Electromagnetic form factors of light & heavy baryons

Hyun-Chul Kim

Department of Physics, Inha University
Incheon, Korea

APCTP-JLAB Workshop

July 1 - 4, 2018 @APCTP, Pohang

Traditional way of a hadron structure

Traditional way of studying structures of hadrons

Traditional way of a hadron structure

Traditional way of studying structures of hadrons

Traditional way of a hadron structure

Traditional way of studying structures of hadrons

Probes are unknown for Tensor form factors and the Energy-Momentum Tensor form factors!

Probes are unknown for Tensor form factors and the Energy-Momentum Tensor form factors!

Even in this modern view point, knowing the EMFFs of baryons is the first step toward the full understanding of their structures.

Mean-Field Approximation

Simple picture of a mean-field approximation

Mean-field potential that is produced by all other particles.

- Nuclear shell models
- Ginzburg-Landau theory for superconductivity
- Quark potential models for baryons

Mean-Field Approximation

More theoretically defined mean fields

Given action, $S[\phi]$

$$\left. \frac{\delta S}{\delta \phi} \right|_{\phi = \phi_0} = 0$$
 : Solution of this saddle-point equation ϕ_0

Key point: Ignore the quantum fluctuation.

How we can understand the structure of baryons, based on this mean field approach, this is the subject of the present talk.

* A baryon can be viewed as a state of Nc quarks bound by mesonic mean fields (E. Witten, NPB, 1979 & 1983).

Its mass is proportional to Nc, while its width is of order O(1).

Mesons are weakly interacting (Quantum fluctuations are suppressed by 1/Nc: O(1/Nc).

Meson mean-field approach (Chiral Quark-Soliton Model)

* Baryons as a state of Nc quarks bound by mesonic mean fields.

$$S_{\text{eff}} = -N_c \text{Tr} \ln \left(i \partial \!\!\!/ + i M U^{\gamma_5} + i \hat{m}\right)$$

* Key point: Hedgehog Ansatz

$$\pi^{a}(\mathbf{r}) = \begin{cases} n^{a}F(r), n^{a} = x^{a}/r, & a = 1, 2, 3 \\ 0, & a = 4, 5, 6, 7, 8. \end{cases}$$

It breaks spontaneously $SU(3)_{flavor} \otimes O(3)_{space} \to SU(2)_{isospin+space}$

*Merits of the Chiral Quark-Soliton Model

• It is directly related to nonperturbative QCD via the Instanton vacuum.

Natural scale of the model given by the instanton size:

$$\rho \approx (600 \, \mathrm{MeV})^{-1}$$

- Fully relativistic quantum-field theoretic model:
 It explains almost all properties of the lowest-lying baryons.
- It describes the light & heavy baryons on an equal footing (Advantage of the mean-field approach).
- Basically, no free parameter to fit the experimental data.
 Cutoff parameter is fixed by the pion decay constant, and
 Dynamical quark mass (M=420 MeV) is fixed by the proton radius.

system is stabilized

A light baryon in pion mean fields

$$\langle J_B J_B^{\dagger} \rangle_0 \sim e^{-N_c E_{\rm val} T}$$

Presence of Nc quarks will polarize the vacuum or create mean fields.

A light baryon in pion mean fields

$$E_{\rm cl} = N_c E_{\rm val} + E_{\rm sea}$$

Classical Nucleon mass is described by the Nc valence quark energy and sea-quark energy.

An observable for the light baryon

Valence part

Sea part

Proton & neutron EM fom factors

Silva, Urbano, HChK, PTEP, 2018

Proton & neutron transverse charge densities

Nucleon polarized along the x direction

Flavor structure

Flavor structure

Nucleon polarized along the x direction

Silva, Urbano, HChK, PTEP, (2018)

EM Form factors of the baryon decuplet

EM form factors of the baryon decuplet

Spin 3/2 baryons have more complicated structures:
 Four-independent EM form factors.

$$\langle B(p',s)|V^{\mu}(0)|B(p,s)\rangle$$

$$= -\overline{u}^{\alpha}(p',s)\left[\gamma^{\mu}\left\{F_{1}^{*}g_{\alpha\beta} + F_{3}^{*}\frac{q_{\alpha}q_{\beta}}{4M_{B}^{2}}\right\} + i\frac{\sigma^{\mu\nu}q_{\nu}}{2M_{B}}\left\{F_{2}^{*}g_{\alpha\beta} + F_{4}^{*}\frac{q_{\alpha}q_{\beta}}{4M_{B}}\right\}\right]u^{\beta}(p,s)$$

Multipole EM form factors

$$G_{E0}(Q^{2}) = (1 + \frac{2}{3}\tau)[F_{1}^{*} - \tau F_{2}^{*}] - \frac{1}{3}\tau(1 + \tau)[F_{3}^{*} - \tau F_{4}^{*}],$$

$$G_{E2}(Q^{2}) = [F_{1}^{*} - \tau F_{2}^{*}] - \frac{1}{2}(1 + \tau)[F_{3}^{*} - \tau F_{4}^{*}],$$

$$G_{M1}(Q^{2}) = (1 + \frac{4}{5}\tau)[F_{1}^{*} + F_{2}^{*}] - \frac{2}{5}\tau(1 + \tau)[F_{3}^{*} + F_{4}^{*}],$$

$$G_{M3}(Q^{2}) = [F_{1}^{*} + F_{2}^{*}] - \frac{1}{2}(1 + \tau)[F_{3}^{*} + F_{4}^{*}].$$

EM form factors of the baryon decuplet

Multipole EM form factors

$$G_{E0}(Q^{2}) = \int \frac{d\Omega_{q}}{4\pi} \langle B(p', 3/2) | J^{0}(0) | B(p, 3/2) \rangle,$$

$$G_{E2}(Q^{2}) = -\int d\Omega_{q} \sqrt{\frac{5}{4\pi}} \frac{3}{2} \frac{1}{\tau} \langle B(p', 3/2) | Y_{20}^{*}(\Omega_{q}) J^{0}(0) | B(p, 3/2) \rangle,$$

$$G_{M1}(Q^{2}) = 2M_{B} \frac{3}{4\sqrt{\pi}} \int \frac{d\Omega_{q}}{i|\mathbf{q}|^{2}} q^{i} \epsilon^{ik3} \langle B(p', 3/2) | Y_{00}^{*}(\Omega_{q}) J^{k}(0) | B(p, 3/2) \rangle.$$

$$G_{M3} = (-i)\frac{35\pi}{2}\sqrt{\frac{12}{7\pi}}M_B\frac{1}{|\boldsymbol{q}|}\int d^3z j_3(|\boldsymbol{q}||\boldsymbol{z}|)\langle B(p',3/2)|\{Y_3\otimes J_1\}_{30}|B(p,3/2)\rangle$$

- M3 form factors vanish within any chiral solitonic approach (Leinweber et al., PRD 46, 3067 (1992)).
- We need to go beyond the mean-field approachto compute the M3 form factor.

M3 form factors should be very small.

EO form factors of the baryon decuplet

J.-Y. Kim & HChK, in preparation

EO form factors of the baryon decuplet

With more strangeness, the E0 form factors fall off more slowly.

J.-Y. Kim & HChK, in preparation

0.8

1.0

Magnetic moments get smaller as the strangeness increases.

J.-Y. Kim & HChK, in preparation

Effects of SU(3) symmetry breaking reduce the magnitude of the Omega E2 form factor.

J.-Y. Kim & HChK, in preparation

EM transition form factors of the decuplet

• EM transition FFs provide information on how the Delta looks like.

 EM transition FFs are related to the VBB coupling constants through VDM & CFI.

Essential to understand a production mechanism of hadrons.

Carlson & Vanderhaeghen, PRD 100 (2008) 032004

EM transition form factors of the decuplet

Present work

Silva et al. NPA 675, 637 (2000)

Effects of SU(3) symmetry breaking are sizable.

Black circle

- [46] W.W. Ash et al., Phys. Lett. B 24 (1967) 154.
- [47] W. Bartel et al., Phys. Lett. B 28 (1968) 148.
- [48] S. Stein et al., Phys. Rev. D 12 (1975) 1884.

Open circle

- [5] S. Galster et al., Phys. Rev. D 5 (1972) 519.
- [6] C. Mistretta et al., Phys. Rev. 184 (1968) 1487.

J.-Y. Kim & HChK, in preparation

E2/M1 & C2/M1 Ratios

JLab(squares, diamonds, circle), MAMI(triangle, cross)

J.-Y. Kim & HChK, in preparation

EM Form factors of the singly heavy baryons: the antri-triplet & the sextet

Singly heavy baryons in SU(3)

- In the heavy quark mass limit, a heavy quark spin is conserved, so lightquark spin is also conserved.
- * In this limit, a heavy quark can be considered as a color static source.
- Dynamics is governed by light quarks.

Heavy baryons

Heavy baryons

Heavy quark as a color static source

Nc-1 light quarks govern a singly heavy baryon.

Heavy baryons

Nc-1 quarks represent heavy-baryon spectra.

$$Y' = \frac{N_c - 1}{3}$$

Grand spin:
$$K=0 \rightarrow T=J$$

- The lowest rotationally excited states $3 \times 3 = \overline{3} + 6$
- ★T=0 for a anti-triplet: J=0 for it. Combining a charm quark with spin 1/2, we have one anti-triplet.
- ★ T=1 for a sextet: J=1. We have two sextets with a charm quark.

- Electric form factors of singly heavy baryons are governed by the light quarks.
- Heavy quark does not contribute to the magnetic form factors in the infinitely heavyquark mass limit.

$$J_{\mu}(x) = \bar{\psi}(x)\gamma_{\mu}\hat{\mathcal{Q}}\psi(x) + e_{Q}\bar{\Psi}\gamma_{\mu}\Psi$$

- Electric form factors of singly heavy baryons are governed by the light quarks.
- Heavy quark does not contribute to the magnetic form factors in the infinitely heavyquark mass limit.

$$J_{\mu}(x) = \bar{\psi}(x)\gamma_{\mu}\hat{\mathcal{Q}}\psi(x) + e_{Q}\bar{\Psi}\gamma_{\mu}\Psi$$
 A heavy quark is a point-like particle.

It contributes only to the charge.

- Electric form factors of singly heavy baryons are governed by the light quarks.
- Heavy quark does not contribute to the magnetic form factors in the infinitely heavyquark mass limit.

No magnetic form factor for the baryon antitriplet in a mean-field approach!

Electric form factors

Electric form factors

J.-Y. Kim, HChK, Phys.Rev. D97 (2018) 114009

Magnetic form factors

No contribution from the heavy quark in the limit of an infinitely large mass

Magnetic form factors

No contribution from the heavy quark in the limit of an infinitely large mass

E2 form factors of the sextet (J=3/2)

E2 form factors of the sextet (J=3/2)

J.-Y. Kim & HChK, in preparation

Conclusion & Outlook

- We presented a series of recent works on the electromagnetic form factors of the baryon decuplet and heavy baryons, based on a pion mean-field approach.
- Effects of SU(3) symmetry breaking are sizable for both E2 form factors and the EM transition form factors of the baryon decuplet.
- EM form factors of the singly heavy baryons were also discussed.
- Heavy baryons are electrically more compact than the light baryons.
 - EM transition form factors of the singly heavy baryons are under way.
 - The transverse charge densities of heavy baryons will be also studied.

How to go beyond the mean-field approximation

Conclusion & Outlook

Big Question: How can we go beyond the mean-field approximation?

Include the meson-loop corrections.

$$\frac{\delta^2 S}{\delta \phi^a \delta \phi^b} \neq 0$$

- Include the effects of the quark confinement: excited baryons
- ullet Include the heavy-light quark interactions. $\mathcal{O}(1/m_Q)$

Acknowledgments: I am grateful to my collaborators J.-Y. Kim and Gh.-S. Yang.

Though this be madness, yet there is method in it.

Hamlet Act 2, Scene 2

Thank you very much!