Baryon form-factors -- the view from the time-like side --

Stephen Lars Olsen UCAS

Hadron Mass and Quark-Gluon Confinement, APCTP, Pohang, KOREA, May 21-25,2018

for B=p: JLAB & e⁺e⁻ are complementary

Crossing symmetry:

 $\langle N(p')|j^{\mu}|N(p)\rangle \rightarrow \langle \overline{N}(p')N(p)|j^{\mu}|0\rangle$

$$J^{\mu} = \langle N(p')|j^{\mu}|N(p)\rangle = e\overline{u}(p') \left[\gamma^{\mu}F_{1}(q^{2}) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M}F_{2}(q^{2})\right]u(p)$$

Fermi & Dirac form factors

 $e^+e^- \rightarrow B\overline{B}$

-- formulae & definitions --

Born cross section:

Sachs form factors

$$G_E = F_1 + \frac{q^2}{4M^2}F_2$$

 $G_M = F_1 + F_2$
 $G_{M}(0) = \mu_N$

time-like "Sachs" form-factors

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta C}{4m_{B\overline{B}}^2} \left[\left(1 + \cos^2 \theta \right) \left| G_M(m_{B\overline{B}}) \right|^2 + \frac{1}{\tau} \sin^2 \theta \left| G_E(m_{B\overline{B}}) \right|^2 \right]$$

$$\tau = \frac{m_{B\overline{B}}^2}{4M_B^2} \quad \beta = \sqrt{1 - \frac{1}{\tau}}$$

$$e^+e^- \leftrightarrow N\overline{N}, \Lambda \overline{\Lambda}, ...$$

"effective" form factor

integrated cross section: $\sigma_{B\overline{B}}(m_{B\overline{B}}) = \frac{4\pi\alpha^{2}\beta C}{3m^{2}} \left[\left| G_{M}(m_{B\overline{B}}) \right|^{2} + \frac{1}{2\tau} \left| G_{E}(m_{B\overline{B}}) \right|^{2} \right] = \frac{4\pi\alpha^{2}\beta C}{3m^{2}} \left| G_{eff}(m_{B\overline{B}}) \right|^{2} \left(1 + 1/2\tau \right)$ "effective" form factor

effective form factor: $|G_{eff}|^2 = \frac{|G_M|^2 + \frac{1}{2\tau}|G_E|^2}{1 + \frac{1}{2\tau}} \sigma_{B\overline{B}}(m_{B\overline{B}}) \Rightarrow |G_{eff}| = \left(\frac{3m_{B\overline{B}}^2}{\pi\alpha^2\beta C(1 + \frac{1}{2\tau})}\right)^2 \sqrt{\sigma_{B\overline{B}}}$

 $G_{M}(4M_{R}^{2}) = G_{F}(4M_{R}^{2}) \implies G_{off}(4M_{R}^{2}) = G_{M}(4M_{R}^{2})$ analyticity:

$e^+e^- \rightarrow p\bar{p}$ at threshold

$e^+e^- \rightarrow p\bar{p}$ at threshold

in point-like approx:

$$\sigma_{0} = \frac{\pi^{2} \alpha^{3}}{2M_{p}^{2}} \left| G_{eff} (2M_{p}) \right|^{2} \qquad \sigma \qquad p \overline{p}$$

$$\approx 0.85 \text{nb} \left| G_{eff} (2M_{p}) \right|^{2} \rightarrow \qquad m_{p \overline{p}} - 2M_{p}$$

BaBar: produce boosted pp pairs via isr

large angle initial state radiation (isr):

$e^+e^- \rightarrow p\bar{p}$ data near threshold via isr

large-angle initial state radiation

CMD3: Detect \bar{p} annihilations in beam pipe

CMD3: $e^+e^- \rightarrow p\bar{p}$ at $E_{cm}=2m_p$ threshold

-- fast cross section jump at threshold: σ_{th} <1 MeV --

"excellent" FSI fit, pre-CMD3 data

fails to get the rapid jump in cross section seen by CMD3

J. Haidenbauer, X.-W. Kang and U.-G. Meißner, Nucl. Phys. A 929, 102 (2014).

look at other channels

$3(\pi^+\pi^-)$ & K⁺K⁻ $\pi^+\pi^-$ important for q²<4m_p²

remarks

What about other baryons?

$e^+e^- \rightarrow n\bar{n}$ (or $\Lambda\bar{\Lambda}$) at threshold

Integrated cross section:

$$\sigma_{p\bar{p}} = \frac{4\pi\alpha^2\beta C}{3m^2} \left| G_{eff}(m_{p\bar{p}}) \right|^2 \left(1 + 1/2\tau \right)$$

no Rydberg states (Bohr-levels) for $n\overline{n}$ ($\Lambda\overline{\Lambda}$): *C*=1 in point-like approx:

SND: $e^+e^- \rightarrow n\bar{n}$ at threshold

indications of $\sigma(e^+e^- \rightarrow n\overline{n})$ jump at $E_{cm}=2m_n$

expecting new SND, CMD3, & BESIII data soon

$$e^+e^- \rightarrow \Lambda \bar{\Lambda}$$

Electrically neutral
$$\rightarrow$$
 no Ryberg states
- no Coulomb enhancement $\sigma \propto \beta$
no "jump" expected
 $m_{\Lambda T}$ -2M_A

Isospin singlet, π -exchange not allowed - Λ - $\overline{\Lambda}$ molecule is unlikely

BESIII: $\sigma(e^+e^- \rightarrow \Lambda \overline{\Lambda}) @ E_{cm} = 2m_{\Lambda}$

BESIII sees events like this

BESIII $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ measurements

	\sqrt{s}	$\mathcal{L}_{ ext{int}}$	$N_{\rm obs}$	$\epsilon(1+\delta)$	$\sigma^{ m B}$	G
	(GeV)	(pb^{-1})		(%)	(pb)	$(\times 10^{-2})$
	2.2324_{1}	2.63	43 ± 7	12.9	$312 \pm 51^{+72}_{-45}$	_ Λ→π⁻p & π⁰n modes
	2.2324_{2}	2.63	22 ± 6	8.25	$288 \pm 96^{+64}_{-36}$	are consistent
	2.2324_{c}				$305 \pm 45^{+66}_{-36}$	$61.9 \pm 4.6 \substack{+18.1 \\ -9.0}$
conventional analyses	2.400	3.42	45 ± 7	25.3	$128\pm19\pm18$	$12.7 \pm 0.9 \pm 0.9$
at higher energies	2.800	3.75	8 ± 3	36.1	$14.8 \pm 5.2 \pm 1.9$	$4.10 \pm 0.72 \pm 0.26$
at higher energies	3.080	30.73	13 ± 4	24.5	$4.2\pm1.2\pm0.5$	$2.29 \pm 0.33 \pm 0.14$

$\sigma(e^+e^- \rightarrow \Lambda \bar{\Lambda})$ at $E_{cm} \approx 2m_{\Lambda}$ threshold

$$\sigma_{\Lambda\bar{\Lambda}}(m) = \frac{4\pi\alpha^2\beta}{3m^2} |G_{eff}(m)|^2 (1+1/2\tau)$$

 $|G_{eff}(2m_{\Lambda})| \rightarrow 1 ??$

 $|G_{eff}(2m_{\Lambda})| \rightarrow 1 ??$ $2m_{\Lambda}$ β≈0.03 BaBar BESIII 0.6 0.5 Haidenbauer & Meissner PLB 761,456 (2017): "The only possibility could be a very narrow resonance sitting more or less directly at the threshold ... " 0.3 0.2 0.1 0.0^E 2.2 2.3 2.5 2.4

 \sqrt{s} (GeV)

$e^+e^- \rightarrow \Lambda \overline{\Lambda}$ very different from $p\overline{p} \rightarrow \Lambda \overline{\Lambda}$

Hint of $\sigma(e^+e^- \rightarrow K^+K^- K^+K^-)$ peak @ $2m_{\Lambda}$

-- seen by both BaBar and BESIII --

$$e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^-$$

 $Λ_c$ is an Isospin singlet, no π-exchange $Λ_c$ - $Λ_c$ moleculelike states expected

$\sigma(e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^-) @$ threshold

 $\sigma(e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^-) @$ threshold

baryonium?

-- sub-threshold BB QCD S-wave bound states --

a O⁻⁺ pp̄ bound state is well established

$J/\psi \rightarrow \gamma p \bar{p}$ at BESIII (PWA)

"protononium:" a pp bound state?

X(1835)→ $\pi^+\pi^-\eta'$ with 58M J/ ψ decays (BESII)

X(1835)→ $\pi^+\pi^-\eta'$ with 1.1B J/ ψ events (BESIII)

 $J/\psi \to \gamma \pi^+ \pi^- \eta'$

Flatté formula fit:

summary

Cross section threshold jumps see for $e^+e^- \rightarrow B\overline{B}$

- -- both for charged ($p\overline{p} \& \Lambda_c \overline{\Lambda}_c$) and neutral ($n\overline{n} \& \Lambda \overline{\Lambda}$) pairs
- -- jump times < 1 ns (faster than phase space)
- -- consistent with expectations for pointlike, charged particles
- -- above threshold behavior is decidedly non-pointlike

Accompanying structures seen in other channels

- -- dips in $\sigma(e^+e^- \rightarrow 3(\pi^+\pi^-) \& K^+K^-\pi^+\pi^-)$ at $E_{cm}=2m_p$ (but not $2(\pi^+\pi^-)$)
- -- peak in e⁺e⁻ $\rightarrow \phi$ K⁺K⁻ at E_{cm}=2m_{Λ}

A subthreshold $0^{-+} p\overline{p}$ state seen in $J/\psi \rightarrow \gamma p\overline{p}$ -- associated structure seen in $e^+e^- \rightarrow \pi^+\pi^- \eta'$

More results expected soon

-- $e^+e^- \rightarrow \Sigma \overline{\Sigma}$ and $\Xi \overline{\Xi}$ at threshold from BESIII

--more $e^+e^- \rightarrow p\overline{p}$ and $n\overline{n}$ from CMDS, SND & BESIII

There is lots still to be learned about the "well known" stable baryons