
대칭성과 위상수학, 그리고 상전이
Symmetry, Topology, and Phase Transitions

최무영

서울대학교 물리천문학부

2019. 1.  통계물리 겨울학교



• Prologue: Statistical Mechanics

• Symmetry and Order

• Topological Perspectives

• Berezinskii-Kosterlitz-Thouless Transition

• Dynamic Properties

• Quantum Properties

• Epilogue



Matter in our daily life (incl. biological systems)
macroscopic, many constituents     many-particle system

e.g., air in this classroom  (N ~ 1025 molecules)

microscopic description: dynamics (classical or quantum)

(micro) state                     6N (micro) variables

macroscopic description: statistical mechanics

(macro) state                    a few macro variables

macro variables: collective degrees of freedom

external parameters + (internal) energy

{ }ii pq ,

{ },...,Tp

Social system: individual states vs societal variables 
(area, living level, technology, organization,…)

Can’t specify

in practicein principle!

Prologue: Statistical Mechanics



Energy transfer bet. two (macro) systems: work + heat

What are these?

에너지, 일, 열 Energy, Work and Heat

Energy levels       depends on external parameters 

(mean) energy                                  : prob. for (micro) state n

{ }αynE
nnEpE

n∑= np

Change of energy E

via change of         (i.e., of      ) : work done
via change of       : heat absorbed 

nE{ }αy EW y∆−≡
np EQ ∆≡

WQE −≡∆ (heat absorbed – work done) by the system



To a given macro state 
many micro states correspond    e.g. 윷놀이

accessible states

엔트로피 Entropy

number of accessible states }){,( αyEΩ

probability for the system in (macro) state
postulate of equal a priori probability{ } { }( , ) ( , )p E y E yα α∝ Ω

}){,( αyE

}){,( αyE

1Ω > missing information  “entropy”

macro state i (Ωi small)   → macro state f (Ωf large)
irreversibility

e.g. 강의실 안의 공기: 앞에만 있는 상태 vs 고르게 퍼진 상태
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temperature                             energy 
E
S

T ∂
∂

≡
1 }){,( αyTEE =

logS k≡ Ωentropy (Boltzmann) function of (macro) state

irreversibility:  initial state  → equilibrium state (S maximum)
i.e.,  S → max  or  ΔS ≥ 0

heat dQ absorbed via a quasi-static process:

dS = dQ/T  (can be negative)

Clausius’ definition, but S?, holonomy, T?, very limited

isolated system

엔트로피 S: 정보의 부족분
정보 I: 음의 엔트로피 negentropy

S = − I + I0



1st law of thermodynamics

WEQ +∆=

infinitesimal change: dQ TdS dE X dyα α
α

= = + ∑

definition of heat ⇒ energy conservation

2nd law of thermodynamics

0S∆ ≥ Spontaneous change in an isolated system is non-decreasing.

EX
y

α

α

∂
≡ −

∂
generalized force

How can life survive the 2nd law?

More generally, /( )
( )

S kp S e
p S

∆∆
=

−∆
요동정리 (detailed) fluctuation theorem



외떨어지지 않음 → 닫히거나 열림

열역학 둘째 법칙 (2nd law of thermodynamics)

• 외떨어진 계:  엔트로피 S → max
• 외부와 교류하는 계 (에너지 등): ?



Thermodynamic potentials
single-component fluid:

E(S, V)    (      dE = TdS – pdV)

F(T, V) = E – TS   ( dF = – SdT – pdV)

H(S, p) = E + pV ( dH = TdS + Vdp)

G(T, p) = F + pV = E – TS + pV ( dG = – SdT + Vdp)

;}{ Vy =α pX =α

tot

t

env tot

totot

( )

0
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S

⇐ − = ∆ = ∆ − ∆
⇐ ∆ − ∆ = ∆

− = ∆ −
= ∆ − ∆ +

⇐ ∆
∆

∆ + ∆ ≥=

System exchanging energy (work + heat) with environment at temperature T

W F≤ −∆⇒

2nd law



2nd law of thermodynamics

• isolated system:  S → max
• system in contact with a heat reservoir:  F →  min
• system in contact with a heat reservoir at constant pressure: G →  min

More generally, we have integral fluctuation theorems:

( )
( ) or 

1 0
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Prob. for system A in state r with energy Er

environment  A’

E′
system A

E energy
exchange

(0)( ) ( )r rp E E E′ ′ ′∝ Ω = Ω −

(0)

(0) (0)ln ( ) ln ( ) ln ( )r r r
E

E E E E E C E
E
∂′ ′ ′Ω − = Ω − Ω = −β

∂

System in contact with a heat reservoir A’ at temp. T

(0)E E E′+ =

1  or   r rE E
r rp e p e

Z
−β −β∝ =

canonical distribution 

Tr r rE E

r
Z e e−β −β≡ =∑ partition function

1
kT

β ≡



Connection to thermodynamics
free energy

1ln   or   lnFF E TS kT Z f Z
NkT N

β= − = − ≡ = −

mean (internal) energy and heat capacity
2

2
2

1 = ln    and      or   ( )rE
r r r

r r

E CE p E e E Z C c k f
Z T N

β β β
β β

− ∂ ∂ ∂
≡ = − ≡ ≡ = −

∂ ∂ ∂∑ ∑

magnetization and susceptibility

pressure and compressibility
11 2
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κ
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fluctuation-dissipation thm



T → ∞

T → 0

noninteracting system (ideal) gas

What is in between?

ground state  solid crystal

0

0

Tr Tr HH U

H H U

Z e e eββ β−− −

= +

≡ =

high-temp. limit: βU → 0      noninteracting system

low-temp. limit: βU → ∞     ground state

perturbation expansion: density exp. (no λ-exp.)

elementary excitations: collective modes

Hamiltonian

Partition function

바닥상태 (= 진공)의 대칭성 깨짐 → 물질의 대칭성 깨짐

phase transition



Symmetry of Physical Law:  e.g. 뉴턴의 운동 법칙 a = F/m

Invariance under symmetry transformation
나란히 옮김translation, 돌림rotation, 시간 진행time translation

전하켤레charge conjugation, 홀짝성parity, 시간 되짚기time reversal

맞바꿈exchange/permutation

게이지gauge

응집물질condensed matter: 대칭성이 절로 깨질 수 있음
spontaneous symmetry breaking

→ 정돈(질서) order

Symmetry and Order

Spacetime: Homogeneous and Isotropic



T

Tc

0

water (symmetry: translation, rot) disorder

phase transition (symmetry breaking)

ice (broken symmetry) order

액체-고체, 자석, 초전도, 초기 우주, 기억 작용, DNA 풀어짐, 세포 분화, 피의

산소운반, 효소 작용, 여론 형성, 지각 작용, 도시 형성, 경기 변동과 공황, …

Water and Ice: H2O 분자들의 집단

energy

entropy

Cooperativity among many constituents → emergent property

free energy



Order Parameter
How to specify the broken-symmetry state?

→  order parameter

0     sym. state (disordered)
0     unsym. state (ordered)

ψ
=

≠

2 4
0

min

( )F F a b
F

ψ ψ ψ= + + + ⋅⋅⋅

→

Free energy functional expanded in powers of ψ Landau theory

⇒ equilibrium order parameter 

Usually ψ: continuous at transition, i.e., ψ → 0 as T → Tc         2nd-order tr.
cf. 1st-order (discontinuous) transition

0,    >0

,    <0 

a

a a
b

ψ

=  −





Discrete sym.: ψ may be a scalar (real) variable.   Z2: Ising model
Continuous sym.: ψ has components, phase angle → phase field.   U(1): XY model

Goldstone theorem: continuous symmetry broken → Goldstone mode (no energy gap, massless) 

Mermin-Wagner theorem: Continuous symmetry may not be broken (i.e. no LRO) in d = 2.

Discrete vs Continuous Symmetry

𝜓𝜓 = |𝜓𝜓|𝑒𝑒𝑖𝑖𝜙𝜙



Continuous sym. U → ∃ infinitesimal transformation Uε = 1 + iεiLi (Li : generators)

UHU−1 = H ⇒ [H, Li] = 0,      Li: const. of motion, i.e., dLi/dt = 0 

Suppose that L transforms ops. A into B according to

[L, A] = −iB, 

where the average of B is the order parameter ψ:

ψ = 𝐵𝐵 = Tr 𝜌𝜌𝐵𝐵 = 𝑖𝑖 Tr 𝜌𝜌 𝐴𝐴, 𝐿𝐿 = 𝑖𝑖 Tr 𝜌𝜌, 𝐿𝐿 𝐴𝐴

Ordered state: ψ ≠ 0 ⇒ 𝜌𝜌, 𝐿𝐿 ≠ 0 symmetry broken

A: sym.-restoring op.
B: sym.-breaking op.

𝜌𝜌 = 𝑍𝑍−1𝑒𝑒−𝛽𝛽𝐻𝐻 and 𝐻𝐻, 𝐿𝐿 = 0 ⇒  𝜌𝜌, 𝐿𝐿 = 0 ?? 

𝜌𝜌 ∝ 𝑃𝑃𝑒𝑒−𝛽𝛽𝐻𝐻 restricted ensemble ← ergodicity broken



system  H

Linear Response Theory

Perturbation  →
ext. field  h(r, t)

→ Response
phys. quantity δB(r, t) 

3

3 ( )

0 0

linear response functio
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Goldstone theorem

⇒ Usually,

3 ( , )( , ) [ ( , ),

(

(

0, ) [ , ] 2 (

)]

)i t i
lA

A

t

l

K

K t i l t A L d r l

i dt e L A B dt e

t

Bω ωω π δ ω
∞ ∞

−∞ −∞
=

=

= = =

= −

∫ ∫
∫ rq q

q

q

Linear response function

0
( , ) 2 [ ( )] with lim ( ) 0lAK Bω π δ ω ω ω

→
= − =

q
q q q

⇒ 

if no long-range int.

( , ) as ( )LAK ω ω ω→ ∞ →q q i.e., collective mode: ω → 0  as q → 0  

ferromagnet: L = S = ∫d3r s(r) = (Sx, Sy, Sz),  i.e.,  L = Sx, A = Sy, B = Sz ([S, H] = 0)

antiferromagnet: L = S,  A and B: comp. of stag. magnetization  

superfluid:  L = N (number op.),  A/B: phase/amplitude of field op.  

([ , ] 0)i i
i A i B

H
∈ ∈

= − ≠∑ ∑ SS s s 

ˆ ( )ψ r

generator of gauge sym.



1. This mode may not be obvious. 
2. It depends on the dynamics of the system. → No general theory. 
3. Applicable at T = 0 as well, where 𝐵𝐵 represents vac. expectation value. If g.s. (vac.) 

breaks conti. sym. ( 𝐵𝐵 = 0|𝐵𝐵|0 ≠ 0), there exist elementary exc. with ω→0 as q→0.
no energy gap:  massless Goldstone boson

4. Continuous sym. cannot be broken in 2D.   Mermin-Wagner theorem
5. Plasma osc. due to the presence of long-range Coulomb int. (gauge field)

Thus breaking of local gauge sym. ↛ Goldstone bosons
Instead gauge particles acquire mass.   (Anderson-)Higgs [ABEGHHK] mechanism 

e.g., gauge bosons in weak int. W+/−, Z0

Meissner effect in superconductivity: gauge particle (photon) gets massive

2
2 2 2 2

0

4( ) 0p s pq

neq c q
m

πω ω ω→= + → = ≠ local gauge sym. 

Goldstone mode



Examples of Goldstone Modes

1. Lattice (translation sym. broken) 
→ lattice vibrations (phonons):  ω ∝ q     time rev. sym. unbroken

2. Magnet (rotational sym. broken)
→ spin waves (magnons)   

(F) ω ∝ q2 time rev. sym. broken
(AF)  ω ∝ q    time rev. sym. broken, but order parameter not const. of motion

3. Charge-density waves (CDW) (translational sym. broken)
Peierls instability → periodic lattice distortion (PLD) (static → insulator)

CD  Δρ ∝ei(kx + φ),  energy indep. of φ ⇒ long-wavelength fluc. in φ
→ phason φ ∝ei(qx − ωt)    (ω → 0  as q → 0)   phonon in the soliton lattice

sliding of PLD → Fröhlich conduction
cf. soliton condensation: commensurate-incommensurate (C-IC) transition



Topological Perspectives
Elementary particle (← Field theory)

symmetry, unification, charm, beauty, TOE,…

Condensed matter (← Statistical mechanics)

symmetry-breaking, disorder, randomness, frustration, chaos,…

Yet best precision comes from “dirty” condensed matter!

voltage standard: Josephson effect

resistance standard: quantum Hall effect 

17( 10 )
2 2dcV V n
e e

ωφ −≡ = =
 





2
10( 10 )H

en
h

σ −= 

Why?



Symmetry vs Topology

Mug and doughnut: different symmetry but the same topology

Quantum Numbers: Symmetry vs Topology



Topological Singularities

• Defects in ordered state (→ order-breaking, sym.-restoring) can play 
important role in phase transitions (both conti. & discrete sym.)

• Finite energy gap ↔ Goldstone mode (only for conti. sym.) 

Discrete symmetry
1D order parameter (e.g., Ising)
domain wall (magnetism, ferroelectricity, CDW) 

Continuous symmetry
2D order parameter (XY model)  𝜓𝜓 = |𝜓𝜓|𝑒𝑒𝑖𝑖𝜙𝜙

vortex (supercond., superfluid He4) 
dislocation (crystal)

3D order parameter (Heisenberg model)
monopole, vacancy or interstitial (crystal) 



line (space dim d = 2)
surface (space dim d = 3)

domain wall 

spin up/down (s = +1/−1) configuration



vortex 

point vortex (d = 2)
vortex/flux line (d = 3) 

phase configuration (0 ≤ φ < 2π)

charge +1: vortex charge −1: antivortex



dislocation 

disclinationpair of 
disclinations



monopole 



Symmetry → conserved quantity   Noether’s theorem
discrete eigenvalues for the operator  quantum numbers

symmetry: fragile, subject to perturbation
broken → mixing of the quantum numbers

Topology → winding numbers 
topological charge (quantum numbers)

topology: robust against perturbation
→ high precision

( )( ) ( ) ie φψ ψ= rr r

d 2 nφ π∇ ⋅ =∫ l


Condensate wave function

topological charge n > 0: vortex



Quantum Interference
• Moving charge in the presence of vector potential A

– Hamiltonian                           AB phase acquired

gauge transformation: A → A + 𝛻𝛻Λ ⇒ ψ → ψei(e/ħc)Λ

Bohm-Aharonov effect

• Moving magnetic moment in the presence of scalar potential A0
(moving solenoid in the presence of charge)

– Hamiltonian                          AC phase acquired

Aharonov-Casher effect

21
2

eH
m c

 = + 
 
p A d dAB AB

e e e
c c c

φ = ⋅ = ⋅ = Φ∫ ∫A l B a
  



21 1
2

H
m c

 = − × 
 
p E μ

1dAC AC AC
e
c e

φ  = ⋅ ≡ × 
 ∫ A l A μ E







Persistent Currents

Free electrons in a metallic loop

– BA flux

– AC flux

(σ = ±1: spin state;  λ: linear charge density)

– Energy level

– Total energy

– Charge current        Spin current

( )0 0d dAB ABf hc eΦ = ⋅ = ⋅ ≡ Φ Φ ≡∫ ∫A l B a


0d d 4AC AC ACa f
e e

µσ µσ πλ σΦ = ⋅ = ∇ ⋅ ≡ ≡ Φ∫ ∫A l E


( )
2

2
2 ( )    1 2 1 2

2n AB ACE n f f f f f
mRσ σ= + − < ≤ ≡ +


∑=
σ

σ
n

nEE

AB
c f

EeI
∂
∂

−=
π2

AC
s f

EI
∂
∂

=
π4
1

Φ

R

µ−
,e

λB↑



Superfluids and Superconductors
Condensate wave function ( )( ) ( ) ie φψ ψ= rr r

circulation

s m
φ= ∇v 

d ds
hn

m m
φ⋅ = ∇ ⋅ =∫ ∫v l l

 

Superfluid velocity

winding number n: topological q. number 
vortex quantization

SQUID
×

ⓧ

1 2

0

2 2 2 22 * 0, inside superconductors

e e ee
m c c
ψ πψ ψ φ φ = = ∇ − = ⇒ ∇ = =  Φ 

j v A A A



Ф
J

2 1

1 2
1, 2,

2 1 1

1, 2, 2,

d d d 2 ( )

d d d d

J

J J

nφ φ φ π φ φ φ φ
Γ

Γ

∇ ⋅ = ∇ ⋅ − ∇ ⋅ = − ≡ −

⋅ = ⋅ − ⋅ = Φ − ⋅

∫ ∫ ∫

∫ ∫ ∫ ∫

l l l

A l A l A l A l





gauge-invariant phase difference
1

0 02

2 d 2 2 2 ( )n n fπφ φ π π πΦ
≡ − ⋅ = − = −

Φ Φ∫ A l

Γ

Superconductor

0d d 2
2 2
c cn n
e e

φ πΦ = ⋅ = ∇ ⋅ = ≡ Φ∫ ∫A l l 

 

flux winding number n: 
flux quantization



Phase Transitions: Topological Perspectives

Discrete symmetry: Ising model in d dimensions

Domain wall in the system of linear size L
entropy  S = k log Ω = kd log L

(⸪ # of possible positions of d.w.: Ω = Ld)
energy cost  E = 2JLd−1 (⸪ # of spins at d.w. ~ Ld−1)

Free energy cost  ΔF = E – TS = 2JLd−1 – dkT log L
d ≤ 1: entropy dominates, ΔF < 0 ⇒ many domains, no order
d > 1: energy dominates below some finite T ⇒ ph. tr. into ordered state
Thus the lower critical dim. dl = 1 for the Ising model.

,
i j

i j
H J s s= − ∑



Correlation length

2D Ising model

Divergence of correlation length at Tc
→  scale invariance



Continuous symmetry: n-vector model in d dimensions (n ≥ 2)

angle bet adjacent layers ≈ Lθ/w
w

,
i j

i j
H J= − ⋅∑s s (si: n-dim. Vector)

energy cost  E ~ JwLd−1[1− cos(θ/w)] ~ Jw −1 Ld−1θ2 ≥ J Ld−2θ2

entropy  S ≤ kd log L
free energy cost  ΔF ≥ J Ld−2θ2 – dkT log L

d > 2: ΔF > 0 below some finite T ⇒ ph. tr. into ordered state
d ≤ 2: ? It turns out that phase fluctuations (spin waves) destroy LRO.

Thus the lower critical dim. dl = 2 for the n-vector model (n ≥ 2).

Mermin-Wagner theorem: Continuous sym. cannot be broken (i.e. no LRO) in d = 2.



spin-wave excitations

Order parameter |ψ| = 0: no long-range order ← no broken (continuous) symmetry

Correlation function
( ) (0)

[ ( ) (0)]

( ) ( ) *(0)

          ( ) (0)

          ( ) *(0)

i i

i

e e

e

φ φψ ψ

ρ ρ

−

⋅ −

Γ ≡ =

⋅

=

r

G u r u
G G

r r

s r s

r

In the limit r → ∞, 

Γ∞ (≠ 0)    LRO

e−r/ξ disorder
Γ(r) ~ 
Γ(r) ~ r−η

Spin wave excitations ⇒

Phase fluctuations in two dimensions (d = 2) 𝜓𝜓(𝐫𝐫) = |𝜓𝜓(𝐫𝐫)|𝑒𝑒𝑖𝑖𝜙𝜙(𝐫𝐫)

superfluids/supercond

magnets

crystals 
(Debye-Waller factor)

( )( ) with  ( ) ( )ieρ ⋅≡ = +G R r
G r R r r u r

algebraic (QLRO)  “critical”

⇒ algebraic (↔ δ-ftn) Bragg peaks



Examples of 2D phase fluctuations

Superfluid 4He films 
third sound, oscillating substrate

Superconducting films
type II (effective penetration depth large), ac impedance measurement 
transverse magnetic field ⇒ Abrikosov flux lattice, 2D melting

Superconducting arrays
precise realization of the XY model 

Liquid crystal films
Lipid monolayers floating on water
Adsorption (e.g. Xe, Kr on graphite)

incommensurate melting (IC (floating) solid - IC fluid)
Electron systems (e.g. MnO films)

disorder-driven M-I transition



2D Superconducting Arrays

• Described by the 2D XY model

• Study of low-dim. physics

• Related to a variety of systems

e.g. superconducting networks

tight-binding electrons

high-Tc superconductors

quantum Hall system

superconducting islands
weakly coupled by
Josephson junctions

Berezinskii-Kosterlitz-Thouless Transition



Ginzburg-Landau Description

• GL free energy

 Two transition regions
 T = TBCS: order-disorder transition ⇒ R ≠ 0

(a = 0)

 T = Tc :   phase-locking transition ⇒ R → 0
(≈ c )



Lower transition region: Phase fluctuations only

amplitude fluctuations: negligible (only slight renormalization)

𝜓𝜓(𝐫𝐫) = |𝜓𝜓|𝑒𝑒𝑖𝑖𝜙𝜙(𝐫𝐫) with 𝜓𝜓 = const.  or  𝜓𝜓𝑖𝑖 = |𝜓𝜓|𝑒𝑒𝑖𝑖𝜙𝜙𝑖𝑖
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∑ ∑ ∑
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⇒
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≈ + ∇⇒ ∫

spin-wave excitations (continuum system)



Correlation function
( ) (0) [ ( ) (0)]

22

1( ) ( ) *(0) ( )

1FT:  ( ) ,
2

i i F i

i

e e d e e
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⇒ spin-wave theory
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Susceptibility
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Phase transition at η = 2 or kBTc = 4πJ ?

spin-wave excitations → QLRO (at low T)
another type of excitation: vortex excitations 

→ disorder (at relatively high T)? 
d 2 nφ π∇ ⋅ =∫ l





2D XY Model

2D XY model

spin wave : Goldstone mode
vortex : topological defect

 Excitations

 T < Tc : vortices as bound pairs
algebraic decay of correlations ~ r -η

 T > Tc : dissociation of bound pairs → free vortices
exponential decay of correlations ~ e -r/ ξ

→ R ≠ 0 for 2D superconductors
 BKT transition at T = Tc

,
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vortex at r = 0: ϕ(r) = θ(r)

energy of a single vortex

free energy change asso. with free vortex formation

T < Tc ≡ πEJ /2k: bound pairs → algebraic decay
T > Tc : free vortices → exponential decay
T = Tc : ionization of vortices → BKT transition 

topological (no sym. breaking)
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Effects of Magnetic Field
Field induced vortices (repulsive) (+ thermally excited ones)
→ tend to form regular flux lattice at T = 0
Competition between flux lattice and underlying array periodicity

→ commensurate
-incommensurate effects
as magnetic field is varied

⇒ frustrated XY model



Frustrated XY Model

• Only frustration effects (↔ spin-glass)
enter in a controllable way (← magnetic field)               complex systems

• Discrete symmetry Zq in addition to continuous U(1) symmetry 
→ possibility of LRO in 2D (vortex + domain wall)

• Duality transformation → Coulomb gas of (fractional) charges
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c
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P
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(f : gauge-invariant frustration)
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Symmetry depends on f in a highly discontinuous fashion
f = 0 (unfrustrated XY model): U(1), BKT transition (← RG analysis, Kosterlitz)

T < Tc: critical, power-law decay of phase correlation

f = ½ (fully frustrated): U(1)×Z2

ground state: doubly degenerate (discrete) → Z2 (Ising)
→ double transitions (BKT + Ising?)

two kinds of coupled degrees of freedom
 phase (vortex excitation)
 chirality (domain-wall excitation)

f = ¼ on TR: infinite degeneracy

f = r/s: U(1)×Zs, 1st-order transition for large s

Chirality 𝑞𝑞 𝐑𝐑, 𝑡𝑡 = sgn∑P sin 𝜙𝜙𝑖𝑖 − 𝜙𝜙𝑗𝑗 − 𝐴𝐴𝑖𝑖𝑗𝑗 = ±1



f = irrational (irrationally frustrated): glass transition? (Tc → 0 as L → ∞)
unit cell itself is infinite → intrinsic finite-size effects
successive orderings (corresponding to rational approx. of f) at larger length scales 

f = random (gauge glass, random Aij): frustration + randomness
(quasi-)glass transition at  finite temperature  Tc = 0.21 ± 0.03 
T < Tc : algebraic glass order

glass order parameter

correlation function of glass order parameter

0
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current conservation → equations of motion

noise current
I = 0: relaxation toward equilibrium
I = Id: IV characteristics, current-induced unbinding, coherence resonance
I = Ia cos Ωt: dynamics transitions, SR
I = Id + Ia cos Ωt: mode locking, melting transition

L× L SQ array
uniform applied currents
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resistively shunted junction (RSJ)

Dynamical Properties
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Relaxation to Equilibrium

number of vortices
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phase correlation function
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aging

chirality autocorrelation function 
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long-time regime: algebraic
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dep. on T → algebraic glass order

f = random: gauge glass

intrinsic finite-size effects

f = 5−1
2

: irrational  golden number



DC Driving

IV characteristics ( f = 0 )
V ∝ I a (as I → 0)

T > Tc : a = 1 (Ohmic)
T → Tc

- : a = 3  (a = z + 1)

Effects of driving

Langevin equation of motion
→ Fokker-Planck equation for P({φi},t)

stationary sol. P({φi}) ∝ exp(−βH[φ])
→ effective Hamiltonian H[φ] (washboard pot.)

)0(1)(
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c current-induced unbinding



AC Driving

Chirality

Staggered magnetization

Dynamic order parameter

)(sinsgn),( ijjiP
Atq −−≡ ∑ φφR

∑ +− −≡
R

R ),()1()( 2 tqLtm ii yx

( ) ∫Ω≡ )(2 tmdtQ π

I0 = 0.98, 1.03, 1.50, 2.0 
from above 
Ω/2π = 0.08 (T = 0)

Dynamic Transitions: f = ½



Dynamic order parameter 
vs temperature

I0 = 0.3 (□), 0.5(   ), 0.8(∆)

Tc estimated by Binder’s cumulant

22
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Phase diagram



Scaling Relation

))(( /1/ ννβ LTTfLQ c−= −

Same universality class as the equilibrium Z2 transition in the 
FFXY model

I0 = 0.3

β = 0.09; ν = 0.82



Power spectrum

 Sharp peak at even harmonics
 Broad peak at odd harmonics

 I0 = 0.8; Ω/2π = 0.08
(Q > 0 at T = 0)

 Sharp peak at odd harmonics
 Broad peak at even harmonics

 I0 = 1.2; Ω/2π = 0.08
(Q = 0 at T = 0)



Stochastic Resonance (SR)





≡

N
S

10log10SNR signal S : power spectrum peak at Ω
N : background noise level

 SR phenomena
peak only at T >Tc

(    double peaks around Tc)

☜ τ → ∞ at T <Tc

 I0 = 0.8; Ω/2π = 0.08: Q > 0 (no osc.) at T = 0



First harmonics Ω Second harmonics 2Ω

 No SR at 1st harmonics  SR at 2nd harmonics

 I0 = 1.2; Ω/2π = 0.08: Q = 0 (osc. with freq. Ω)  at T = 0



 SR also present in dc driven system (← vortex motion)
→ coherence resonance (CR)

Second harmonics  2Ω Third harmonics  3Ω

 No SR at 2nd harmonics  SR at 3rd harmonics

 I0 = 2.0; Ω/2π = 0.08: Q > 0 (osc. with freq. 2Ω) at T = 0



ac+dc driving I = Id + Ia cos Ωt at T = 0

→  voltage quantization: giant Shapiro steps (GSS)

FGSS
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cf. devil’s staircase

• mode locking ← topological invariance
• chaos

Mode Locking, Melting, and Transitions



Macroscopic Quantum Phenomena

• Cooper pairs on the ith grain 
charge 2eni (charging energy)  ↔ phase φi (Josephson energy)

canonical quantization [ni, φj] = -iδij ⇒ MQP
• Magnetic field B → gauge field Aij→ magnetic frustration f
• Gate voltage (electric field) V → gauge charge Q → charge frustration q 
= Q/2e

thermal fluctuations ↔ quantum fluctuations
magnetic frustration ↔ charge frustration

Quantum Properties

[ ] ( )2 12 cosi ij j J i j ij
i, j i, j

H e n q C n q E Aφ φ−  = − − − − − ∑ ∑



T > 0 (f = q = 0): BKT transition
vortex unbinding (S-N) at Tv
charge unbinding (S-I) at Tc

l Quantum phase transition (S-I) at T = 0  ← quantum fluctuations
EC (≡ 4e2/C) ≪ EJ : phase ordering → superconductor
EC ≫ EJ : charge ordering → (Mott) insulator



Topological Quantization
• voltage → charge motion → current

current → vortex motion → voltage

• EC ≪ EJ: ac driving → voltage quantization

• EC ≫ EJ: ac driving → current quantization (Bloch osc.)

• EC ~ EJ: EC /EJ provides K.E. of vortices/charges, destroying lattice structure  
→ quantum fluid → conductance quantization

quantum vortex: boson with hard core (⸪ Berry’s phase) 
→ fermion with gauge field (via Jordan-Wigner transformation) 

2
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em
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Giant inverse Shapiro steps (G2:
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Non-simply Connected Geometry
• Interference effects

charge moving in magnetic field: Aharonov-Bohm effect

→ persistent current

vortex moving in gauge charge field: Aharonov-Casher effect

→ persistent voltage

• Coupled Array
– charge transport via excitons 

(pairs of excess and deficit Cooper pairs)
– interesting phase transition and transport properties
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Vortex Current
Annulus-shaped array with induced charge               
on the inner boundary

– N vortices  Laughlin-type wave function
– persistent vortex current

– persistent voltage

⇒ spontaneous voltage
1
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Nobel Prize in Physics 2016
½  David J. Thouless,  ½  J. Michael Kosterlitz and F. Duncan M. Haldane 
theoretical discoveries of topological phase transitions and topological phases of matter

Epilogue
Symmetry, Topology, and Phase Transitions

Paradigmatic system: XY model and Related Systems → rich physics

Equilibrium phase transitions
BKT transition, Ising-type transition, double transitions, 1st-order transition, T = 0 
glass transition, algebraic glass transition

Dynamic relaxation and responses
anomalous relaxation and coarsening, roughening transition, aging, nonlinear IV
relations and mode locking, current-induced unbinding, dynamic transition, SR

Macroscopic/mesoscopic quantum phenomena
quantum fluctuations and dissipation, quantum phase transition, charge-vortex duality, 
quantum vortex, persistent current and voltage, topological quantization, exciton
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