GW Partial Wave Analyses: from Photo- to Electroproduction

Igor Strakovsky & William Briscoe The George Washington University

- Pion PhotoProduction for Baryon Spectroscopy.
- Phenomenology for Pion PhotoProduction.
- SAID for Pion PhotoProduction.
- SAID: Features & Benefits.
- **FSI** for $\gamma n \rightarrow \pi N$.
- SAID for Neutral Baryons.
- SAID for Pion ElectroProduction.
- Summary.

Pion Pholo Production for Baryon Spectroscopy

Road Map to Baryon Spectroscopy

Baryon Sector at PDG16

 Pole position in complex energy plane for hyperons has been made only recently, first of all for $\Lambda(1520)3/2^-$.

PDG16 has 109 Baryon Resonances (58 of them are 4* & 3*).

 In case of SU(6) X O(3), 434 states would be present if all revealed multiplets were fleshed out (three 70 and four 56).

in **1947**.

was discovered

A(1890)

A(2100)

A(2110)

A(2325)

A(2350)4(2585) 7/2-

5/2+

3/2-

9/2+

A(2000

Phenomenology for Pion Pholo Production

Thenomenology of Spirit charts development of consciousness as it rises from lowly common sense to heights of what Hegel calls "absolute knowing"

- unconditioned form of thinking proper to philosophy itself.

PWA for Baryons

 Originally PWA arose as technology to determine amplitude of reaction via fitting scattering data.

That is **non-trivial mathematical problem** – looking for **solution** of **ill-posed** problem following to **Hadamard** & **Tikhonov**.

- Resonances appeared as by-product
 [bound states objects with definite quantum numbers, mass, lifetime, & so on].
- Standard PWA
 - \Rightarrow Reveals only wide Resonances, but not too wide (Γ < 500 MeV) & possessing not too small BR (BR > 4%).
 - \Rightarrow Tends (by construction) to miss narrow Res with Γ < 20 MeV.

Most of our current knowledge about bound states of **three light quarks** has come mainly from $\pi N \rightarrow \pi N$ **PWA**s:

Karlsruhe-Helsinki,
Carnegie-Mellon-Berkeley,
& GW.

Main source of EM couplings is GW, BnGa, & JuBo analyses.

Direct Amplitude Reconstruction in Pion PhotoProduction

$$\gamma N \rightarrow N \pi$$

spin:
$$1 \quad \frac{1}{2} \rightarrow \frac{1}{2} \quad 0$$

helicities:
$$2 \times 2 \times 2 / 2 = 4$$

parity conservation ————

• In particle physics, helicity is projection of the spin \vec{S} onto direction of momentum, \hat{p} :

$$h = ec{J} \cdot \hat{p} = ec{L} \cdot \hat{p} + ec{S} \cdot \hat{p} = ec{S} \cdot \hat{p} \ egin{aligned} ar{p} &= ec{ar{p}} \ ar{p} &= ec{p} \end{aligned}$$

Therefore, there are 4 independent invariant amplitudes

• In order to determine pion photoproduction amplitude [4 modules and 3 relative phases], one has to carry out 7 independent measurements at fixed (W, t) or (E, θ).

This extra observable is necessary to eliminate sign ambiguity.

PHYSICAL REVIEW C VOLUME 54, NUMBER 3

SEPTEMBER 1996

Ambiguities in the partial-wave analysis of pseudoscalar-meson photoproduction

Greg Keaton and Ron Workman

Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

(Received 19 April 1996)

Complete Experiment for Pion PhotoProduction

- There are 16 non-redundant observables.
- They are not completely independent from each other.

Longitudinally Polarized Nucleon *Target* Transverse Polarized Nucleon *Target*

12 double pol measurements: E, F, G, H,

$$C_{x'}$$
 $C_{z'}$ $O_{x'}$ $O_{z'}$ $L_{x'}$ $L_{z'}$ $T_{x'}$ $T_{z'}$

18 triple polarization asymmetries

[9 for linear pol beam]

[9 for circular pol beam]

13 of them are non-vanishing

³ single pol measurements: Σ , T, P

Importance of Neutron Data

• EM interaction do not conserve isospin, so multipole amplitudes contain isoscalar & isovector contributions of EM current.

Proton

Neutron

$$A_{\pi^0 p} = A^0 + \frac{1}{3} A^{1/2} + \frac{2}{3} A^{3/2} \qquad A_{\pi^0 n} = -A^0 + \frac{1}{3} A^{1/2} + \frac{2}{3} A^{3/2}$$

$$A_{\pi^+ n} = \sqrt{2} \left(A^0 + \frac{1}{3} A^{1/2} - \frac{1}{3} A^{3/2} \right) \qquad A_{\pi^- p} = \sqrt{2} \left(A^0 - \frac{1}{3} A^{1/2} + \frac{1}{3} A^{3/2} \right)$$

- Proton data alone does not allow separation of isoscalar & isovector components.
- Q: Can we avoid? A: NO!

• Need data on both proton & neutron!

Single Pion PhotoProduction on "Neutron" Target

- Accurate evaluation of EM couplings $N^* \rightarrow \gamma N \& \Delta^* \rightarrow \gamma N$ from meson photoproduction data remains paramount task in hadron physics.
- Only with good data on both proton & neutron targets, one can hope to disentangle isoscalar & isovector EM couplings of various N^* & Δ^* resonances, K.M. Watson, Phys Rev 95, 228 (1954); R.L. Walker, Phys Rev 182, 1729 (1969) as well as isospin properties of non-resonant background amplitudes.
- The lack of $\gamma n \rightarrow \pi^- p$ & $\gamma n \rightarrow \pi^0 n$ data does not allow us to be as confident about determination of neutron couplings relative to those of proton.
- Radiative decay width of neutral baryons may be extracted from
 π⁻ & π⁰ photoproduction off neutron, which involves
 bound neutron target & needs use of
 model-dependent nuclear (FSI) corrections.
 A.B. Migdal, JETP 1, 2 (1955); K.M. Watson, Phys Rev 95, 228 (1954)

for Pion Pholo Production

Today per Hour »

Visitors per Week »

Visitors per Month »

Screenshot of **SAID** Website usage http://gwdac.phys.gwu.edu/

World Progress in Pion PhotoProduction

SAID for Pion PhotoProduction

P. Mattione et al, Phys. Rev. C 96, 035204 (2017)

- Data driven (model independent) analysis [No Adhoc resonances in]
- Energy dependent MA27

= 145 - 2700 MeV [W = 1080 - 2460 MeV]

PWs = 60 [EM multipoles] [J < 6]

Prms = 210

Constraint: [no free parameters to fit]

 πN -PWA [no theoretical input]

GW SAID PWA facility allows

- To fit new data vs World Database.
- To validate acceptance & flux of new measurements.
- To validate systematics.
- To provide realistic event generator for MC simulations.

Reaction	Data (Pol)	χ²
γ р →π ⁰ р	25,540 (23 %)	55,529
$\gamma \mathbf{p} \rightarrow \pi^{+} \mathbf{n}$	8,959 (38 %)	20,736
γ n →π⁻ p	11,590 (4 %)	16,453
γ n \rightarrow π ⁰ n	364 (59 %)	1,540
Total	46,453	94,258

34.499 data 11.954 data

•There is disbalance between $\pi^0 \& \pi^+$ data (35%)

 Pion photoproduction on the neutron much less known.

Photo-Decay Amplitudes in BW & Pole Forms

• Pole is main signature of resonance.

$$A_h^{\rm BW} = C \sqrt{\frac{q_r}{k_r}} \frac{\pi (2J+1) M_r \Gamma_r^2}{m_N \Gamma_{\pi,r}} \tilde{\mathcal{A}}_{\alpha}^h \qquad \qquad A_h^{\rm pole} = C \sqrt{\frac{q_p}{k_p}} \frac{2\pi (2J+1) W_p}{m_N {\rm Res}_{\pi N}} \, {\rm Res} \, \mathcal{A}_{\alpha}^h$$
 Evaluated at Res Energy

TABLE I. Breit-Wigner and pole values for selected nucleon resonances. Masses, widths, and residues are given in units of MeV, the helicity 1/2 and 3/2 photo-decay amplitudes in units of $10^{-3} (\text{GeV})^{-1/2}$. Errors on the phases are generally 2-5 degrees. For isospin 1/2 resonances the values of the proton target are given.

Resonance	В	reit-Wig	ner values			le values		
	(Mass, width)	$\Gamma_{\pi}/2$	$A_{1/2}$	$A_{3/2}$	$({\rm Re}\ W_p, -2\ {\rm Im}\ W_p)$	R_{π}	A1/2	A _{3/2}
Δ(1232) 3/2+	(1233, 119)	60	-141 ± 3	-258 ± 5	(1211, 99)	52 [-47°]	-136 ± 5 [-18°]	$-255 \pm 5 [-6^{\circ}]$
N(1440) 1/2+	(1485, 284)	112	-60 ± 2		(1359, 162)	38 [-98°]	$-66 \pm 5 [-38^{\circ}]$	
N(1520) 3/2-	(1515, 104)	33	-19 ± 2	$+153 \pm 3$	(1515, 113)	38 [-5°]	$-24 \pm 3 [-7^{\circ}]$	$+157 \pm 6 [+10^{\circ}]$
N(1535) 1/2-	(1547, 188)	34	$+92 \pm 5$		(1502, 95)	16 [-16°]	$+77 \pm 5 [+4^{\circ}]$	
N(1650) 1/2-	(1635, 115)	58	$+35 \pm 5$		(1648, 80)	14 [-69°]	$+35 \pm 3 [-16^{\circ}]$	

R.L. Workman et al, Phys Rev C 87, 068201 (2013) A. Svarc et al, Phys Rev C 89, 065208 (2014)

SPD Legacy

- Minimization L

 Normalization Factor.
- Single-Energy Solutions.
- Forced Fit.
- Narrow Resonances in PWA.
- Quasi-Data Effect.

Minimization & Normalization Factor for PionProd

 $[\chi^2/Data]$

• Modified χ^2 function, to be minimized

[systematics plays important role]

 $\chi^2 = \sum_{i} \left(\frac{N\Theta_i - \Theta_i^{\text{exp}}}{\epsilon_i} \right)^2 + \left(\frac{N-1}{\epsilon_N} \right)^2$

 $\theta_i^{\;exp}$ measured, ϵ_i stat error, θ_i calculated, \bm{N} norm const, ϵ_X its error.

Modified χ^2 [Norm] Standard χ^2 [UnNorm]

- If systematic uncertainty varies with angle
 - ⇒ This procedure may be considered as first approximation.

•	Normalization freedom provides significant improvement
	for our best fit results, we cannot ignore experimental input

SAID < 2.5 GeV **MAID < 2.0** GeV

χ²/Data	SP09		5M02		MAID07	
Reaction	Norm	UnNorm	Norm	UnNorm	Norm	UnNorm
$\gamma p{ ightarrow}\pi^0 p$	2.2	3.6	3.2	5.7	7.7	12.3
γp→π⁺n	1.9	3.3	2.1	3.9	8.1	11.7
γn→π⁻p	1.8	2.6	1.8	2.5	2.9	3.8
γn→π ⁰ n	2.1	2.1	2.8	2.8	6.4	6.4

• For MAID07, normalization constants were searched to minimize χ^2 (no adjustment of partial waves was possible).

MAID07: D. Drechsel et al, Eur Phys J A 34, 69(2007)

• CLAS π^+ & π^0 & LEPS π^0 data included.

SAID solutions look more stable vs. MAID.

Single-Energy Solutions (SES)

R.L. Workman, M.W. Paris, W.J. Briscoe, IS, Phys Rev C 86, 015202 (2012)

 SAID has employed both single-energy (SES) & energy-dependent (Global) solutions using least-squares technology over variety of energy ranges in order to estimate uncertainties.

SES: based on bin of data spanning narrow E range [5 – 75 MeV] searches 2 to 29 prms.
110 SES have been generated with central E = 147 to 2650 MeV.
of data in bin varies from 80 to 1100.

Systematic deviation between SES & Global fits is indication of

⇒ Missing structure in global fit.

⇒ Possible problems with particular dataset.

Diagonal Error Matrix generated in SES fits.
 It can be used to estimate the overall uncertainties for Global solution.

Forced Fit for Measurements

R. Arndt, IS, R. Workman, Phys Rev C 67, 048201 (2003)

- SAID Forced Fit has weighted data by factor of 4 – 5.
- By weighting data, we magnify changes in multipole amplitudes, & more clearly see where data conflicts occur.
- Forced Fit results indicate that what more measurements require for constraint PWA solution.

• **DNPL**: **T** measurements

P.J. Bussey et al, Nucl Phys B **159**, 383 (1979)

• <u>JLab Hall A</u>:

Jefferson Lab

DARESBURY

There are $\mathbf{22} \, \mathbf{C}_{\mathbf{x}'} \, \& \, \mathbf{21} \, \mathbf{C}_{\mathbf{z}'} \, \text{below 2 GeV}$ K. Wijesooriya *et al,* Phys Rev C **66**, 034614 (2002)

- That is not artifact as was possible to think a while ago!
- Hall A data do allow to reproduce previous T measurements well.

Narrow Resonances in [Modified] PWA

R. Arndt, Ya. Azimov, M. Polyakov, IS, R. Workman, Phys Rev C 69, 035208 (2004)

- Conventional PWA (by construction) tends to miss narrow Res with Γ < 20 MeV.
- We assume existence of narrower Resonance, add it to amplitude, then re-fit over whole database.
 - Refitting
 - If worse description:
 - \Rightarrow Resonance with corresponding M & Γ is not supported.
 - If better description:
 - ⇒ Resonance may exist.
 - \Rightarrow Effect can be due to various corrections (eq., thresholds).
 - ⇒ Both possibilities can contribute.
 - Some additional checks are necessary.

- <u>True Resonance</u> should provide the effect only in **single** particular PW.
- While <u>non-Resonance</u> source may show similar effects in various PWs.

6/30/2018

Quasi-Data: What to Expect When you're Expecting

Prove motivation of JLab Proposal E-03-105

Pion PhotoProduction from Polarized Target for FROST Project.

 $R = u(A_{MC}) / u(A_{world})$

Average ratio of uncertainties of amplitudes w/o expected FROST data.

- The data generated by this work will fill # of gaps in existing database of single & double meson photoproduction.
- Greatest effect naturally requires measurement of all possible quantities as accomplished by FROST.

 π^+ n E: S. Strauch *et al*, Phys Lett B **750**, 53 (2015)

np E: I. Senderovich et al, Phys Lett B **755**, 64 (2016)

ωp E: Z. Akbar et al, Phys Rev C **96**, 065209 (2017)

More results are coming...

6/30/2018

NHMQGC, Pohang, Korea, July 2018

Igor Strakovsky

Final State Interaction

Previous neutron measurements used modified Glauber approach & procedure of unfolding Fermi motion of "neutron" target.

FSI for $\gamma d \longrightarrow \pi p \mathcal{N} \Longrightarrow \gamma n \longrightarrow \pi \mathcal{N}$

V. Tarasov, A. Kudryavtsev, W. Briscoe, H. Gao, IS, Phys Rev C **84,** 035203 (2011) V. Tarasov, A. Kudryavtsev, W. Briscoe, B. Krusche, IS, M. Ostrick, Phys At Nucl **79**, 216 (2016)

- FSI plays critical role in state-of-the-art analysis of $\gamma n \rightarrow \pi N$ data.
- For $\gamma n \rightarrow \pi N$, effect is $\frac{5\% 60\%}{}$.

Fermi Smearing

Input: SAID: $\gamma N \rightarrow \pi N$, $\pi N \rightarrow \pi N$, $NN \rightarrow NN$

amplitudes for 3 leading terms

DWF: full Bonn NN Potential

(there is no sensitivity to DWF).

It depends on (E,θ) .

$$R = (d\sigma/d\Omega_{\pi p})/(d\sigma^{IA}/d\Omega_{\pi p})$$

$$\frac{d\sigma}{d\Omega}(\gamma n) = R^{-1} \frac{d\sigma}{d\Omega}(\gamma d)$$

FSI for $\gamma d \rightarrow \pi^- pp \Longrightarrow \gamma n \rightarrow \pi^- p$

V. Tarasov, A. Kudryavtsev, W. Briscoe, H. Gao, IS, Phys Rev C 84, 035203 (2011)

Comparison of Previous & New SAID Fits

for g13

P. Mattione et al, Phys. Rev. C 96, 035204 (2017)

• Obviously, **FSI** plays important role in $\gamma n \rightarrow \pi^- p d\sigma/d\Omega$ determination.

FSI for $\gamma d \longrightarrow \pi^{0} np \implies \gamma n \longrightarrow \pi^{0} n \ \mathcal{Z} \ \gamma p \longrightarrow \pi^{0} p$

V. Tarasov, A. Kudryavtsev, W. Briscoe, B. Krusche, IS, M. Ostrick, Phys At Nucl 79, 216 (2016)

• $\gamma n \rightarrow \pi^0 n$ case is much more complicated vs. $\gamma n \rightarrow \pi^- p$ because π^0 can come from both $\gamma n \& \gamma p$ initial interactions.

$$A(\gamma p \rightarrow \pi^0 p) = A_v + A_s$$

 $A(\gamma n \rightarrow \pi^0 n) = A_v - A_s$

• The corrections for both target nucleons are practically identical for π^0 production in energy range of $\Delta(1232)3/2^+$ due to isospin structure of $\gamma N \rightarrow \pi N$ amplitude:

isoscalar isovector $A_s = 0$ or $A_v = 0$

$$R_n = R_p$$

 $\gamma p \rightarrow \pi^0 p$ (solid curves) $\gamma n \rightarrow \pi^0 n$ (dashed curves)

 $\Delta(1232)3/2+$

N(1440)1/2+

N(1535)1/2-

In general case,

$$R_n \neq R_p$$

SCSD for Neutral Baryon Spectroscopy: Differential Cross Section

FSI is essential

MAMI-B for $\gamma n \rightarrow \pi^- p$ around Δ

W.J. Briscoe, A.E. Kudryavtsev, P. Pedroni, IS, V.E. Tarasov, R.L. Workman, Phys Rev C 86, 065207 (2012)

• MAMI-B data for $\gamma n \rightarrow \pi^- p$ (including FSI corrections) & previous hadronic data for $\pi^-p \rightarrow n\gamma$ appear to agree well.

o – TRIUMF, CERN, LBL, LAMPF for $\pi^-p \rightarrow n\gamma$ NHMQGC, Pohang, Korea, July 2018

Igor Strakovsky

A. Shafi et al, Phys Rev C 70, 035204 (2004)

CLAS g13 for $\gamma n \rightarrow \pi^- p$ above 0.5 GeV

P. Mattione et al, Phys. Rev. C 96, 035204 (2017)

E = 445–2510 MeV π^- p: 8428 dσ/d Ω

 These data a factor of nearly three increase in world statistics for this channel in this kinematic range.

FSI included

CLAS g13 Impact for Neutron $S = 0 \ \mathcal{L} \ I = \frac{1}{2} \ Couplings$

P. Mattione et al, Phys. Rev. C 96, 035204 (2017)

 Selected photon decay amplitudes N*→γn at resonance poles are determined for the first time.

Moduli & phases

BW neutron photo-decay amplitudes

Resonance	Coupling	MA27 modulus, phase	GB12 [g10]	BG2013 [g10]	MAID2007	Capstick	PDG 2016
N(1440)1/2+	$A_{1/2}(n)$	0.065±0.005, 5°±3°	$0.048 \pm\ 0.004$	0.043 ± 0.012	0.054	-0.006	0.040 ± 0.010
N(1535)1/2-	$A_{1/2}(n)$	-0.055±0.005, 5°±2°	-0.058± 0.006	-0.093 ± 0.011	-0.051	-0.063	-0.075±0.020
N(1650)1/2-	$A_{1/2}(n)$	0.014 ± 0.002 , $-30^{\circ}\pm10^{\circ}$	-0.040± 0.010	0.025 ± 0.020	0.009	-0.035	-0.050±0.020
N(1720)3/2+	$A_{1/2}(n)$	-0.016±0.006, 10°±5°		-0.080±0.050	-0.003	0.004	-0.080±0.050
N(1720)3/2+	$A_{3/2}(n)$	0.017±0.005, 90°±10°		-0.140±0.065	-0.031	0.011	-0.140±0.065

MAX-lab for $\gamma n \rightarrow \pi^- p$ at Threshold

B. Strandberg et al, in progress

- It is difficult task to measureπ p final state close to threshold.
- We measured π^0 decay in to 2γ from $\gamma n \rightarrow \pi^- p \rightarrow \pi^0 n$.

N.M. Kroll & M.A. Ruderman, Phys Rev 93, 233 (1954)

Meson Production off Deuteron at CB@MAMI

V. Kulikov et al, in progress

• Differential cross sections for $\gamma n \rightarrow \pi^0 n$.

E = 180 - 800 MeV π^0 n: $\frac{589}{6} \frac{d\sigma}{d\Omega}$

• New $d\sigma/d\Omega$ s by A2 contribution is 160% to previous world π^0 n data.

FSI included

Courtesy of Slava Kulikov, 2017

• Data up to **E** = **1500** MeV are coming.

Igor Strakovsky 31

Exclusive Analysis for $\gamma N' \rightarrow \eta N$, $\gamma N' \rightarrow \pi^0 N$

T. Ishikawa, 2017.04.20, n photoproduction on the deuteron at E.<1.2 GeV

SAD for Neutral Baryon Spectroscopy: Polarized Measurements

Assumption is FSI is small

New CLAS g14 E for $\vec{\gamma}\vec{n} \rightarrow \pi^- p$

D. Ho et al, Phys Rev Lett **118**, 242002 (2017)

E = 730-2345 MeV

π⁻p: <mark>266</mark> E

No FSI included

CLAS g14 Impact for Neutron $S = 0 \ \mathcal{L} I = \frac{1}{2} \ Couplings$

D. Ho et al, Phys Rev Lett **118**, 242002 (2017)

BW	A _n 1/2	(10 ⁻³ GeV ^{-1/2})	A _n ^{3/2}	(10 ⁻³ GeV ^{-1/2})
	g14 PRL	previous	g14 PRL	previous
SAID				
N(1720)3/2+	-9 ±2	-21 ±4	+19 ± 2	-38 ±7
N(2190)7/2-	-6 ±9		-28 ±10	
<u>BnGa</u>				
N(1720)3/2+	tbd	-80 ±50	tbd	-140 ±65
N(2190)7/2-	+30 ±7	-15 ±12	-23 ± 8	-33 ±20

- I = 3/2 waves ~ unchanged ← determined by proton data.
- Inclusion of these g14 data in new PWA calculations has resulted in revised γN^* couplings &, in case of $N(2190)7/2^-$, convergence among different PWA groups.
- Such couplings are sensitive to dynamical process of N* excitation & provide important guides to nucleon structure models.

 Courtesy of Andy Sandorfi, 2017

Σ for $\vec{\gamma}n \to \pi \bar{p}$

Recent CB@MAMI E for $\vec{\gamma}\vec{n} \rightarrow \pi^0 n$

M.Dieterle *et al* Phys Let B **523,** 770 (2017)

 $[(GeV)^{-1/2} \times 10^{-3}]$

$N(1680)5/2^+ \rightarrow N\gamma$

 $pA^{3/2}=+133 \pm 12 pA^{1/2}=-15 \pm 6$ $nA^{3/2}=-33 \pm 9 nA^{1/2}=+29 \pm 10$

• It couples weakly to neutron.

$N(1675)5/2 \rightarrow N\gamma$

 $pA^{3/2}=+20 \pm 5$ $pA^{1/2}=+19 \pm 8$ $nA^{3/2}=-85 \pm 10$ $nA^{1/2}=-60 \pm 5$

• It couples **strongly** to **neutron**.

No **FSI** included

SPD for Mentral Baryon Spectroscopy: Pion Electro Production

6/30/2018

World Neutral & Charged PionEPR Data

R. Arndt, W. Briscoe, M. Paris, IS, R. Workman, Chin Phys C 33, 1063 (2009)

81,284

80,004

17,375

178,663

50,684

229,317

57,255

286,572

$S_{11} \mathcal{L} S_{31}[Q^2]$

$P_{11} \mathcal{L} P_{13} \mathcal{L} P_{11} \mathcal{L} P_{33} [Q^2]$

$\mathcal{D}_{13} \mathcal{A} \mathcal{D}_{15} \mathcal{A} \mathcal{D}_{33} \mathcal{A} \mathcal{D}_{35} [\mathbb{Q}^2]$

Unfolding Fermi Smearing via Event Generator

Form-Factor Measurements

• Inverse Pion Electroproducion is only process which allows determination of EM nucleon & pion form factors in intervals.

 $0 < k^2 < 4 M^2$

 $0 < k^2 < 4 m_{\pi}^2$

- $\pi^-p \rightarrow e^+e^-n$ measurements will significantly complement current electroproduction.
- $\gamma^*N \rightarrow \pi N$ study for evolution of baryon properties with increasing momentum transfer by investigation of case for *time-like virtual photon*.

6/30/2018

Summary for Pion PhotoProduction off Bound Neutrons Study

- Since 1989 pion photoproduction database below W = 2.5 GeV was increased by factor of 5 (most of new data came for $\gamma p \rightarrow \pi^0 p$) & is compatible with $\pi N \rightarrow \pi N$ database now.
- Pion photoproduction on "neutron" much less known than on proton (35%) & **neutron database** grows.
- FSI correction factor for both π^-p & π^0n final states is less than 15% above 30° in CM. It is compatible with Radiation correction for pion ElectroProduction (~30%).
- We may assume that **FS**I corrections for **pion polarized** measurements are **small**.
- Now we are able to extract pole positions on complex energy plane for both $N^* \rightarrow \gamma p \& N^* \rightarrow \gamma n$ photo-decay amplitudes.
- Evaluation of Q^2 dependency of γ^*N couplings is new task –stay tuned.

World Neutral & Charged PionPR Data

— Data Analysis Center Institute for Nuclear Studies

THE GEORGE WASHINGTON UNIVERSITY

W.J. Briscoe, M. Doring, H. Haberzettl, M. Manley, M. Naruki, IS, E. Swanson, Eur Phys J A **51**, 129 (2015)

Igor Strakovsky 47