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We review the interface between the current theoretical framework based on generalized
parton distributions (GPDs) and experimental measurements of deeply virtual Compton
scattering (DVCS) observables. We find that the present theoretical framework needs to
be extended to cover the current and future DVCS experiments. The current formula-
tion is based on the quantum chromodynamics factorization of the handbag diagrams,
relying on handbag dominance. Our examination reveals that the handbag diagrams by
themselves do not satisfy electromagnetic gauge invariance. Our numerical estimates of
the DVCS amplitudes in a solvable model indicate that the handbag contribution is not
sufficient to saturate the exact result. Assuming the extraction of GPDs is made, we
analyzed the crossover point in GPDs, important for the single spin asymmetry seen in
DVCS experiments. We found that the inclusion of the higher Fock states is essential to
explain the available data of single spin asymmetry.

Keywords: Deeply virtual Compton scattering; generalized parton distributions; gener-
alized hadronic tensor structure.

PACS Number(s): 13.60.−r, 11.30.Cp

Contents

1 Motivation and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Kinematic Issues of DVCS and GPDs . . . . . . . . . . . . . . . . . . . . 9

2.1 Lepton, hadron and photon kinematics . . . . . . . . . . . . . . . . . 10
2.2 Spinors and polarization vectors . . . . . . . . . . . . . . . . . . . . . 13

1330002-1



Number of Independent Amplitudes in VCS 

Nucleon Target 

€ 

3 × 2 × 2 × 2
2 = 12

12 independent tensor structures 
M.Perrottet, Lett. Nuovo Cim. 7, 915 (1973); 
R.Tarrach, Nuovo Cim. 28A, 409 (1975); 
D.Drechsel et al.,PRC57,941(1998); 
A.V.Belitsky, D.Mueller and A.Kirchner, NPB629, 323(2002); 
A.V.Belitsky and D.Mueller, PRD82, 074010(2010)  



e(k)

γ∗(q)

e′(k′)

h(P ) h′(P ′)

m(q′)

Jµ

ar
X

iv
:s

ub
m

it/
22

85
25

5 
 [n

uc
l-t

h]
  4

 Ju
n 

20
18

Single Spin Asymmetry in Electroproduction of Scalar or

Pseudoscalar Meson Production off the Scalar Target
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Abstract

We discuss the electroproduction of scalar (0++) or pseudoscalar (0−+) meson production off
the scalar target. The most general formulation of the differential cross section for the 0−+ or
0++ meson production process involves only one or two hadronic form factors, respectively, on
a scalar target. The Rosenbluth type separation of the differential cross section provides the
explicit relation between the hadronic form factors and the different parts of the differential
cross section in a completely model-independent manner. The absence of the single spin asym-
metry for the pseudoscalar meson production provides the benchmark for the experimental
data analysis. The measurement of the single spin asymmetry for the scalar meson production
may provide a clear criterion whether the leading-twist formulation of the generalized parton
distribution is in agreement with the most general formulation of the hadronic tensor.

Keywords: electromagnetic meson production, single spin asymmetry

While the virtual Compton scattering process is coherent with the Bethe-Heitler process,
the meson electroproduction process offers a unique experimental determination of the hadronic
structures for the study of QCD and strong interactions. In particular, coherent electroproduc-
tion of the scalar (0++) or pseudoscalar (0−+) meson production off a scalar target (e.g. the
4He nucleus) provides an excellent experimental terrain to discuss the fundamental nature of
the hadron physics without involving many complications from the spin degrees of freedom.
We discuss in this work two benchmark examples (0++ vs. 0−+) that provide a unique interface
between the theoretical framework and the experimental measurements of physical observables.

To establish the notation for the electroproduction of meson m off the scalar target h, we
write

e(k) + h(P ) → e′(k′) + h′(P ′) +m(q′), (1)

and the virtual photon momentum is defined to be q = k − k′, see Fig. 1. In the target rest
frame (TRF) presented in Ref. [1], the differential electroproduction cross section is given by

dσ ≡
d5σ

dydxdtdφk′dφq′
= κ⟨|M|2⟩, (2)
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HYPERON ELECTROPRODUCTION IN A CROSSING AND. . . 1621
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derived using the spin algebra trace theorems, current conservation (which eliminates the e, dependence), and various
kinematic relations. Defining the usual electromagnetic fine structure constant a, = 4 ——is7, and substituting the
explicit hadronic current [Eqs. (4) and (7)] yields the following:

6

'& ' = '8M M 2) (—2) ) - "'":['i"+'"] (12)

with

and

Tp = Tr [ (g+ MY)M'„(p+M„)PV„g""]

which measures the virtual photon's degree of transverse
and longitudinal polarization respectively as a function of
the laboratory electron scattering angle 4, the averaged
square amplitude can be re-expressed as

Tg = (—) Tr [ (/+MY)(M' e, )(/+M„)(PV e, )] .
Q

8 2
& l~/'I' & = (4,M, ) (, 1) ). Pe'g . (17)

The 6 and p matrices are defined by(y43

All traces have been performed using REDUCE, giving the
Tp and T2~ matrix elements listed in the Appendix.
A particularly useful form of Eq. (9) is derived when

the lepton kinematics are evaluated in the laboratory
frame, current conservation is applied to eliminate one
of the current components (scalar or longitudinal), and
the square amplitude evaluated. Choosing the following
coordinate system (see Fig. 2)

qZ—

( 2(1+~) 0
(p") = ' o 2(1-~)

26L 1+6 0

-[-,".(1+ )]'"l
0

which is the matrix formed by the independent (spin av-
eraged) hadronic current components, and

e~
X
le, x e, l

x=y x z
and defining

1

(1— ~ tan2 ~~)
'

q
L 2

Qo

(16)

where

and

&v='dn„

a E [(q p)2 —q2M2]'/2
2~2[(e .p)2 M2M2]1/2q2(~ 1)

(20)

which is the virtual photon polarization density matrix.
Finally, because all of the leptonic dependence in the
phase space can be factorized, the electroproduction dif-
ferential cross section can be related to the (virtual) pho-
toproduction cross section z~z™

Y=A, K, A(f405)

Hadronic Plane

do„
dAk

k2 M„M~
167r2[(q .p)2 q2M2]1/2@ @Y1+

3
x ) p'&e;, . (22)

FIG. 2. Laboratory frame kinematics for electroproduc-
tion.

C is interpreted to be the virtual photon flux seen in the
proton's rest frame. In the center-of-momentum frame,
the cross-section formula simplifies further:



5-Fold Differential Cross Section
for unpolarized target and without recoil polarization 

The following notation of the coincidence cross section will be used in our calculations. Further details can be found in D.
Drechsel and L. Tiator, J. Phys. G 18 (1992) 449-497. (scanned version)   (click here for a larger image)

On this page the complete 5-fold differential cross section and in addition the individual 2-fold cross sections dsT, dsL, dsLT, dsTT
and SLT' will be calculated using electron kinematics. For virtual photon kinematics see our alternative page. 

 Note: The longitudinal cross sections (dsL, dsLT and dsLT') differ from those in Drechsel and Tiator, J. Phys. G18 (1992) 449.
Here we do not use the longitudinal polarization epsilon_L!! 

Channel:  (pi0,p)  (pi0,n)  (pi+,n)  (pi-,p)

Choose kinematical variables for polarization definition 
 Enter values for electron beam energy Ei, scattered electron energy Ef,  electron scattering angle Qeland electron polarization hel:

Ei (MeV) Ef (MeV) Qel (deg)  hel

Choose kinematical variables 
 choose an independent (running) variable:  Q F 

 choose values for Q, F, step size and maximum value:
Q (deg) F (deg)  increment upper value click here

Change of model parameters: (  suppress output )

Born Rho Omega 
P33(1232) P11(1440) D13(1520) S11(1535) S31(1620)
S11(1650) D15(1675)  F15(1680) D33(1700) P13(1720)
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Change of S-wave low-energy corrections and type of pi-N coupling (click here for details)
E0+ S0+ PS-PV mixing range parameter Lambda 

Change values of resonance couplings (relative to default values):
P33(1232) S31(1620) D33(1700)
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Abstract

We discuss the electroproduction of scalar (0++) or pseudoscalar (0�+) meson production o↵
the scalar target. The most general formulation of the di↵erential cross section for the 0�+ or
0++ meson production process involves only one or two hadronic form factors, respectively, on
a scalar target. The Rosenbluth type separation of the di↵erential cross section provides the
explicit relation between the hadronic form factors and the di↵erent parts of the di↵erential
cross section in a completely model-independent manner. The absence of the single spin asym-
metry for the pseudoscalar meson production provides the benchmark for the experimental
data analysis. The measurement of the single spin asymmetry for the scalar meson production
may provide a clear criterion whether the leading-twist formulation of the generalized parton
distribution is in agreement with the most general formulation of the hadronic tensor.
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While the virtual Compton scattering process is coherent with the Bethe-Heitler process,
the meson electroproduction process o↵ers a unique experimental determination of the hadronic
structures for the study of QCD and strong interactions. In particular, coherent electroproduc-
tion of the scalar (0++) or pseudoscalar (0�+) meson production o↵ a scalar target (e.g. the
4He nucleus) provides an excellent experimental terrain to discuss the fundamental nature of
the hadron physics without involving many complications from the spin degrees of freedom.
We discuss in this work two benchmark examples (0++ vs. 0�+) that provide a unique interface
between the theoretical framework and the experimental measurements of physical observables.

To establish the notation for the electroproduction of meson m o↵ the scalar target h, we
write

e(k) + h(P ) ! e0(k0) + h

0(P 0) +m(q0), (1)

and the virtual photon momentum is defined to be q = k � k0, see Fig. 1. In the target rest
frame (TRF) presented in Ref. [1], the di↵erential electroproduction cross section is given by

d� ⌘ d5�

dydxdtd�
k

0d�
q

0
= h|M|2i, (2)
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Figure 1: Momentum assignments in meson electroproduction process with one-photon-exchange.
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target mass M and the virtual photon energy ⌫ in TRF. For the one-photon-exchange process,
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P +P 0 and � = P �P 0 = q0 � q. The most general hadronic tensor structures obtained by our
“DNA” method in virtual Compton scattering o↵ the scalar target are in complete agreement
with the previous results by Metz [3] and further comparisons with other methods [4] and
results of general hadronic tensors for the nucleon target [5] are underway. In the present work
of the meson electroproduction o↵ the scalar target, we note that the hadronic current for the
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Abstract

We discuss the electroproduction of scalar (0++) or pseudoscalar (0−+) meson production off
the scalar target. The most general formulation of the differential cross section for the 0−+ or
0++ meson production process involves only one or two hadronic form factors, respectively, on
a scalar target. The Rosenbluth type separation of the differential cross section provides the
explicit relation between the hadronic form factors and the different parts of the differential
cross section in a completely model-independent manner. The absence of the single spin asym-
metry for the pseudoscalar meson production provides the benchmark for the experimental
data analysis. The measurement of the single spin asymmetry for the scalar meson production
may provide a clear criterion whether the leading-twist formulation of the generalized parton
distribution is in agreement with the most general formulation of the hadronic tensor.

Keywords: electromagnetic meson production, single spin asymmetry

While the virtual Compton scattering process is coherent with the Bethe-Heitler process,
the meson electroproduction process offers a unique experimental determination of the hadronic
structures for the study of QCD and strong interactions. In particular, coherent electroproduc-
tion of the scalar (0++) or pseudoscalar (0−+) meson production off a scalar target (e.g. the
4He nucleus) provides an excellent experimental terrain to discuss the fundamental nature of
the hadron physics without involving many complications from the spin degrees of freedom.
We discuss in this work two benchmark examples (0++ vs. 0−+) that provide a unique interface
between the theoretical framework and the experimental measurements of physical observables.

To establish the notation for the electroproduction of meson m off the scalar target h, we
write

e(k) + h(P ) → e′(k′) + h′(P ′) +m(q′), (1)

and the virtual photon momentum is defined to be q = k − k′, see Fig. 1. In the target rest
frame (TRF) presented in Ref. [1], the differential electroproduction cross section is given by

dσ ≡
d5σ

dydxdtdφk′dφq′
= κ⟨|M|2⟩, (2)
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where H
i

= J
i

(i = x, y, z), ✏ = ⇤xx�⇤yy

⇤xx+⇤yy

= � 2M2
x

2
y

2+2Q2(y�1)
2M2

x

2
y

2+Q

2(y2�2y+2) and ✏
L

= Q

2

⌫

2 ✏ as given by

Eq. (16) of Ref. [1]. The last terms in Eqs. (4) and (6) for the case of a polarized electron
beam with � = ±1 depending on the electron spin are related with the single spin asymmetry
(SSA). Due to the absence of the interference with the Bethe-Heitler process, the SSA of the
meson electroproduction is a direct measure of any asymmetry within the hadronic tensor, i.e.,
H

µ⌫

6= H
⌫µ

.
In parallel to the Levi-Civita symbol ✏µ⌫↵�, we have recently introduced in Ref. [2] the back

bone of the Compton tensor defined by

dµ⌫↵� = gµ⌫g↵� � gµ↵g⌫�, (8)

which may be used to construct pieces of “DNA” for the virtual Compton scattering as well
as the meson electroproduction by contracting with the three basis four vectors such as q, P̄ =
P +P 0 and � = P �P 0 = q0 � q. The most general hadronic tensor structures obtained by our
“DNA” method in virtual Compton scattering o↵ the scalar target are in complete agreement
with the previous results by Metz [3] and further comparisons with other methods [4] and
results of general hadronic tensors for the nucleon target [5] are underway. In the present work
of the meson electroproduction o↵ the scalar target, we note that the hadronic current for the
pseudoscalar (0�+) meson production is governed by a single hadronic form factor defined by

Jµ

PS

= F
PS

✏µ⌫↵�q
⌫

P̄
↵

�
�

, (9)

while the hadronic current for the scalar (0++) meson production involves two hadronic form
factors given by

Jµ

S

= (S
q

q
↵

+ S
P̄

P̄
↵

)dµ⌫↵�q
�

�
⌫

, (10)

where the hadronic form factors F
PS

, S
q

and S
P̄

are dependent on the Lorentz invariant vari-
ables Q2, x and t = �2. Redefining the scalar hadronic form factors F1 and F2 for the later
convenience as

F1 = S
q

� S
P̄

,

F2 = S
P̄

, (11)

we get the hadronic current for the scalar (0++) meson production as

Jµ

S

= F1(q
2�µ � qµq ·�) + F2[(P̄ · q + q2)�µ � (P̄ µ + qµ)q ·�], (12)

which reduces to the usual electromagnetic current Jµ / (P + P 0)µ for the case of no meson
production, i.e. q0 = 0. The electromagnetic current conservation is assured of course both for
the electroproduction of pseudoscalar (0�+) and scalar (0++) mesons owing to q

µ

Jµ

PS

= 0 and
q
µ

Jµ

S

= 0, respectively.
For the pseudoscalar meson production case, we should note that the SSA term is zero

because, owing to the fact that only a single hadronic form factor occurs, the hadronic tensor

3
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Eq. (16) of Ref. [1]. The last terms in Eqs. (4) and (6) for the case of a polarized electron
beam with � = ±1 depending on the electron spin are related with the single spin asymmetry
(SSA). Due to the absence of the interference with the Bethe-Heitler process, the SSA of the
meson electroproduction is a direct measure of any asymmetry within the hadronic tensor, i.e.,
H
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.
In parallel to the Levi-Civita symbol ✏µ⌫↵�, we have recently introduced in Ref. [2] the back

bone of the Compton tensor defined by

dµ⌫↵� = gµ⌫g↵� � gµ↵g⌫�, (8)

which may be used to construct pieces of “DNA” for the virtual Compton scattering as well
as the meson electroproduction by contracting with the three basis four vectors such as q, P̄ =
P +P 0 and � = P �P 0 = q0 � q. The most general hadronic tensor structures obtained by our
“DNA” method in virtual Compton scattering o↵ the scalar target are in complete agreement
with the previous results by Metz [3] and further comparisons with other methods [4] and
results of general hadronic tensors for the nucleon target [5] are underway. In the present work
of the meson electroproduction o↵ the scalar target, we note that the hadronic current for the
pseudoscalar (0�+) meson production is governed by a single hadronic form factor defined by
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ables Q2, x and t = �2. Redefining the scalar hadronic form factors F1 and F2 for the later
convenience as

F1 = S
q

� S
P̄

,

F2 = S
P̄
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we get the hadronic current for the scalar (0++) meson production as
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which reduces to the usual electromagnetic current Jµ / (P + P 0)µ for the case of no meson
production, i.e. q0 = 0. The electromagnetic current conservation is assured of course both for
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2�µ � qµq ·�) + F2[(P̄ · q + q2)�µ � (P̄ µ + qµ)q ·�], (12)

which reduces to the usual electromagnetic current Jµ / (P + P 0)µ for the case of no meson
production, i.e. q0 = 0. The electromagnetic current conservation is assured of course both for
the electroproduction of pseudoscalar (0�+) and scalar (0++) mesons owing to q
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Eq. (16) of Ref. [1]. The last terms in Eqs. (4) and (6) for the case of a polarized electron
beam with � = ±1 depending on the electron spin are related with the single spin asymmetry
(SSA). Due to the absence of the interference with the Bethe-Heitler process, the SSA of the
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In parallel to the Levi-Civita symbol ✏µ⌫↵�, we have recently introduced in Ref. [2] the back

bone of the Compton tensor defined by

dµ⌫↵� = gµ⌫g↵� � gµ↵g⌫�, (8)

which may be used to construct pieces of “DNA” for the virtual Compton scattering as well
as the meson electroproduction by contracting with the three basis four vectors such as q, P̄ =
P +P 0 and � = P �P 0 = q0 � q. The most general hadronic tensor structures obtained by our
“DNA” method in virtual Compton scattering o↵ the scalar target are in complete agreement
with the previous results by Metz [3] and further comparisons with other methods [4] and
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of the meson electroproduction o↵ the scalar target, we note that the hadronic current for the
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2�µ � qµq ·�) + F2[(P̄ · q + q2)�µ � (P̄ µ + qµ)q ·�], (12)

which reduces to the usual electromagnetic current Jµ / (P + P 0)µ for the case of no meson
production, i.e. q0 = 0. The electromagnetic current conservation is assured of course both for
the electroproduction of pseudoscalar (0�+) and scalar (0++) mesons owing to q
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= 0 and
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For the pseudoscalar meson production case, we should note that the SSA term is zero
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and contracts with the antisymmetric leptonic tensor 2i�✏µ⌫↵�k
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for the SSA given by Eq. (4),
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The situation here is very di↵erent from the ⇡0 electroproduction o↵ a proton target in which
several hadronic form factors are involved. The status of the data and phenomenology in the
generalized parton distribution (GPD) approach of deeply virtual meson production (DVMP)
on the nucleon has been reviewed in Ref. [6]. The GPD formulation has been applied to the
deeply virtual Compton scattering (DVCS) process o↵ the pion [7], on spinless nuclear targets
in the impulse approximation [8] as well as o↵ nuclei up to spin-1 [9], and further refined o↵ a
spinless target [10]. The coherent vs. incoherent DVCS processes o↵ the spin 0 nuclei have also
been discussed with respect to the nuclear medium modification of hadrons in terms of the GPD
formulation [11]. In clear distinction from the recent SSA measurement of DVCS o↵ 4He [12],
however, the meson electroproduction process discussed here doesn’t have any interference with
the Bethe-Heitler process. As far as a single hadronic form factor governs the hadronic current,
the SSA of the meson electroproduction should vanish in general regardless of the complexity
in the hadronic form factor. We thus note that the SSA of the coherent pseudoscalar (e.g.
⇡0) meson electroproduction o↵ the scalar target (e.g. the 4He nucleus) vanishes due to the
symmetry given by Eq. (14): i.e.,

d�PS
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d�PS
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�=�1

= 0. (15)

Moreover, in the TRF kinematics [1] defining the azimuthal angle � between the leptonic
plane and the hadronic plane taking the virtual photon direction as ẑ-direction, the hadronic
current for the pseudoscalar (0�+) meson production given by Eq. (9) yields H

z

= 0 in Eq. (7).
Regardless of the electron beam polarization �, the di↵erential cross section for the pseudoscalar
meson (e.g. ⇡0) production is thus given by
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+Q4 + 2Q2tx

⇤
, (17)

with the meson mass m and the lab angle ✓ for the meson production in the hadronic plane.
This provides the Rosenbluth type separation of the di↵erential cross section for the electropro-
duction of the pseudoscalar meson, from which the pseudoscalar meson form factor F

PS

(Q2, t, x)
may be extracted directly from the experimental data of the di↵erential cross section if available.
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Thus, the SSA of the coherent scalar meson electroproduction o↵ the scalar target is given by
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which is proportional to F1F
⇤
2 � F2F

⇤
1 . As F1F

⇤
2 � F2F

⇤
1 6= 0 in general, the SSA of the scalar

meson (e.g. f0(980)) electroproduction is not expected to vanish. For the kinematic region
where at least one of F1 and F2 develops the imaginary part, the SSA shouldn’t vanish. The
nonvanishing SSA measured in DVCS o↵ 4He [12] indicates that the imaginary part of the
hadronic amplitude is accessible in the current experimental regime. Therefore, it will be very
interesting to compare the experimental data on the SSAs between the ⇡0 electroproduction
and the f0(980) electroproduction o↵ the 4He nucleus. We note that Eqs. (18) - (20) provide
the Rosenbluth type separation of the di↵erential cross section for the electroproduction of the
scalar meson, from which the scalar meson form factors F1(Q

2, t, x) and F2(Q
2, t, x) can be

directly extracted from the experimental data. In principle, the experimental data can reveal
both the real part and the imaginary part of F1(Q

2, t, x) and F2(Q
2, t, x) through Eqs. (18)

- (20) and the consistency with the SSA given by Eq. (21) can be checked for the kinematic
region where any of these form factors is found to develop the imaginary part.

In contrast to our general formulation with the two independent hadronic form factors for
the electroproduction of the scalar (0++) meson, the leading twist GPD formulation yields a
single GPD and thus provides the zero SSA, d�S

SSA

= 0. The situation here is very di↵erent from
the DVMP on the nucleon which involves more than one leading twist GPDs [6]. As discussed
in our review [13], the original leading twist GPD formulations [14, 15, 16] are limited to the
kinematic region |t| << Q2. The leading twist formulation in Ref. [15] adopts a specific relation
among the particle momenta given by q = q0 � ⇣P or P 0 = (1 � ⇣)P , where ⇣ is the skewness
in the GPD formulation [14] given by ⇣ = �+/P+. If we apply this leading twist relation
q = q0� ⇣P to our general formulation given by Eq. (12), the scalar meson current gets reduced
to

Jµ

S

= ⇣(F1 + F2)(q
2P µ � qµq · P ), (22)

where the two independent form factors merge together to yield e↵ectively only one hadronic
form factor that corresponds to a single leading twist GPD. Thus, the reduced formulation
with a single hadronic form factor corresponding to a single leading twist GPD results in the
symmetric hadronic tensor H

µ⌫

= H
⌫µ

as in the case of the pseudoscalar meson electropro-
duction and yields the vanishing SSA as it contracts with the antisymmetric leptonic tensor
2i�✏µ⌫↵�k

↵

k0
�

. The coherent experimental measurement to judge whether the SSA of the scalar
meson (e.g. f0(980)) electroproduction o↵ the scalar target (e.g. the 4He nucleus) vanishes or
not would provide a unique opportunity to distinguish between the leading twist GPD formula-
tion and our general formulation presented in this work. In this respect, not only pseudoscalar
but also scalar meson electroproduction measurements o↵ a scalar target are highly desired to
pin down the viable roadmap on the analyses of precision experimental data, e.g. from the
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meson (e.g. f0(980)) electroproduction is not expected to vanish. For the kinematic region
where at least one of F1 and F2 develops the imaginary part, the SSA shouldn’t vanish. The
nonvanishing SSA measured in DVCS o↵ 4He [12] indicates that the imaginary part of the
hadronic amplitude is accessible in the current experimental regime. Therefore, it will be very
interesting to compare the experimental data on the SSAs between the ⇡0 electroproduction
and the f0(980) electroproduction o↵ the 4He nucleus. We note that Eqs. (18) - (20) provide
the Rosenbluth type separation of the di↵erential cross section for the electroproduction of the
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the electroproduction of the scalar (0++) meson, the leading twist GPD formulation yields a
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the DVMP on the nucleon which involves more than one leading twist GPDs [6]. As discussed
in our review [13], the original leading twist GPD formulations [14, 15, 16] are limited to the
kinematic region |t| << Q2. The leading twist formulation in Ref. [15] adopts a specific relation
among the particle momenta given by q = q0 � ⇣P or P 0 = (1 � ⇣)P , where ⇣ is the skewness
in the GPD formulation [14] given by ⇣ = �+/P+. If we apply this leading twist relation
q = q0� ⇣P to our general formulation given by Eq. (12), the scalar meson current gets reduced
to
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2P µ � qµq · P ), (22)

where the two independent form factors merge together to yield e↵ectively only one hadronic
form factor that corresponds to a single leading twist GPD. Thus, the reduced formulation
with a single hadronic form factor corresponding to a single leading twist GPD results in the
symmetric hadronic tensor H
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as in the case of the pseudoscalar meson electropro-
duction and yields the vanishing SSA as it contracts with the antisymmetric leptonic tensor
2i�✏µ⌫↵�k
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. The coherent experimental measurement to judge whether the SSA of the scalar
meson (e.g. f0(980)) electroproduction o↵ the scalar target (e.g. the 4He nucleus) vanishes or
not would provide a unique opportunity to distinguish between the leading twist GPD formula-
tion and our general formulation presented in this work. In this respect, not only pseudoscalar
but also scalar meson electroproduction measurements o↵ a scalar target are highly desired to
pin down the viable roadmap on the analyses of precision experimental data, e.g. from the
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Eq. (16) of Ref. [1]. The last terms in Eqs. (4) and (6) for the case of a polarized electron
beam with � = ±1 depending on the electron spin are related with the single spin asymmetry
(SSA). Due to the absence of the interference with the Bethe-Heitler process, the SSA of the
meson electroproduction is a direct measure of any asymmetry within the hadronic tensor, i.e.,
H

µ⌫

6= H
⌫µ

.
In parallel to the Levi-Civita symbol ✏µ⌫↵�, we have recently introduced in Ref. [2] the back

bone of the Compton tensor defined by

dµ⌫↵� = gµ⌫g↵� � gµ↵g⌫�, (8)

which may be used to construct pieces of “DNA” for the virtual Compton scattering as well
as the meson electroproduction by contracting with the three basis four vectors such as q, P̄ =
P +P 0 and � = P �P 0 = q0 � q. The most general hadronic tensor structures obtained by our
“DNA” method in virtual Compton scattering o↵ the scalar target are in complete agreement
with the previous results by Metz [3] and further comparisons with other methods [4] and
results of general hadronic tensors for the nucleon target [5] are underway. In the present work
of the meson electroproduction o↵ the scalar target, we note that the hadronic current for the
pseudoscalar (0�+) meson production is governed by a single hadronic form factor defined by

Jµ

PS

= F
PS

✏µ⌫↵�q
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P̄
↵
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, (9)

while the hadronic current for the scalar (0++) meson production involves two hadronic form
factors given by
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where the hadronic form factors F
PS

, S
q

and S
P̄

are dependent on the Lorentz invariant vari-
ables Q2, x and t = �2. Redefining the scalar hadronic form factors F1 and F2 for the later
convenience as

F1 = S
q
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,

F2 = S
P̄

, (11)

we get the hadronic current for the scalar (0++) meson production as

Jµ

S

= F1(q
2�µ � qµq ·�) + F2[(P̄ · q + q2)�µ � (P̄ µ + qµ)q ·�], (12)

which reduces to the usual electromagnetic current Jµ / (P + P 0)µ for the case of no meson
production, i.e. q0 = 0. The electromagnetic current conservation is assured of course both for
the electroproduction of pseudoscalar (0�+) and scalar (0++) mesons owing to q

µ

Jµ

PS

= 0 and
q
µ

Jµ

S

= 0, respectively.
For the pseudoscalar meson production case, we should note that the SSA term is zero

because, owing to the fact that only a single hadronic form factor occurs, the hadronic tensor
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Eq. (16) of Ref. [1]. The last terms in Eqs. (4) and (6) for the case of a polarized electron
beam with � = ±1 depending on the electron spin are related with the single spin asymmetry
(SSA). Due to the absence of the interference with the Bethe-Heitler process, the SSA of the
meson electroproduction is a direct measure of any asymmetry within the hadronic tensor, i.e.,
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.
In parallel to the Levi-Civita symbol ✏µ⌫↵�, we have recently introduced in Ref. [2] the back

bone of the Compton tensor defined by
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which may be used to construct pieces of “DNA” for the virtual Compton scattering as well
as the meson electroproduction by contracting with the three basis four vectors such as q, P̄ =
P +P 0 and � = P �P 0 = q0 � q. The most general hadronic tensor structures obtained by our
“DNA” method in virtual Compton scattering o↵ the scalar target are in complete agreement
with the previous results by Metz [3] and further comparisons with other methods [4] and
results of general hadronic tensors for the nucleon target [5] are underway. In the present work
of the meson electroproduction o↵ the scalar target, we note that the hadronic current for the
pseudoscalar (0�+) meson production is governed by a single hadronic form factor defined by
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which reduces to the usual electromagnetic current Jµ / (P + P 0)µ for the case of no meson
production, i.e. q0 = 0. The electromagnetic current conservation is assured of course both for
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The situation here is very di↵erent from the ⇡0 electroproduction o↵ a proton target in which
several hadronic form factors are involved. The status of the data and phenomenology in the
generalized parton distribution (GPD) approach of deeply virtual meson production (DVMP)
on the nucleon has been reviewed in Ref. [6]. The GPD formulation has been applied to the
deeply virtual Compton scattering (DVCS) process o↵ the pion [7], on spinless nuclear targets
in the impulse approximation [8] as well as o↵ nuclei up to spin-1 [9], and further refined o↵ a
spinless target [10]. The coherent vs. incoherent DVCS processes o↵ the spin 0 nuclei have also
been discussed with respect to the nuclear medium modification of hadrons in terms of the GPD
formulation [11]. In clear distinction from the recent SSA measurement of DVCS o↵ 4He [12],
however, the meson electroproduction process discussed here doesn’t have any interference with
the Bethe-Heitler process. As far as a single hadronic form factor governs the hadronic current,
the SSA of the meson electroproduction should vanish in general regardless of the complexity
in the hadronic form factor. We thus note that the SSA of the coherent pseudoscalar (e.g.
⇡0) meson electroproduction o↵ the scalar target (e.g. the 4He nucleus) vanishes due to the
symmetry given by Eq. (14): i.e.,
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Moreover, in the TRF kinematics [1] defining the azimuthal angle � between the leptonic
plane and the hadronic plane taking the virtual photon direction as ẑ-direction, the hadronic
current for the pseudoscalar (0�+) meson production given by Eq. (9) yields H
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= 0 in Eq. (7).
Regardless of the electron beam polarization �, the di↵erential cross section for the pseudoscalar
meson (e.g. ⇡0) production is thus given by
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with the meson mass m and the lab angle ✓ for the meson production in the hadronic plane.
This provides the Rosenbluth type separation of the di↵erential cross section for the electropro-
duction of the pseudoscalar meson, from which the pseudoscalar meson form factor F

PS

(Q2, t, x)
may be extracted directly from the experimental data of the di↵erential cross section if available.
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on the nucleon has been reviewed in Ref. [6]. The GPD formulation has been applied to the
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in the impulse approximation [8] as well as o↵ nuclei up to spin-1 [9], and further refined o↵ a
spinless target [10]. The coherent vs. incoherent DVCS processes o↵ the spin 0 nuclei have also
been discussed with respect to the nuclear medium modification of hadrons in terms of the GPD
formulation [11]. In clear distinction from the recent SSA measurement of DVCS o↵ 4He [12],
however, the meson electroproduction process discussed here doesn’t have any interference with
the Bethe-Heitler process. As far as a single hadronic form factor governs the hadronic current,
the SSA of the meson electroproduction should vanish in general regardless of the complexity
in the hadronic form factor. We thus note that the SSA of the coherent pseudoscalar (e.g.
⇡0) meson electroproduction o↵ the scalar target (e.g. the 4He nucleus) vanishes due to the
symmetry given by Eq. (14): i.e.,
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Moreover, in the TRF kinematics [1] defining the azimuthal angle � between the leptonic
plane and the hadronic plane taking the virtual photon direction as ẑ-direction, the hadronic
current for the pseudoscalar (0�+) meson production given by Eq. (9) yields H
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= 0 in Eq. (7).
Regardless of the electron beam polarization �, the di↵erential cross section for the pseudoscalar
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with the meson mass m and the lab angle ✓ for the meson production in the hadronic plane.
This provides the Rosenbluth type separation of the di↵erential cross section for the electropro-
duction of the pseudoscalar meson, from which the pseudoscalar meson form factor F

PS

(Q2, t, x)
may be extracted directly from the experimental data of the di↵erential cross section if available.
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The 6 and p matrices are defined by(y43

All traces have been performed using REDUCE, giving the
Tp and T2~ matrix elements listed in the Appendix.
A particularly useful form of Eq. (9) is derived when

the lepton kinematics are evaluated in the laboratory
frame, current conservation is applied to eliminate one
of the current components (scalar or longitudinal), and
the square amplitude evaluated. Choosing the following
coordinate system (see Fig. 2)
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which is the virtual photon polarization density matrix.
Finally, because all of the leptonic dependence in the
phase space can be factorized, the electroproduction dif-
ferential cross section can be related to the (virtual) pho-
toproduction cross section z~z™
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FIG. 2. Laboratory frame kinematics for electroproduc-
tion.

C is interpreted to be the virtual photon flux seen in the
proton's rest frame. In the center-of-momentum frame,
the cross-section formula simplifies further:
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2 ✏ as given by

Eq. (16) of Ref. [1]. The last terms in Eqs. (4) and (6) for the case of a polarized electron
beam with � = ±1 depending on the electron spin are related with the single spin asymmetry
(SSA). Due to the absence of the interference with the Bethe-Heitler process, the SSA of the
meson electroproduction is a direct measure of any asymmetry within the hadronic tensor, i.e.,
H

µ⌫

6= H
⌫µ

.
In parallel to the Levi-Civita symbol ✏µ⌫↵�, we have recently introduced in Ref. [2] the back

bone of the Compton tensor defined by

dµ⌫↵� = gµ⌫g↵� � gµ↵g⌫�, (8)

which may be used to construct pieces of “DNA” for the virtual Compton scattering as well
as the meson electroproduction by contracting with the three basis four vectors such as q, P̄ =
P +P 0 and � = P �P 0 = q0 � q. The most general hadronic tensor structures obtained by our
“DNA” method in virtual Compton scattering o↵ the scalar target are in complete agreement
with the previous results by Metz [3] and further comparisons with other methods [4] and
results of general hadronic tensors for the nucleon target [5] are underway. In the present work
of the meson electroproduction o↵ the scalar target, we note that the hadronic current for the
pseudoscalar (0�+) meson production is governed by a single hadronic form factor defined by
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while the hadronic current for the scalar (0++) meson production involves two hadronic form
factors given by
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where the hadronic form factors F
PS

, S
q

and S
P̄

are dependent on the Lorentz invariant vari-
ables Q2, x and t = �2. Redefining the scalar hadronic form factors F1 and F2 for the later
convenience as

F1 = S
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� S
P̄

,
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we get the hadronic current for the scalar (0++) meson production as
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2�µ � qµq ·�) + F2[(P̄ · q + q2)�µ � (P̄ µ + qµ)q ·�], (12)

which reduces to the usual electromagnetic current Jµ / (P + P 0)µ for the case of no meson
production, i.e. q0 = 0. The electromagnetic current conservation is assured of course both for
the electroproduction of pseudoscalar (0�+) and scalar (0++) mesons owing to q

µ
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PS

= 0 and
q
µ

Jµ

S

= 0, respectively.
For the pseudoscalar meson production case, we should note that the SSA term is zero

because, owing to the fact that only a single hadronic form factor occurs, the hadronic tensor

3

For the scalar meson production case, however, the SSA term doesn’t vanish as there are
two independent hadronic form factors F1(Q

2, t, x) and F2(Q
2, t, x) given by Eq. (12), which

are complex in general. The di↵erential cross section for the scalar meson production is given
by
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2 ± F2F

⇤
1 . The matrix elements in Eq. (19) are obtained as follows:
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For the scalar meson production case, however, the SSA term doesn’t vanish as there are
two independent hadronic form factors F1(Q
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are complex in general. The di↵erential cross section for the scalar meson production is given
by

d�S

�

= d�S

T

(1 + ✏ cos(2�)) + d�S

L

✏
L

+ d�S

LT

cos�
p
✏
L

(1 + ✏) + � d�S

BSA, (18)

where d�S

T

= d�S

TT

and

2

664

d�S

T

d�S

L

d�S

LT

d�S

BSA

3

775 =

2

664

T1 T2 T3 0
L1 L2 L3 0
I1 I2 I3 0
0 0 0 S

A

3

775

2

664

|F1|2
|F2|2
F+
12

F�
12

3

775 (19)
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⇤
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⇤
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where I
c

= 2M2x2 (t�m2)+Q2x (2M2x+ t)+Q4 and cos ✓ = I

c

Q

p
(4M2

x

2+Q

2)(x2(t2�4m2
M

2)+Q

4+2Q2
tx)

.

Thus, the SSA of the coherent scalar meson electroproduction o↵ the scalar target is given by
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which is proportional to F1F
⇤
2 � F2F

⇤
1 . As F1F

⇤
2 � F2F

⇤
1 6= 0 in general, the SSA of the scalar

meson (e.g. f0(980)) electroproduction is not expected to vanish. For the kinematic region
where at least one of F1 and F2 develops the imaginary part, the SSA shouldn’t vanish. The
nonvanishing SSA measured in DVCS o↵ 4He [12] indicates that the imaginary part of the
hadronic amplitude is accessible in the current experimental regime. Therefore, it will be very
interesting to compare the experimental data on the SSAs between the ⇡0 electroproduction
and the f0(980) electroproduction o↵ the 4He nucleus. We note that Eqs. (18) - (20) provide
the Rosenbluth type separation of the di↵erential cross section for the electroproduction of the
scalar meson, from which the scalar meson form factors F1(Q

2, t, x) and F2(Q
2, t, x) can be

directly extracted from the experimental data. In principle, the experimental data can reveal
both the real part and the imaginary part of F1(Q

2, t, x) and F2(Q
2, t, x) through Eqs. (18)

- (20) and the consistency with the SSA given by Eq. (21) can be checked for the kinematic
region where any of these form factors is found to develop the imaginary part.

In contrast to our general formulation with the two independent hadronic form factors for
the electroproduction of the scalar (0++) meson, the leading twist GPD formulation yields a
single GPD and thus provides the zero SSA, d�S

SSA

= 0. The situation here is very di↵erent from
the DVMP on the nucleon which involves more than one leading twist GPDs [6]. As discussed
in our review [13], the original leading twist GPD formulations [14, 15, 16] are limited to the
kinematic region |t| << Q2. The leading twist formulation in Ref. [15] adopts a specific relation
among the particle momenta given by q = q0 � ⇣P or P 0 = (1 � ⇣)P , where ⇣ is the skewness
in the GPD formulation [14] given by ⇣ = �+/P+. If we apply this leading twist relation
q = q0� ⇣P to our general formulation given by Eq. (12), the scalar meson current gets reduced
to

Jµ

S

= ⇣(F1 + F2)(q
2P µ � qµq · P ), (22)

where the two independent form factors merge together to yield e↵ectively only one hadronic
form factor that corresponds to a single leading twist GPD. Thus, the reduced formulation
with a single hadronic form factor corresponding to a single leading twist GPD results in the
symmetric hadronic tensor H

µ⌫

= H
⌫µ

as in the case of the pseudoscalar meson electropro-
duction and yields the vanishing SSA as it contracts with the antisymmetric leptonic tensor
2i�✏µ⌫↵�k

↵

k0
�

. The coherent experimental measurement to judge whether the SSA of the scalar
meson (e.g. f0(980)) electroproduction o↵ the scalar target (e.g. the 4He nucleus) vanishes or
not would provide a unique opportunity to distinguish between the leading twist GPD formula-
tion and our general formulation presented in this work. In this respect, not only pseudoscalar
but also scalar meson electroproduction measurements o↵ a scalar target are highly desired to
pin down the viable roadmap on the analyses of precision experimental data, e.g. from the
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For the scalar meson production case, however, the SSA term doesn’t vanish as there are
two independent hadronic form factors F1(Q

2, t, x) and F2(Q
2, t, x) given by Eq. (12), which

are complex in general. The di↵erential cross section for the scalar meson production is given
by
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with F±
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1 . The matrix elements in Eq. (19) are obtained as follows:
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⇤
1 . As F1F

⇤
2 � F2F

⇤
1 6= 0 in general, the SSA of the scalar

meson (e.g. f0(980)) electroproduction is not expected to vanish. For the kinematic region
where at least one of F1 and F2 develops the imaginary part, the SSA shouldn’t vanish. The
nonvanishing SSA measured in DVCS o↵ 4He [12] indicates that the imaginary part of the
hadronic amplitude is accessible in the current experimental regime. Therefore, it will be very
interesting to compare the experimental data on the SSAs between the ⇡0 electroproduction
and the f0(980) electroproduction o↵ the 4He nucleus. We note that Eqs. (18) - (20) provide
the Rosenbluth type separation of the di↵erential cross section for the electroproduction of the
scalar meson, from which the scalar meson form factors F1(Q

2, t, x) and F2(Q
2, t, x) can be

directly extracted from the experimental data. In principle, the experimental data can reveal
both the real part and the imaginary part of F1(Q

2, t, x) and F2(Q
2, t, x) through Eqs. (18)

- (20) and the consistency with the SSA given by Eq. (21) can be checked for the kinematic
region where any of these form factors is found to develop the imaginary part.

In contrast to our general formulation with the two independent hadronic form factors for
the electroproduction of the scalar (0++) meson, the leading twist GPD formulation yields a
single GPD and thus provides the zero SSA, d�S

SSA

= 0. The situation here is very di↵erent from
the DVMP on the nucleon which involves more than one leading twist GPDs [6]. As discussed
in our review [13], the original leading twist GPD formulations [14, 15, 16] are limited to the
kinematic region |t| << Q2. The leading twist formulation in Ref. [15] adopts a specific relation
among the particle momenta given by q = q0 � ⇣P or P 0 = (1 � ⇣)P , where ⇣ is the skewness
in the GPD formulation [14] given by ⇣ = �+/P+. If we apply this leading twist relation
q = q0� ⇣P to our general formulation given by Eq. (12), the scalar meson current gets reduced
to

Jµ

S

= ⇣(F1 + F2)(q
2P µ � qµq · P ), (22)

where the two independent form factors merge together to yield e↵ectively only one hadronic
form factor that corresponds to a single leading twist GPD. Thus, the reduced formulation
with a single hadronic form factor corresponding to a single leading twist GPD results in the
symmetric hadronic tensor H

µ⌫

= H
⌫µ

as in the case of the pseudoscalar meson electropro-
duction and yields the vanishing SSA as it contracts with the antisymmetric leptonic tensor
2i�✏µ⌫↵�k

↵

k0
�

. The coherent experimental measurement to judge whether the SSA of the scalar
meson (e.g. f0(980)) electroproduction o↵ the scalar target (e.g. the 4He nucleus) vanishes or
not would provide a unique opportunity to distinguish between the leading twist GPD formula-
tion and our general formulation presented in this work. In this respect, not only pseudoscalar
but also scalar meson electroproduction measurements o↵ a scalar target are highly desired to
pin down the viable roadmap on the analyses of precision experimental data, e.g. from the
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Thus, BSA measurement of scalar meson 
 production off 4He would be important. 



Generalized Compton Form Factors : 
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Si T̃
(i)µ⌫
DNA

= S
1

Gµ⌫(q0q)+S
2

Gµ�(q0q0)G�
⌫(qq)+S

3

Gµ�(q0P)G�
⌫(Pq)+S

4

[Gµ�(q0P)G�
⌫(qq)+Gµ�(q0q0)G�

⌫(Pq)]+S
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Gµ�(q0q0)P�P�0G�⌫(qq)
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+ S
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+ S
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Gµ�(q0P)G�
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+ S
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[Gµ�(q0P)G�
⌫(qq) + Gµ�(q0q0)G�

⌫(Pq)]

+ S
5

Gµ�(q0q0)P�P�0G�⌫(qq). (3)

Si , i = 1, 2, ..., 5
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where we use the numbering in Eq. (39).
We have found three different results for the form of the Compton tensor, even in the simplest case, namely

tree-level. This demonstrates that the choice of the basis elements used in Tµν , apart from the fact that there
are only three independent four vectors to choose from, matters in identifying the CFFs. In general, one will
find linear relations between the tensors used in one conventions to the ones used in another one. In general,
those relations will not be free of kinematical poles, because they are obtained by solving sets of coupled linear
equation, which by Cramer’s rule are found as ratios of determinants.

4.1.3 A Novel Projection Method

The projection methods we discussed in the previous sub-section share the occurrence of single and double
poles from the beginning, which must be removed to obtain a formulation of the Compton tensor free of
kinematical singularities. Here we propose a method that is free of poles ab inito so that no regularisation is
necessary. It will serve as the back bone of the Compton tensor. To this back bone, pairs of momenta are fixed
by contraction, like the base pairs in DNA. So we define

dµναβ = gµνgαβ − gµβgνα. (42)

We note that dµναβ is symmetric under the simultaneous interchange µ ↔ ν, α ↔ β and changes sign by
the interchanges µ ↔ α, and ν ↔ β. Using this back bone we construct pieces of “DNA” by contracting it
with the three basis four vectors. With an obvious notation we write them as follows:

Gµν(q ′q) = q ′
αd

µναβqβ = q ′ · q gµν − qµq ′ν,

Gµν(qq) = qαdµναβqβ = q2 gµν − qµqν,

Gµν(q ′q ′) = q ′
αd

µναβq ′
β = q ′2 gµν − q ′µq ′ν,

Gµν(Pq) = Pαdµναβqβ = P · q gµν − qµP
ν
,

Gµν(q ′P) = q ′
αd

µναβ Pβ = P · q ′ gµν − P
µ
q ′ν . (43)

The first tensor is identical with q ′ ·q times Tarrach’s projector, the second and the third ones aremultiples of the
projectors used by Perrottet. The last two are novel. Including P in the set of building blocks of projectors, more
freedom in the construction of the transverse tensor is created. These five tensors have vanishing contractions
with q ′

µ and qν and are free of kinematical singularities ab initio. The latter property obviates the necessity of
the Tarrach construction to remove the single and double poles.

Given these building blocks the transverse tensor T̃µν
DN A can be written as follows

T̃µν
DNA :=

5∑

i=1

Si T̃ (i) µν
DNA = S1 Gµν(q ′q)

+S2 Gµλ(q ′q ′)Gλ
ν(qq)

+S3 Gµλ(q ′P)Gλ
ν(Pq)

+S4 [Gµλ(q ′P)Gλ
ν(qq)+ Gµλ(q ′q ′)Gλ

ν(Pq)]
+S5 Gµλ(q ′q ′)PλPλ′Gλν(qq). (44)

By direct computation one may check that the DNA representation is simply related to Metz’s as given in
Eq. (39):

T̃ (1)
DNA = −M1, T̃ (2)

DNA = M3, T̃ (3)
DNA = −M2, T̃ (4)

DNA = M4, T̃ (5)
DNA = M19. (45)

The tensor M19 does not fit immediately in the Bardeen-Tung construction, but was introduced in Ref. [16]
as T19 ≡ M19/q ′ · q together with two other ones that can only occur for spin-1/2 targets, in order to create
more freedom to construct the Compton tensor. Metz used this tensor to replace another one in his original
transverse basis. We shall not discuss this matter in more detail, but just note that in the DNA construction this
tensor occurs quite naturally.

A final remark is in order here. In the literature sometimes one sees representations of the Compton tensor
that are not manifestly transverse. In those cases use has been made of the equations of motion for the wave
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T µν =Gqq '
µν S1 +Gq

µλGq 'λ
ν S2 +GqP

µλGPq 'λ
νS3

+ (GqP
µλGq 'λ

ν +Gq
µλGPq 'λ

ν )S4 +Gq
µλPλPλ 'Gq '

λ 'νS5
Gqq '

µν = gµνq ⋅q '− q 'µ qν

Gq
µν = gµνq2 − qµqν

Gq '
µν = gµνq '2− q 'µ q 'ν

GqP
µν = gµνq ⋅P −Pµqν

GPq '
µν = gµνq '⋅P − q 'µ Pν

For q’2= 0, only S1, S2 and S4  contribute.   

Most General Hadronic Tensor for Scalar Target  



S1 = −B1, S2 = B3, S3 = −B2, S4 = B4, S5 = B19



Conclusion and Outlook 
• BSA from exclusive π0 production off 

4He is predicted to be absent from the 
symmetry of general hadronic current 
structure consideration, which may 
provide a benchmark for BSA 
analyses. 

•  The “DNA” of the most general 
hadronic tensor structure for scalar 
target is found and applicable to 
DVCS and DVMP off 4He .  


