PION AND KAON STRUCTURE AT THE PARTONIC LEVEL

Parada Hutauruk $^{1}\mbox{, Ian Cloet}\ ^{2}$ and Anthony Thomas 3

¹Asia Pacific Center for Theoretical Physics (APCTP)

²Nuclear Theory Group, Argonne

³CSSM, University of Adelaide

The Nature of Hadron Mass and Quark-Gluon Confinement from JLab Experiments in the 12-GeV Era

apctp

PARADA HUTAURUK (APCTP)

PION AND KAON STRUCTURE

Ронамд, 7/1/2018 1 / 46

1 PION AND KAON

- Pion and Kaon Properties in BSE-NJL model
- Form Factor
- Parton Distribution Function

2 MEDIUM EFFECTS ON FF OF THE PION AND KAON• Medium effect on FF

3 Conclusion and Outlook

DQC

PION AND KAON

- Pion and Kaon Properties in BSE-NJL model
- Form Factor
- Parton Distribution Function

2 MEDIUM EFFECTS ON FF OF THE PION AND KAON • Medium effect on FF

3 Conclusion and Outlook

→ Ξ →

San

PION AND KAON

- Pion and Kaon Properties in BSE-NJL model
- Form Factor
- Parton Distribution Function

2 MEDIUM EFFECTS ON FF OF THE PION AND KAON• Medium effect on FF

3 Conclusion and Outlook

3

San

イロト イボト イヨト イヨト

- Pion has a special place in QCD
- QCD, as underlying theory of strong interaction, is unable to directly predict structure of hadrons.
- To understand the partonic dynamics in a hadron internal structure, PDF and FF are of fundamental importance and provide complementary information
- Pion structure is simpler than the nucleon, but not so simple. In fact, we do not really understand the structure of the pion. Also the pion is interesting due to the pion is both a dressed quark-antiquark bound state and the Goldstone mode associated with DCSB in Quantum Chromodynamics (QCD).
- From experimental side, next experimental data for the pion and kaon form factors will be coming soon from JLAB (expected 2018), J-PARC as well as COMPASS

Sac

イロト イボト イラト イラト 二日

The three flavor NJL Lagrangian – containing only four fermion interactions

$$\mathcal{L}_{NJL} = \bar{\psi}[i\partial - \hat{m}_q]\psi + G_{\pi} \sum_{a=0}^{8} \left[(\bar{\psi}\lambda_a\psi)^2 + (\bar{\psi}\lambda_a\gamma_5\psi)^2 \right] - G_{\rho} \sum_{a=0}^{8} \left[(\bar{\psi}\lambda_a\gamma^{\mu}\psi)^2 + (\bar{\psi}\lambda_a\gamma^{\mu}\gamma_5\psi)^2 \right]$$
(1)

- $\psi = (u, d, s)$ denotes the quark field with the flavor components • G_{π} and G_{ρ} are four-fermion coupling constants
- $\lambda_1, \cdots, \lambda_8$ are Gell-Mann matrices in flavor space and $\lambda_0 \equiv \sqrt{\frac{2}{3}}\mathbbm{1}$
- $\hat{m}_{q} = \text{diag}(m_{u}, m_{d}, m_{s})$ denotes the current quark matrix

PION AND KAON IN THE BSE-NJL MODEL

• In the NJL model, the gluon exchange is replaced by four-fermion contact interaction

- NJL model has a lack of confinement (it can be simply seen quark propagator has a pole)
- Therefore we regularize using the proper time regularization

$$S(p) = \int_{0}^{\infty} d\tau (\not p + M_q) e^{-\tau (p^2 - M_q^2)},$$

$$\rightarrow e^{(p^2 - M_q^2)/\Lambda_{UV}^2} - e^{-(p^2 - M^2)/\Lambda_{IR}^2} / [\not p + M]$$
(2)

where $\Lambda_{IR} \sim \Lambda_{QCD} \sim 0.24 \text{ GeV}$ and Λ_{UV} is determined.

PARADA HUTAURUK (APCTP)

PION AND KAON IN THE BSE-N.IL MODEL

NJL Gap Equation

• Chiral quark condensates is defined by $\langle \bar{\psi}\psi \rangle = -M_q \frac{3}{2\pi^2} \int d\tau \frac{e^{-\tau M_q^2}}{\tau^2}$ • Mass is generated through interaction vacuum $\rightarrow \langle \psi \psi \rangle_{\rm R} \neq 0$ 8 / 46

PION AND KAON STRUCTURE

NJL GAP EQUATION

Results for NJL gap equation

References: PTPH et al, PRC **94**, 035201 (2016)

C. D.Roberts, PPNP 61, 50-65 (2008)

Image: 1 million of the second sec

PARADA HUTAURUK (APCTP)

PION AND KAON STRUCTURE

Pohang, 7/1/2018

500

BETHE SALPETER EQUATION FOR THE PION AND KAON

• In the NJL model, T-matrix is given by

$$T(q) = \mathcal{K} + \int \frac{d^4k}{(2\pi)^4} \mathcal{K}S(q+k)T(q)S(k)$$

• The solution to the BSE in the pion and kaon

$$\mathcal{T}_{\alpha}(q)_{ab,cd} = \left[\gamma_{5}\lambda_{\alpha}\right]_{ab} t_{\alpha}(q) \left[\gamma_{t}\lambda_{\alpha}^{\dagger}\right] \tag{4}$$

• The reduced *t*-matrix in this channel take a form

$$t_{\alpha}(q) = \frac{-2iG_{\pi}}{1+2G_{\pi}\Pi_{\pi}(q^2)}$$

$$t_{\beta}^{\mu\nu}(q) = \frac{-2iG_{\rho}}{1+2G_{\rho}\Pi_{\beta}(q^2)} \left(g^{\mu\nu}+2G_{\rho}\Pi_{\beta}(q^2)\frac{q^{\mu}q^{\nu}}{q^2}\right) \quad (5)$$

PARADA HUTAURUK (APCTP)

Pohang, 7/1/2018

• The bubble diagrams appearing read

$$\Pi_{\pi}(q^{2}) = 6i \int \frac{d^{4}k}{(2\pi)^{4}} Tr_{D} \left[\gamma_{5}S_{I}(k)\gamma_{5}S_{I}(k+q)\right],$$

$$\Pi_{K}(q^{2}) = 6i \int \frac{d^{4}k}{(2\pi)^{4}} Tr_{D} \left[\gamma_{5}S_{I}(k)\gamma_{5}S_{s}(k+q)\right],$$

$$\Pi_{\nu}^{aa}(q^{2}) = 6i \int \frac{d^{4}k}{(2\pi)^{4}} Tr_{D} \left[\gamma^{\mu}S_{a}(k)\gamma^{\nu}S_{a}(k+q)\right]$$
(6)

• The kaon and pion masses is given by the pole of the t-matrix

$$1 + 2G_{\pi}\Pi_{\pi}(k^2 = m_{\pi}^2) = 0$$

$$1 + 2G_{\pi}\Pi_{K}(k^2 = m_{K}^2) = 0$$
(7)

PARADA HUTAURUK (APCTP)

San

The meson masses are defined by the pole in the corresponding t-matrix and therefore the kaon and pion masses are given by

$$m_{\pi}^{2} = \left[\frac{m}{M_{I}}\right] \frac{2}{G_{\pi} \mathcal{I}_{II}(m_{\pi}^{2})}$$
$$m_{K}^{2} = \left[\frac{m_{s}}{M_{s}} + \frac{m}{M_{I}}\right] \frac{1}{G_{\pi} \mathcal{I}_{Is}(m_{K}^{2})} + (M_{s} - M_{I})^{2}$$
(8)

where $\mathcal{I}_{\textit{II}}$ and $\mathcal{I}_{\textit{Is}}$ in the proper time regularization scheme are defined by

$$\mathcal{I}_{ab}(k^2) = \frac{3}{\pi^2} \int_0^1 dx \int \frac{d\tau}{\tau} e^{-\tau(x(x-1)k^2 + xM_b^2 + (1-x)M_a^2)}$$
(9)

PARADA HUTAURUK (APCTP)

THE MESON-QUARK-QUARK COUPLING CONSTANTS AND PION AND KAON DECAY CONSTANTS

The residue at a pole in the $\bar{q}q$ t-matrix defines the effective meson-quark -quark coupling constants:

$$Z_{\pi}(q^{2}) = -\frac{\partial \Pi_{\pi}(q^{2})}{\partial q^{2}} |_{q^{2}=m_{\pi}^{2}}$$

$$Z_{\kappa}(q^{2}) = -\frac{\partial \Pi_{\kappa}(q^{2})}{\partial q^{2}} |_{q^{2}=m_{\kappa}^{2}}$$

$$Z_{\rho}(q^{2}) = -\frac{\partial \Pi_{\rho}(q^{2})}{\partial q^{2}} |_{q^{2}=m_{\rho}^{2}}$$
(10)

13 / 46

Pion and kaon decay constant in the proper time regularization is given by

$$f_{\pi} = \frac{N_C \sqrt{Z_{\pi}} M}{4\pi^2} \int_0^1 dx \int \frac{d\tau}{\tau} e^{-\tau (k^2 (x^2 - x) + M^2)}$$

$$f_K = \frac{N_C \sqrt{Z_K}}{4\pi^2} [(1 - x)M_2 + xM_1] \int_0^1 dx \int \frac{d\tau}{\tau} e^{-\tau (k^2 (x^2 - x) + xM_2^2 - (x - 1)M_1^2)}$$
PARADA HUTAURUK (APCTP) PION AND KAON STRUCTURE POHANG, 7/1/2018 13/46

FORM FACTOR IN THE CONFINING NJL MODEL

PARADA HUTAURUK (APCTP)

PION AND KAON STRUCTURE

Pohang, 7/1/2018

4 0 1 4 67

I ∃ ▶

E nac

Diagrammatic representation of the electromagnetic current for the pion and kaon

Feynman diagram for quark [left] and for the anti quark [right]

FORM FACTOR IN NJL MODEL

The matrix element of the electromagnetic current for a pseudoscalar mesons reads

$$J^{\mu}_{\alpha}(\boldsymbol{p}',\boldsymbol{p}) = \left(\boldsymbol{p}'^{\mu} + \boldsymbol{p}^{\mu}\right) F_{\alpha}(Q^2), \quad \alpha = \pi, K \tag{12}$$

where p and p' denote the initial and final four momentum of the state, $q^2 = (p' - P)^2 = -Q^2$ and $F_{\alpha}(Q^2)$ is the pion or kaon form factor. The pseudoscalar meson form factor in the NJL model are given by the sum of the two Feynman diagrams, which are respectively given by

$$j_{1,\alpha}^{\mu}(p',p) = iZ_{\alpha} \int \frac{d^{4}k}{(2\pi)^{4}} \operatorname{Tr} \left[\gamma_{5}\lambda_{\alpha}^{\dagger}S(p'+k)\hat{Q}\gamma^{\mu}S(p+k)\gamma_{5}\lambda_{\alpha}S(k) \right]$$

$$j_{2,\alpha}^{\mu}(p',p) = iZ_{\alpha} \int \frac{d^{4}k}{(2\pi)^{4}} \operatorname{Tr} \left[\gamma_{5}\lambda_{\alpha}S(k-p)\hat{Q}\gamma^{\mu}S(k-p')\gamma_{5}\lambda_{\alpha}^{\dagger}S(k) \right]$$
(13)

PARADA HUTAURUK (APCTP)

PION AND KAON STRUCTURE

Pohang, 7/1/2018

FORM FACTOR IN NJL MODEL

We will focus on the quark sector and total form factors for π^+ , K^+ and K^0 , we find

$$F_{\pi^{+}}^{(bare)}(Q^{2}) = (e_{u} - e_{d})f_{\pi}^{ll}(Q^{2})$$

$$F_{K^{+}}^{(bare)}(Q^{2}) = e_{u}f_{K}^{ls}(Q^{2}) - e_{s}f_{K}^{sl}(Q^{2})$$

$$F_{K^{0}}^{(bare)}(Q^{2}) = e_{d}f_{K}^{ls}(Q^{2}) - e_{s}f_{K}^{sl}(Q^{2})$$
(14)

The results are denoted as "bare" because the quark-photon vertex is elementary result, that is, $\Lambda^{\mu(bare)}_{\gamma q} = \hat{Q}\gamma^{\mu}$. The quark-sector form factors for a hadron α are defined by

$$F_{\alpha}(Q^2) = e_{\mu}F^{\mu}_{\alpha}(Q^2) + edF^{d}_{\alpha}(Q^2) + e_{s}F^{s}_{\alpha}(Q^2) + \cdots$$
(15)

therefore the "*bare*" pseudoscalar meson quark-sector form factors are easily read from the total form factor equation above

PARADA HUTAURUK (APCTP)

FRAFR F DQQ

The first superscript on the body form factors, $f_{\alpha}^{ab}(Q^2)$, indicates the struck quark and the second the spectator, where

$$f_{\alpha}^{ab}(Q^{2}) = \frac{3Z_{\alpha}}{4\pi^{2}} \int_{0}^{1} dx \int \frac{d\tau}{\tau} e^{-\tau (M_{a}^{2} + x(1-x)Q^{2})} + \frac{3Z_{\alpha}}{4\pi^{2}} \int_{0}^{1} dx \int_{0}^{1-x} dz \int d\tau \times e^{-\tau ((x+z)(x+z-1)m_{\alpha}^{2} + (x+z)M_{a}^{2} + (1-x-z)M_{b}^{2} + xzQ^{2})} \times \left[(x+z)m_{\alpha}^{2} + (M_{a} - M_{b})^{2} (X+Z) + 2M_{b}(M_{a} - M_{b}) \right]$$
(16)

Importantly, these expression satisfy charge conservation.

PARADA HUTAURUK (APCTP)

PION AND KAON STRUCTURE

In general the quark-photon vertex is not elementary $(\hat{Q}\gamma^{\mu})$ but instead dressed, with this dressing given by the inhomogeneous BSE. The general solution for the dressed quark-photon vertex for a quark of flavor q has the form

$$\Lambda^{\mu}_{\gamma Q}(p',p) = e_q \gamma^{\mu} + \left(\gamma^{\mu} - \frac{q^{\mu} q}{q^2}\right) F_Q(Q^2) \to \gamma^{\mu} F_{1Q}(Q^2) \quad (17)$$

where the final result is used because the $\frac{q^{\mu} \not a}{q^2}$ term cannot contribute to a hadron electromagnetic current because of current conservation

PARADA HUTAURUK (APCTP)

PION AND KAON STRUCTURE

For the dressed u, d and s quarks we find

$$F_{1U/D}(Q^2) = e_{u/d} \frac{1}{1 + 2G_{\rho} \Pi_{\nu}^{\prime\prime}(Q^2)}$$

$$F_{1S}(Q^2) = e_s \frac{1}{1 + 2G_{\rho} \Pi_{\nu}^{ss}(Q^2)}$$

where the explicit form of the bubble diagram is

$$\Pi_{\nu}^{qq}(Q^2) = \frac{3Q^2}{\pi^2} \int_0^1 dx \int \frac{d\tau}{\tau} x(1-x) e^{-\tau \left[M_q^2 + x(1-x)Q^2\right]}$$
(19)

PARADA HUTAURUK (APCTP)

Pohang, 7/1/2018

→ 프 → - 프

Image: A matched black

(18)

5900

FORM FACTOR IN NJL MODEL

The dressed quark form factors obtained as solutions to the inhomogeneous BSE:

In the limit $Q^2 \to \infty$ these form factors reduce to the elementary quark charges, as expected because of asymptotic freedom in QCD. For small Q^2 these results are similar to expectations from vector meson dominance, where the dressed u and d quarks are dressed by ρ and ω mesons and the dressed s quark by ϕ meson.

PARADA HUTAURUK (APCTP)

PION AND KAON STRUCTURE

Pohang, 7/1/2018

The complete results for the pseudoscalar meson form factor – with a dressed quark-photon vertex – read

$$F_{\pi^{+}}(Q^{2}) = \left[F_{1U}(Q^{2})F_{1D}(Q^{2})\right]f_{\pi}^{ll}(Q^{2})$$

$$F_{K^{+}}(Q^{2}) = F_{1U}(Q^{2})f_{K}^{ls}(Q^{2}) - F_{1S}(Q^{2})f_{K}^{sl}(Q^{2})$$

$$F_{K^{0}}(Q^{2}) = F_{1D}(Q^{2})f_{K}^{ls}(Q^{2}) - F_{1S}(Q^{2})f_{K}^{sl}(Q^{2})$$
(20)

3

DQC

22 / 46

イロト イボト イヨト イヨト

Results for the pion form factor and $Q^2 F_{\pi}(Q^2)$ – including effects from the dressed quark-photon vertex

 \rightarrow We find that excellent agreement with existing data and the modest difference with the DSE result for $Q^2 \leq 6 \text{ GeV}^2$

 \rightarrow Our result for $Q^2 F_{\pi}(Q^2)$ is very similar to the empirical monopole result but begins to plateau for $Q^2 \ge 6 \text{ GeV}^2$, where $Q^2 F_{\pi}(Q^2) \sim 0.49$. This maximum is almost identical to that obtaining using the DSEs, which is not surprising because in both approaches it is driven by DCSB.

PARADA HUTAURUK (APCTP)

PION AND KAON STRUCTURE

Results for the K^+ form factor and the quark sector components and the $Q^2 F_{K^+}(Q^2)$ form factor and the quark sector components – each including effects from the dressed quark-photon vertex

 \rightarrow For the quark sector form factors, We observe very large difference in their Q^2 evolution with *s*-quark component much harder than *u*-quark form factor.

 \rightarrow The *s* quark component begins to dominate the K^+ form factor for $Q^2 \geq 1.6 \,{
m GeV}^2$

PARADA HUTAURUK (APCTP)

PION AND KAON STRUCTURE

Pohang, 7/1/2018

Results for the K^+ form factor and the quark sector components comparing to the existed data – each including effects from the dressed quark-photon vertex

 \rightarrow All existing data for the kaon form factor lies in domain $0 < Q^2 < 0.1 \text{ GeV}^2$. Therefore, we eagerly wait any new data at Q^2 similar to the pion.

PARADA HUTAURUK (APCTP)

Pohang, 7/1/2018

Results for the $Q^2 F_{K^+}(Q^2)$ form factor and the quark sector components – each including effects from the dressed quark-photon vertex

→ The ratio $F_K^+(Q^2)/F_{\pi^+}(Q^2)$ is always greater than unity and becomes almost constant for $Q^2 \ge 3$ GeV².

 \rightarrow For very large Q^2 this ratio plateaus to value 1.10 in agreement with the QCD result in conformal limit, $F_K^+(Q^2)/F_{\pi^+}(Q^2) \rightarrow f_K^2/f_{\pi}^2$.

 \rightarrow The large constant ratio $F_{K}^{+}(Q^{2})/F_{\pi^{+}}(Q^{2})$ conceals dramatic flavor breaking effects in the quark sector form factors that grow with increasing Q^{2} .

→ At $Q^2 = 10$ GeV², we find $F_{K^+}^u / F_{\pi^+}^u \equiv 0.36$ and $F_{K^+}^s / F_{\pi^+}^d \equiv 2.74$. Therefore we find very large flavor breaking at large Q^2 .

PARADA HUTAURUK (APCTP)

VALENCE QUARK DISTRIBUTION IN THE CONFINING NJL MODEL

PARADA HUTAURUK (APCTP)

PION AND KAON STRUCTURE

Pohang, 7/1/2018

Image: 1 million of the second sec

∃ ∃ ►

Э

San

VALENCE QUARK DISTRIBUTION

The valence quark distribution functions of the pion or kaon are given by the two Feynman diagrams

The operator insertion $\gamma^+ \delta (k^+ - xp^+) \hat{P}_q$, where \hat{P}_q is the projection operator for quarks of flavor q:

$$\hat{P}_{u/d} = \frac{1}{2} \left(\frac{2}{3} \mathbb{1} \pm \lambda_3 + \frac{1}{\sqrt{3}} \lambda_8 \right)$$
$$\hat{P}_s = \frac{1}{3} \mathbb{1} - \frac{1}{\sqrt{3}} \lambda_8$$
(21)

VALENCE QUARK DISTRIBUTION

The valence quark and anti-quark distributions in the pion or kaon are given by

$$q_{\alpha}(x) = iZ_{\alpha} \int \frac{d^{4}k}{(2\pi)^{4}} \delta\left(k^{+} - xp^{+}\right)$$

$$\times Tr\left[\gamma_{5}\lambda_{\alpha}^{\dagger}S(k)\gamma^{+}\hat{P}_{q}S(k)\gamma_{5}\lambda_{\alpha}S(k-p)\right]$$

$$\bar{q}_{\alpha}(x) = -iZ_{\alpha} \int \frac{d^{4}k}{(2\pi)^{4}} \delta\left(k^{+} + xp^{+}\right)$$

$$\times Tr\left[\gamma_{5}\lambda_{\alpha}S(k)\gamma^{+}\hat{P}_{q}S(k)\gamma_{5}\lambda_{\alpha}^{\dagger}S(k+p)\right] \qquad (22)$$

To evaluate these expression we first take the moments

$$\mathcal{A}_n = \int_0^1 dx x^{n-1} q(x) \tag{23}$$

where $n = 1, 2, 3, \cdots$ is an integer.

VALENCE QUARK DISTRIBUTION

Using the Ward-like identity $S(k)\gamma^+S(k) = \frac{-\partial S(k)}{\partial k_+}$ and introducing the Feynman parameterization, the quark and anti-quark distributions can then be straightforwardly determined. For the valence quark and anti-quark distributions of the K^+ we find:

$$q_{K}(x) = \frac{3Z_{K}}{4\pi^{2}} \int d\tau e^{-\tau \left[x(x-1)m_{K}^{2} + xM_{s}^{2} + (1-x)M_{l}^{2}\right]} \\ \times \left[\frac{1}{\tau}x(1-x)\left[m_{K}^{2} - (m_{l} - M_{s})^{2}\right]\right] \\ \bar{q}_{K}(x) = \frac{3Z_{K}}{4\pi^{2}} \int d\tau e^{-\tau \left[x(x-1)m_{K}^{2} + xM_{l}^{2} + (1-x)M_{s}^{2}\right]} \\ \times \left[\frac{1}{\tau}x(1-x)\left[m_{K}^{2} - (m_{l} - M_{s})^{2}\right]\right]$$
(24)

Results for the π^+ are obtained by $M_s \to M_I$ and $Z_K \to Z_\pi$, giving the result $u_\pi(x) = \bar{d}_\pi(x)$

PARADA HUTAURUK (APCTP)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The quark distributions satisfy the baryon number and momentum sum rules, which for the K^+ read:

$$\int_0^1 dx \left[u_{K^+}(x) - \bar{u}_{K^+}(x) \right] = \int_0^1 \left[\bar{s}_{K^+}(x) - s_{k^+}(x) \right] = 1 \quad (25)$$

for the number sum rules and at the model scale the momentum sum rules is given by

$$\int_0^1 dx x \left[u_{K^+}(x) + \bar{u}_{K^+}(x) + \bar{s}_{K^+}(x) + s_{k^+}(x) \right] = 1$$
 (26)

Analogous results holds for the remaining kaons and the pions.

San

32 / 46

イロト イボト イラト イラト 二戸

KAON VQDIS RESULTS

Results for the valence quark distributions of the π^+ and K^+ , evolved from the model scale using NLO DGLAP equations.

→ At the model scale, the momentum fraction carried by the *u* and *s* quarks in the K^+ , < xu >= 0.42 and < xs >= 0.58. → The flavor breaking effects of $[< xs > - < xu >]/[< xs > + < xu >] \sim 16\%$ which is similar to that seen in the masses, $[M_s - M_u]/[M_s + M_u] \sim 21\%$.

PARADA HUTAURUK (APCTP)

Results for the valence quark distributions of the π^+ and K^+ , evolved from the model scale using NLO DGLAP equations.

 \rightarrow *SU*(3) flavor breaking at the model scale $u_K(x)$ peaks at $x_u = 0.237$ and \bar{s}_K peaks at the $x_s = 1 - x_u = 0.763$. This implies flavor breaking effects of around $[x_s - x_u]/[x_s + x_u] \sim 53\%$. For the pion the peak at x = 0.5 when $m_u = m_d$.

KAON VQDIS RESULTS

The ratio of the *u* quark distribution in the K^+ to the *u* quark distribution in the π^+ , after NLO evolution to $Q^2 = 16 \text{ GeV}^2$

 \rightarrow The ratio of $u_K/u_{\pi} \rightarrow 0.434 \sim M_u/M_s$ as $x \rightarrow 1$, which is in a good agreement with existing data.

 \rightarrow The x-dependence differs from much of data in the valence region. This may lie with the absence of the momentum dependence in the NJL Bethe Salpeter vertices, or with data itself.

PARADA HUTAURUK (APCTP)

PION AND KAON STRUCTURE

Pohang, 7/1/2018

* ヨト 三 ヨ

KAON VQDIS RESULTS

 \rightarrow The ratio $u_K(x)/s_K(x)$ approaches 0.37 as $x \rightarrow 1$. It is evident that the flavor breaking effects have a sizeable x dependence, being maximal at large x and becoming negligible at small x where the perturbative effects from DGLAP evolution dominate.

→ The Drell-Yan-West (DYW) relation, $F(Q^2) \sim \frac{1}{Q^{2n}} < -->$ $q(x) \sim (1-x)^{2n-1}$. For the pion, $F_{\pi} \sim 1/Q^2$ and the DYW relation implies $q_{\pi}(x) \sim (1-x)$. Kaon PDF do behave as the pion. → As refelection of the expectations of may be expected by DTW like relations, $u_K/s_K < 1$ as $x \to 1$ and $|F_K^u/F_K^s| < 1$ for $Q^2 >> \Lambda_{QGD}$.

PARADA HUTAURUK (APCTP)

MEDIUM EFFECTS ON PION AND KAON FF

In collaboration with:

Kazuo Tsushima

Laboratorio de Fisica Teorica e Computacional-LFTC, Universidade Cruzeiro do Sul

• Yongseok Oh

Asia Pacific Center for Theoretical Physics (APCTP) Nuclear Physics Group, Kyungpook National University The in-medium properties of the kaon is calculated in the NJL model combined with the QMC model (see Kazuo's presentation on July 4 Session 6)

The in-medium dressed quark propagator takes a form

$$S_q^*(k) = \frac{\not k + V^0 + M_q^*}{(k + V^0)^2 - M_q^* + i\epsilon},$$
(27)

where the medium modification enter as the shift of the guark momentum through $k^{\mu} \rightarrow k^{\mu} + V^{\mu}$ where vector potential, $V^{\mu} = (\delta^{\mu}_{0} V^{0}, \vec{0})$ [Miller, PRL 103, 082301 (2009)]. The asterik denotes the in-medium quantity.

MEDIUM EFFECTS ON PION FF RESULTS

Results for the in-medium space-like electromagnetic form factors of the pion (in preparation (2018))

FIGURE: Results for the π form factors (red solid line) for various nuclear densities. The form factors are calculated using the inputs from the QMC model for each $\rho_B/\rho_0 = [0.00, 0.25, 0.50, 0.75, 1.00]$ which are represented by respectively [solid, dashed, dotted, dashed-dotted, long dashed] lines.

PARADA HUTAURUK (APCTP)

- 4 ∃ ⊳

Results for the charge radii of the charged pion in the nuclear medium and its quark sector charge radii

TABLE: Results for the charge radii of the charged pion in the nuclear medium and its quark sector charge radii. This is calculated using the inputs from the QMC model. All charge radii in the medium along with the vacuum are in units of fm. The empirical result in the vacuum.

ρ_B/ρ_0	r _π	r _u	r _d	r ^{expt}
0.00	0.629	0.629	0.629	0.672 ± 0.008
0.25	0.667	0.667	0.667	
0.50	0.705	0.704	0.705	
0.75	0.740	0.739	0.740	
1.00	0.771	0.771	0.771	

MEDIUM EFFECTS ON KAON FF RESULTS

Results for the in-medium space-like electromagnetic form factors of the pion (in preparation (2018))

FIGURE: Results for the in-medium $Q^2 F_{K^+}^*(Q^2)$ (solid line) together with the charge-weighted quark-sector contributions. The in-medium form factors are calculated using the inputs from the calculated NJL model combined with the QMC model for $\rho_B/\rho_0 = [0.00, 0.25, 0.50, 0.75, 1.00]$. The difference densities are represented by thinner to thicker lines.

PARADA HUTAURUK (APCTP)

PION AND KAON STRUCTURE

Pohang, 7/1/2018

41 / 46

イロト イポト イヨト イヨト 二日

Results for the charge radii of the charged kaon in the nuclear medium and its quark sector charge radii

TABLE: Results for the in-medium charge radii of the charged kaon and its in-medium quark sector charge radii. This is calculated in the NJL model using the inputs from the standard QMC model. All in-medium charge radii along with the vacuum are in units of fm. The empirical result in the vacuum.

ρ_B/ρ_0	r _K	r _u	rs	r ^{expt}
0.00	0.59	0.65	0.44	0.56 ± 0.03
0.25	0.62	0.69	0.44	
0.50	0.65	0.73	0.44	
0.75	0.68	0.77	0.44	
1.00	0.71	0.81	0.44	

- We have studied a kaon and pion structure via form factor and VQDIS in vacuum
- Our prediction in form factor and VDIS are good agreement with experimental data
- We have extend our study on medium FF and PDF of pion and kaon in order to understand the feature of FF and PDF of the kaon and pion in the medium. The result looks very interesting and promising
- It would be interesting to extend calculation to PDF of the pion, kaon, and ρ meson in medium
- It would be interesting to extend the calculation to GPD, TMD of the pion and kaon.

THANK YOU VERY MUCH FOR ATTENTION !!

PARADA HUTAURUK (APCTP)

EXTRA SLIDES

PARADA HUTAURUK (APCTP)

PION AND KAON STRUCTURE

Pohang, 7/1/2018

<ロト <回ト < 回ト < 回ト < 回ト -

≣ ৩৭.় 44 / 46

KAON VQDIS RESULTS

Moments PDF of the s quark in the Kaon

PARADA HUTAURUK (APCTP)

PION AND KAON STRUCTURE

Pohang, 7/1/2018

590

KAON VQDIS RESULTS

Moment PDF of the u quark in the kaon

