Beam Spin Asymmetry in Deeply Virtual Meson Production off the Scalar Target

Chueng-Ryong Ji North Carolina State University

The Nature of Hadron Mass and Quark-Gluon Confinement from JLab Experiments in the 12-GeV Era

APCTP, July 2, 2018

Outline

- Proton GPDs in DVCS and DVMP
- 5-Fold Differential Cross Section (Notations)
- Hadronic Currents in Meson Production off the Scalar Target (0⁺⁺ vs. 0⁻⁺)
- Benchmark BSA for π^0 production off ⁴He
- Generalized Compton Form Factors of ⁴He
- Conclusion and Outlook

DVCS on the Proton at the EIC: Transverse Imaging vs x_B

In[277]:=

Flatten[{{{"Q^2", "xBj", "k", "k'", "the", "thq", "thq'", "thp'", "q'", "t/Q^2"}}, Table[Block[{M = 0.938, Q = Sqrt[pars[[i, 1]]], xBj = pars[[i, 2]], Eb = pars[[i, 3]], the = pars[[i, 4]] Pi / 180, thetaC = 20 Pi / 180, thq = ArcCos[costhetaqT2]}, {Q^2, xBj, Eb, PeT1, the 180 / Pi, thq 180 / Pi, ArcCos[costhqf] 180 / Pi, ArcCos[costhpf] 180 / Pi, qfT3mu[[1]], MandeltT2 / Q^2}], {i, 1, 12}}, 1] // MatrixForm

Out[277]//MatrixForm=

Q^2	хВј	k	k '	the	thq	thq'	thp'	q'	t/Q^2
1.9	0.36	5.75	2.93669	19.3	18.0503	11.9997	69.6549	2.65582	-0.1555
3.	0.36	6.6	2.15792	26.5	11.6529	6.69292	66.0322	4.23202	-0.131356
4.	0.36	8.8	2.87723	22.9	10.3184	5.96439	64.4845	5.66645	-0.120212
4.55	0.36	11.	4.26285	17.9	10.6859	6.58293	64.1816	6.45567	-0.116055
3.1	0.5	6.6	3.2951	22.5	19.5262	14.4829	60.4087	3.0229	-0.170658
4.8	0.5	8.8	3.68273	22.2	14.4748	10.3331	57.1229	4.76891	-0.13615
6.3	0.5	11.	4.28358	21.1	12.4174	8.76649	55.3539	6.31422	-0.119765
7.2	0.5	11.	3.32409	25.6	10.1755	6.74662	53.737	7.24243	-0.112945
5.1	0.6	8.8	4.26908	21.2	17.7604	13.7928	51.4698	4.06193	-0.172513
6.	0.6	8.8	3.46951	25.6	14.8072	11.1302	49.5692	4.82846	-0.156969
7.7	0.6	11.	4.1592	23.6	13.0416	9.77439	48.0193	6.28128	-0.136317
9.	0.6	11.	3.00426	30.2	10.1946	7.16227	46.0515	7.39496	0.125229

Table III in E12 - 06 - 114, Julie Roche et al. Jlab 12 GeV Exclusive Kinematics International Journal of Modern Physics E Vol. 22, No. 2 (2013) 1330002 (98 pages) © World Scientific Publishing Company DOI: 10.1142/S0218301313300026

CONCEPTUAL ISSUES CONCERNING GENERALIZED PARTON DISTRIBUTIONS

CHUENG-RYONG JI

Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA crji@ncsu.edu

BERNARD L. G. BAKKER

Department of Physics and Astrophysics, Vrije Universiteit, De Boelelaan 1081, NL-1081 HV Amsterdam, The Netherlands b.l.g.bakker@vu.nl

> Received 15 July 2012 Revised 30 October 2012 Accepted 6 November 2012 Published 6 February 2013

Number of Independent Amplitudes in VCS

12 independent tensor structures

M.Perrottet, Lett. Nuovo Cim. 7, 915 (1973); R.Tarrach, Nuovo Cim. 28A, 409 (1975); D.Drechsel et al.,PRC57,941(1998); A.V.Belitsky, D.Mueller and A.Kirchner, NPB629, 323(2002); A.V.Belitsky and D.Mueller, PRD82, 074010(2010)

C.Ji, H.-M.Choi, A.Lundeen, B.Bakker arXiv:1806.01379 [nucl-th]

5-Fold Differential Cross Section

for unpolarized target and without recoil polarization

The following notation of the coincidence cross section will be used in our calculations. Further details can be found in D. Drechsel and L. Tiator, J. Phys. G 18 (1992) 449-497. (scanned version) (click here for a larger image)

$$\frac{d\sigma}{d\Omega_f dE_f d\Omega} = \Gamma \frac{d\sigma_v}{d\Omega}, \quad \Gamma = \frac{\alpha}{2\pi^2} \frac{E_f}{E_i} \frac{k_\gamma}{Q^2} \frac{1}{1-\varepsilon}$$
$$\frac{d\sigma_v}{d\Omega} = \frac{d\sigma_T}{d\Omega} + \varepsilon \frac{d\sigma_L}{d\Omega} + \sqrt{2\varepsilon(1+\varepsilon)} \frac{d\sigma_{LT}}{d\Omega} \cos\phi$$
$$+ \varepsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\varepsilon(1-\varepsilon)} \frac{d\sigma_{LT'}}{d\Omega} \sin\phi$$

https://maid.kph.uni-mainz.de/maid2007/cross.html

$$d\sigma \equiv \frac{d^{5}\sigma}{dydxdtd\phi_{k'}d\phi_{q'}} = \kappa \langle |\mathcal{M}|^{2} \rangle,$$

$$\kappa \equiv \frac{1}{(2\pi)^{5}} \frac{yx}{32Q^{2}\sqrt{1 + (\frac{2Mx}{Q})^{2}}}, \qquad y = P \cdot q/P \cdot k$$

$$t = (P - P')^{2}$$

$$\kappa \equiv Q^{2}/(2P \cdot q)$$

$$\epsilon = -\frac{2M^{2}x^{2}y^{2} + 2Q^{2}(y-1)}{2M^{2}x^{2}y^{2} + Q^{2}(y^{2} - 2y + 2)}, \qquad \epsilon_{L} = \frac{Q^{2}}{\nu^{2}}\epsilon$$

$$\langle |\mathcal{M}|^{2} \rangle = \left(\frac{e^{2}}{q^{2}}\right)^{2} \mathcal{L}^{\mu\nu}\mathcal{H}_{\mu\nu} = \left(\frac{e^{2}}{q^{2}}\right)^{2} \left[\frac{2q^{2}}{\epsilon - 1}\langle |\tau_{fi}|\rangle^{2} + 2i\lambda\epsilon^{\mu\nu\alpha\beta}k_{\alpha}k'_{\beta}J^{\dagger}_{\mu}J_{\nu}\right]$$

$$\frac{d\sigma}{\sqrt{1 + (1 + 1)^{2}}}, \qquad d\sigma_{LT}, \qquad d\sigma_$$

R. Williams, C.Ji, S. Cotanch (= WJC), PRC46, 1617 (1992)

$$\langle |\mathcal{M}|^{2} \rangle = \left(\frac{e^{2}}{q^{2}}\right)^{2} \mathcal{L}^{\mu\nu} \mathcal{H}_{\mu\nu}$$
$$\mathcal{L}^{\mu\nu} = q^{2} \left[g^{\mu\nu} + \frac{2}{q^{2}} (k^{\mu} k'^{\nu} + k'^{\mu} k^{\nu}) \right] + 2i\lambda \epsilon^{\mu\nu\alpha\beta} k_{\alpha} k'_{\beta}$$
$$\mathcal{H}_{\mu\nu} = J^{\dagger}_{\mu} J_{\nu}$$
$$\mathcal{H}_{\mu\nu} \neq \mathcal{H}_{\nu\mu}$$

Pseudoscalar(0⁻⁺) Meson vs. Scalar(0⁺⁺) Meson

$$\epsilon^{\mu\nu\alpha\beta}$$
 VS. $d^{\mu\nu\alpha\beta} = g^{\mu\nu}g^{\alpha\beta} - g^{\mu\alpha}g^{\nu\beta}$

 \sim

C.Ji & B.Bakker, PoS QCDEV2017,038(2017); B.Bakker & C.Ji, Few Body Syst. 58,no.1,8(2017)

$$F_{PS}(Q^{2},t,x) \begin{bmatrix} J_{S}^{\mu} = (S_{q}q_{\alpha} + S_{\bar{P}}\bar{P}_{\alpha})d^{\mu\nu\alpha\beta}q_{\beta}\Delta_{\nu} \\ F_{1} = S_{q} - S_{\bar{P}} \\ F_{2} = S_{\bar{P}} \end{bmatrix}$$

 $J_{S}^{\mu} = F_{1}(Q^{2}, t, x) \qquad F_{2}(Q^{2}, t, x)$ $J_{S}^{\mu} = F_{1}(q^{2}\Delta^{\mu} - q^{\mu}q \cdot \Delta) + F_{2}[(\bar{P} \cdot q + q^{2})\Delta^{\mu} - (\bar{P}^{\mu} + q^{\mu})q \cdot \Delta]$ $Q \quad ; \quad \bar{P} = P + P' \quad ; \quad \Delta = P - P' = q' - q$

$$J_{PS}^{\mu} = F_{PS} \epsilon^{\mu\nu\alpha\beta} q_{\nu} \bar{P}_{\alpha} \Delta_{\beta}$$

$$\mathcal{H}_{\mu\nu} = J^{\dagger}_{\mu}J_{\nu}$$

$$= |F_{PS}|^2 \epsilon_{\mu\alpha\beta\gamma} \epsilon_{\nu\alpha'\beta'\gamma'} q^{\alpha} \bar{P}^{\beta} \Delta^{\gamma} q^{\alpha'} \bar{P}^{\beta'} \Delta^{\gamma'}$$

 $= \mathcal{H}_{
u\mu}$

$$\epsilon^{\mu\nu\alpha\beta}k_{\alpha}k_{\beta}^{\prime}\mathcal{H}_{\mu\nu}=0$$

$$\frac{d\sigma_{\lambda=+1}^{PS} - d\sigma_{\lambda=-1}^{PS}}{d\sigma_{\lambda=+1}^{PS} + d\sigma_{\lambda=-1}^{PS}} = 0$$

 $d\sigma_T^{PS} = \kappa \frac{e^4 |F_{PS}(Q^2, t, x)|^2 \sin^2 \theta}{4M^2 x^4 (1 - \epsilon)} \left(4M^2 x^2 + Q^2\right) \left[x^2 \left(t^2 - 4m^2 M^2\right) + Q^4 + 2Q^2 tx\right]$

Scalar Meson Production

 $J_{S}^{\mu} = F_{1}(q^{2}\Delta^{\mu} - q^{\mu}q \cdot \Delta) + F_{2}[(\bar{P} \cdot q + q^{2})\Delta^{\mu} - (\bar{P}^{\mu} + q^{\mu})q \cdot \Delta]$ $d\sigma_{\lambda}^{S} = d\sigma_{T}^{S}(1 + \epsilon \cos(2\phi)) + d\sigma_{L}^{S}\epsilon_{L} + d\sigma_{LT}^{S}\cos\phi\sqrt{\epsilon_{L}(1 + \epsilon)} + \lambda d\sigma_{BSA}^{S}$

$$\begin{bmatrix} d\sigma_T^S \\ d\sigma_L^S \\ d\sigma_{LT}^S \\ d\sigma_{BSA}^S \end{bmatrix} = \begin{bmatrix} T_1 & T_2 & T_3 & 0 \\ L_1 & L_2 & L_3 & 0 \\ I_1 & I_2 & I_3 & 0 \\ 0 & 0 & 0 & S_A \end{bmatrix} \begin{bmatrix} |F_1|^2 \\ |F_2|^2 \\ F_{12}^+ \\ F_{12}^+ \\ F_{12}^- \end{bmatrix}$$

 $F_{12}^{\pm} = F_1 F_2^* \pm F_2 F_1^*$

 $\frac{d\sigma_{\lambda=+1}^{S} - d\sigma_{\lambda=-1}^{S}}{d\sigma_{\lambda=+1}^{S} + d\sigma_{\lambda=-1}^{S}} = \frac{d\sigma_{\text{BSA}}^{S}}{d\sigma_{T}^{S}(1 + \epsilon \cos(2\phi)) + d\sigma_{L}^{S}\epsilon_{L} + d\sigma_{LT}^{S}\cos\phi\sqrt{\epsilon_{L}(1 + \epsilon)}}$ $\sim F_{1}F_{2}^{*} - F_{2}F_{1}^{*}$

$$\begin{split} T_1 &= \frac{\kappa e^4 \sin^2 \theta Q^2}{4M^2 x^2 (1-\epsilon)} \left(x^2 \left(t^2 - 4m^2 M^2 \right) + Q^4 + 2Q^2 tx \right), \\ T_2 &= \frac{\kappa e^4 \sin^2 \theta Q^2 (x-1)^2}{4M^2 x^4 (1-\epsilon)} \left(x^2 \left(t^2 - 4m^2 M^2 \right) + Q^4 + 2Q^2 tx \right), \\ T_3 &= \sqrt{T_1 T_2}, \\ L_1 &= \frac{\kappa e^4 Q^4}{8M^2 x^2 (1-\epsilon) \left(4M^2 x^2 + Q^2 \right)} \left(m^2 + Q^2 + t(2x-1) \right)^2, \\ L_2 &= \frac{\kappa e^4 \left(m^2 \left(4M^2 x + Q^2 \right) + Q^2 \left(4M^2 x + 2tx - 3t \right) - 4M^2 tx + Q^4 \right)^2}{8M^2 x^2 (1-\epsilon) \left(4M^2 x^2 + Q^2 \right)}, \\ L_3 &= \sqrt{L_1 L_2}, \\ I_1 &= \frac{\kappa e^4 I_c \tan \theta Q^2 \left(m^2 + Q^2 + t(2x-1) \right)}{2M^2 x^2 (\epsilon-1) \left(4M^2 x^2 + Q^2 \right)}, \\ I_2 &= \frac{\kappa e^4 I_c \tan \theta Q^2 \left(m^2 + Q^2 + t(2x-1) \right)}{2M^2 x^3 (\epsilon-1) \left(4M^2 x^2 + Q^2 \right)} \\ \times \left[m^2 \left(4M^2 x + Q^2 \right) + Q^2 \left(4M^2 x + 2tx - 3t \right) - 4M^2 tx + Q^4 \right], \\ I_3 &= \frac{\kappa e^4 I_c \tan \theta}{4M^2 x^3 (\epsilon-1) \left(4M^2 x^2 + Q^2 \right)} \left[m^2 \left(4M^2 x^2 + Q^2 (2x-1) \right) \right. \\ \left. + Q^2 (4M^2 x^2 + 4tx^2 - 6tx + t) - 4M^2 tx^2 + Q^4 (2x-1) \right], \\ S_A &= \kappa e^4 \frac{\sin \theta \sin \phi}{2Mx^2 y} \left(m^2 + Q^2 - t \right) \\ \times \sqrt{Q^2 (y-1) + M^2 x^2 y^2} \sqrt{x^2 (t^2 - 4m^2 M^2) + Q^4 + 2Q^2 tx}, \end{split}$$

 $F_1 F_2^* - F_2 F_1^* \neq 0$ as far as at least one of F_1 and F_2 develops an imaginary part. However, if $q = q' - \zeta P$ due to A.V.Radyushkin, PRD56, 5524 (1996) is imposed, then two form factors merge together: $J_{S}^{\mu} = \zeta (F_{1} + F_{2})(q^{2}P^{\mu} - q^{\mu}q \cdot P)$ No BSA in that case as $\mathcal{H}_{\mu\nu} = \mathcal{H}_{\nu\mu}$ Thus, BSA measurement of scalar meson

production off ⁴He would be important.

Generalized Compton Form Factors : S_i , i = 1, 2, ..., 5

Most General Hadronic Tensor for Scalar Target

$$T^{\mu\nu} = G_{qq'}^{\mu\nu} S_1 + G_q^{\mu\lambda} G_{q'\lambda}^{\nu} S_2 + G_{q\overline{P}}^{\mu\lambda} G_{\overline{P}q'\lambda}^{\nu} S_3$$
$$+ (G_{q\overline{P}}^{\mu\lambda} G_{q'\lambda}^{\nu} + G_q^{\mu\lambda} G_{\overline{P}q'\lambda}^{\nu}) S_4 + G_q^{\mu\lambda} \overline{P}_{\lambda} \overline{P}_{\lambda'} G_{q'}^{\lambda'\nu} S_5$$
$$G_{qq'}^{\mu\nu} = g^{\mu\nu} q \cdot q' - q'^{\mu} q^{\nu}$$
$$G_q^{\mu\nu} = g^{\mu\nu} q^2 - q^{\mu} q^{\nu}$$

$$\begin{split} G_{q'}^{\mu\nu} &= g^{\mu\nu} q'^2 - q'^{\mu} q'^{\nu} \\ G_{q\overline{P}}^{\mu\nu} &= g^{\mu\nu} q \cdot \overline{P} - \overline{P}^{\mu} q^{\nu} \\ G_{\overline{P}q'}^{\mu\nu} &= g^{\mu\nu} q' \cdot \overline{P} - q'^{\mu} \overline{P}^{\nu} \end{split}$$

For $q'^2 = 0$, only S_1 , S_2 and S_4 contribute.

Metz's approach $S_1 = -B_1, S_2 = B_3, S_3 = -B_2, S_4 = B_4, S_5 = B_{19}$

The method using the projectors introduces a kinematical singularity at $q' \cdot q = 0$. In Tarrach's paper a method is described to remove these kinematic poles. Here we give the final result of that algorithm as obtained in the thesis of Metz³. His CFFs are denoted as B_1 , B_2 , B_3 , B_4 , and B_{19} . They are implicitly given in terms of the elementary tensor by the following equations:

$$\begin{split} M^{\mu\nu} &= B_{1}M^{\mu\nu}_{1} + B_{2}M^{\mu\nu}_{2} + B_{3}M^{\mu\nu}_{3} + B_{4}M^{\mu\nu}_{4} + B_{19}M^{\mu\nu}_{19}, \\ M^{\mu\nu}_{1} &= -q' \cdot q \, g^{\mu\nu} + q^{\mu}q'^{\nu}, \\ M^{\mu\nu}_{2} &= -(\bar{P} \cdot q)^{2} \, g^{\mu\nu} - q' \cdot q \, \bar{P}^{\mu}\bar{P}^{\nu} + \bar{P} \cdot q \, (\bar{P}^{\mu}q'^{\nu} + q^{\mu}\bar{P}^{\nu}), \\ M^{\mu\nu}_{3} &= q'^{2}q^{2} \, g^{\mu\nu} + q' \cdot q \, q'^{\mu}q^{\nu} - q^{2} \, q'^{\mu}q'^{\nu} - q'^{2} \, q^{\mu}q^{\nu}, \\ M^{\mu\nu}_{4} &= \bar{P} \cdot q \, (q'^{2} + q^{2}) \, g^{\mu\nu} - \bar{P} \cdot q \, (q'^{\mu}q'^{\nu} + q^{\mu}q^{\nu}) \\ &- q^{2} \, \bar{P}^{\mu}q'^{\nu} - q'^{2} \, q^{\mu}\bar{P}^{\nu} + q' \cdot q \, (\bar{P}^{\mu}q^{\nu} + q'^{\mu}\bar{P}^{\nu}), \\ M^{\mu\nu}_{19} &= (\bar{P} \cdot q)^{2} \, q'^{\mu}q^{\nu} + q'^{2}q^{2} \, \bar{P}^{\mu}\bar{P}^{\nu} - \bar{P} \cdot q \, q^{2} \, q'^{\mu}\bar{P}^{\nu} - \bar{P} \cdot q \, q'^{2} \, \bar{P}^{\mu}q^{\nu}. \end{split}$$

³A. Metz, *Virtuelle Comptonstreuung un die Polarisierbarkeiten de Nukleons* (in German), PhD thesis, Universität mainz, 1997.

Conclusion and Outlook

- BSA from exclusive π⁰ production off ⁴He is predicted to be absent from the symmetry of general hadronic current structure consideration, which may provide a benchmark for BSA analyses.
- The "DNA" of the most general hadronic tensor structure for scalar target is found and applicable to DVCS and DVMP off 4He.