example, if O
1

is made of local operators

acting on system 1, O
1

= �
1

(x
1

)�
1

(y
1

) · · · , then

hTFD|O
1

|TFDi = 1

Z(�)
Tr H1 e

��H1O
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. (17.7)

This procedure is called purifying the thermal state. In fact, any mixed state can be

purified by adding enough auxiliary states and tracing them out.

Although systems 1 and 2 are not coupled in the Lagrangian of the doubled system,
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Thermofield double state 
 

Eternal AdS black-hole 

wormhole 

e.g., T. Hartman, J. Maldacena,  
JHEP05(2013)014 
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Thermofield double state 
 

Eternal AdS black-hole 

Entanglement connects upper  
and lower spacetimes  

ER=EPR, Maldacena & Susskind 

wormhole 

e.g., T. Hartman, J. Maldacena,  
JHEP05(2013)014 

M. Van Raamsdonk, arXiv:0907.2939 



MERA 



cMERA 

ψ = Pe
−i K (u)+L( )du

u2

u1

∫
Ω

(continuum) 

K(u)
L

Disentangler generator 

Isommetry generator 

J. Haegeman et al,  
Phys. Rev. Lett. 110, 100402 (2013) 



cMERA 

ψ = Pe
−i K (u)+L( )du

u2

u1

∫
Ω

(continuum) 

K(u)
L

Disentangler generator 

Isommetry generator 

Measures the density of strength of disentanglers.  
Compatible with AdS metric 

J. Haegeman et al,  
Phys. Rev. Lett. 110, 100402 (2013) 

M. Nozaki, S. Ryu, T. Takayanagi, JHEP10(2012)193 

curvature ~ change  
of entanglement at 
every length scale 
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S(B)



Getting popular  
even on Twitter... 



... and the media ... 



Entanglement and 
Tensor Networks 

Explosion in recent years 



Entanglement and 
Tensor Networks 

Strongly correlated systems 
Quantum information  

and computation 

Quantum simulations 
Classical statistical mechanics 

Quantum 
chemistry 

Materials science 

HEP and lattice gauge theories 
Quantum gravity, 
string theory and 
AdS/CFT 

Numerical tensor calculus 

Nuclear physics 

Explosion in recent years 

AI, Deep learning & Linguistics   


