In-medium properties of the low-lying strange, charm, and bottom baryons in the QMC model

"Hadron Mass, Confinement, from JLab Expts. in 12-GeV Era"

APCTP, July, 2018

Kazuo Tsushima

LFTC, UNICSUL (Universidade Cruzeiro do Sul), Sao Paulo, Brazil

Interesting Results for Bottom Baryons, Σ_b , Ξ_b

QMC model (related) reviews:

1. G. Krein, A. W. Thomas, K. Tsushima (Quarkonia-A) Prog. Part. Nucl. Phys. 100 (2018) 161

2. K. Saito, K. Tsushima and A. W. Thomas (QMC model) Prog. Part. Nucl. Phys. 58 (2007) 1

References:

Quarkonia-nuclear bindings (QMC summary): G. Krein, A. W. Thomas, K. Tsushima Prog. Part. Nucl. Phys. 100 (2018) 161

QMC model: K. Saito, K. Tsushima and A. W. Thomas Prog. Part. Nucl. Phys. 58 (2007) 1

2 Introduction: QMC

3 Low-lying Strange, Charm, Bottom baryons

< □

긑

3 / 31

Motivations, and Introduction of QMC model

•Complete and update the in-medium properties of the low-lying strange, charm, bottom baryons (in the QMC model)

•Detailed comparison of the strange, charm, and bottom sectors

•To get idea, opinions, and suggestions from audiences

•Highlight: Effective masses of $\Sigma_b(qqb)$ and $\Xi_b(qsb)$, $m_{\Sigma_b} > m_{\Xi_b} \to m^*_{\Sigma_b} < m^*_{\Xi_b}$ reverses in medium !!!

\rightarrow **but issue** of the repulsive vector potentials

Introduction, Motivations: QMC model

Motivations

•(Large) nuclei, and nuclear matter in terms of quarks and gluons (eventually by QCD) ???!!! •NN,NNN,NNNN... interactions \rightarrow **Nucleus** ? \leftarrow shell model, MF model,... Lattice QCD: still extracting NN, NY and YY interactions, [Y=hyperons: Λ, Σ, Ξ] Quark model based description of nucleus Hadron properties in a nuclear medium

R=(p'x /p'z)=(G^p/G^p/G^p):⁴He/¹H

- S. Malace, M. Paolone and S. Strauch, arXiv:0807.2251 [nucl-ex]
- S. Strauch et al., Phys. Rev. Lett. 91, 052301 (2003)

Bound quark Dirac spinor (1s_{1/2})

Quark Dirac spinor in a bound hadron: $q_{1s}(\mathbf{r}) = \begin{pmatrix} U(\mathbf{r}) \\ i\sigma \cdot \mathbf{r} L(\mathbf{r}) \end{pmatrix} \chi$

Lower component is enhanced !

- $\implies g_{A^*} < g_{A}: ~ |U|^{**}2 (1/3) |L|^{**}2,$
- \Rightarrow **Decrease** of scalar density \Rightarrow

Decrease in Scalar Density

Scalar density (quark): ~ |U|**2 - |L|**2,
↓
MN*, N wave function, Nuclear scalar density etc., are self-consistently modified due to the N internal structure change !

Novel Saturation mechanism !

At Nucleon Level Response to the Applied Scalar Field is the Scalar Polarizability

Nucleon response to **a chiral invariant scalar field** is then a nucleon property of great interest...

$$\overrightarrow{\mathsf{M}^*(\mathsf{R})} \approx \mathsf{M} - g_{\sigma}\sigma(\overrightarrow{\mathsf{R})} + (\mathsf{d}/2) \ (g_{\sigma}\sigma(\overrightarrow{\mathsf{R}}))^{**}2$$

Non-linear dependence scalar polarizability 0.22 d**1/4 R in original QMC (MIT bag)

Indeed, in nuclear matter at mean-field level (e.g. QMC), this is the **ONLY place the response of the internal structure of the nucleon enters.**

Nuclear (Neutron) matter, E/A

Novel saturation 100 Neutron matter mechanism ! $80 - ..., \rho_p / \rho_B = 0.25$ Nuclear matter (K=279.2 MeV) 60 $(E/A) - m_N (MeV)$ Incompressibility 40 **QHD: K ≈ 500 MeV** 20 **QMC:** K ≈ 280 MeV (Exp. 200 ~ 300 MeV) 0

PLB 429, 239 (1998)

40 20 -15.7 MeV -20 $(m_q=5 \text{ MeV}, R_N=0.8 \text{ fm})$ $0.0 \quad 0.5 \quad 1.0 \quad 1.5 \quad 2.0 \quad 2.5 \quad 3.0$ ρ_B / ρ_0

Summary : Scalar Polarizability

- Can always rewrite non-linear coupling as linear coupling plus non-linear scalar self-coupling – likely physical origin of non-linear versions of QHD
- In nuclear matter this is **the only place** the internal structure of the nucleon enters in MFA
- Consequence of **polarizability** in atomic physics is **many-body forces**:

$$V = V_{12} + V_{23} + V_{13} + V_{12}$$

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Association for the U.S. Department of Energy

lerson C

QMC · · QHD

QHD shows importance of relativity : mean σ, ω and ρ fields
QMC goes far beyond QHD by incorporating effect of hadron *internal structure*

• Minimal model couples these mesons to *quarks* in relativistic quark model – e.g. MIT bag, or confining NJL

• $\mathbf{g}_{\sigma}^{\ q}$, $\mathbf{g}_{\omega}^{\ q}$, $\mathbf{g}_{\rho}^{\ q}$ fitted to ρ_0 , E/A and symmetry energy

No additional parameters : predict change of structure and binding in nuclear matter of all hadrons:
 e.g. ω, ρ, η, J/ψ, Ν, Λ, Σ, Ξ · see later !

Linking QMC to Familiar Nuclear Theory

Since early 70's tremendous amount of work in nuclear theory is based upon **effective forces**

- Used for everything from nuclear astrophysics to collective excitations of nuclei
- Skyrme Force: Vautherin and Brink

In Paper : Guichon and Thomas, Phys. Rev. Lett. 93, 132502 (2004)

explicitly obtained effective force, 2- plus 3- body, of Skyrme type

- equivalent to QMC model (required expansion around $\sigma = 0$)

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Association for the U.S. Department of Energy

efferson Pal

Physical Origin of Density Dependent Force of the Skyrme Type within the QMC model

That is, apply new **effective force** directly to calculate nuclear properties using Hartree-Fock (as for usual well known force)

	E_B (MeV, exp)	E_B (MeV, QMC)	$r_c \text{ (fm, exp)}$	r_c (fm, QMC)
^{16}O	7.976	7.618	2.73	2.702
^{40}Ca	8.551	8.213	3.485 »	1% 3.415
^{48}Ca	8.666	8.343	3.484	3.468
^{208}Pb	7.867	7.515	5.5	5.42

• Where analytic form of (e.g. $H_0 + H_3$) piece of energy functional derived from QMC is:

$$\mathcal{H}_{0} + \mathcal{H}_{3} = \rho^{2} \left[\frac{-3 G_{\rho}}{32} + \frac{G_{\sigma}}{8 (1 + \mathbf{O} \rho G_{\sigma})^{3}} - \frac{G_{\sigma}}{2 (1 + \mathbf{O} \rho G_{\sigma})} + \frac{3 G_{\omega}}{8} \right] + \frac{1}{8 (1 + \mathbf{O} \rho G_{\sigma})^{3}} + \frac{G_{\sigma}}{2 (1 + \mathbf{O} \rho G_{\sigma})} + \frac{G_{\sigma}}{8} \right] + \frac{1}{8 (1 + \mathbf{O} \rho G_{\sigma})^{3}} - \frac{G_{\omega}}{8} \right],$$
highlights scalar polarizability $(\rho_{n} - \rho_{p})^{2} \left[\frac{5 G_{\rho}}{32} + \frac{G_{\sigma}}{8 (1 + \mathbf{O} \rho G_{\sigma})^{3}} - \frac{G_{\omega}}{8} \right],$
Thomas Jefferson National Accelerator Facility
$$\mathcal{L}_{s. DEFARTMENT OF ENERGY}$$

Operated by Jefferson Science Association for the U.S. Department of Energy

Scalar potentials in QMC respects SU(3) (light quark # !)

15

Hypernuclei (Introduction)

What are Hypernuclei?

Hypernuclei are nuclear systems where at least one nucleon is replaced by a hyperon (e.g. Λ).

Z is a bound state of Z protons (A-Z-1) neutrons and a Λ hyperon

Hypernuclei are a laboratory to study the hyperon-nucleon, Hyperon-hyperon interactions.

New type of nuclear matter, new symmetries, New selection rules. First kind of flavored nuclei.

Hyperons are free from Pauli principle restrictions

Can occupy quantum states already filled up with nucleons

This makes a hyperon embedded in the nucleus a unique tool for exploring the nuclear structure.

Good probe for deeply bound single particle states.

Study of S = -1 hypernuclei (Λ or Σ)

The nuclear structure and the many body nuclear dynamics is extended to new non conventional symmetries, due to the inclusion of an $S \neq 0$ degree of freedom in the nucleus, YN interaction

The Skyrme type ΛN interaction from the known BE of Λ hypernuclei.

Neelam Guleria, S.K. Dhiman and R. Shyam, Nucl. Phys. A 886, 71 (2012)

The role played by quark degrees of freedom in nuclear phenomena: Quark-Meson coupling model, extended for hypernuclei

Guichon, KT, Saito, Thomas

The study of four fermion, strangeness changing, baryon-baryon weak interaction $YN \rightarrow NN$, which can occur only inside hypernuclei

S = -2 systems

New Physics items

- For a detailed understanding of the quark aspect of the baryon-baryon forces in the SU(3) space, information on the YY channel is essential.
- Are there S=-2 deeply bound multi K states??
- Search for *H particle* six-quark system uuddss

Conjectured composition of a neutron star

Neutron star composition

• Formation of compact stars depends On the nature of the YY interaction.

Juergen Schaffner-Bielich, Nucl. Phys. A804 (2008) 309

Experiments No! Σ-Hypernuclei Naïve SU(3) based model yield Σ-Hypernuclei! \rightarrow QMC ?

$\Lambda, \Sigma \Leftrightarrow$ Self-consistent OGE color hyperfine interaction

A and Σ hypernuclei are more or less similar (channel couplings) \Leftrightarrow <u>improve</u> ! Ξ potential: weaker (~1/2) of Λ and Σ (Light quark #) Very small spin-orbit splittings for Λ hypernuclei \Leftrightarrow SU(6) quark model

Bag mass and color mag. HF int. contribution (OGE)

T. DeGrand et al., PRD 12, 2060 (1975) $M = [Nq\Omega q + Ns\Omega s]/R - Z0/R + 4\pi BR^3/3$ + $(Fs)^{n} \Delta EM(f)$ (f=N, Δ , Λ , Σ , Ξ ...) $\Delta E_{M} = -3\alpha_{c} \sum_{i} \lambda_{i} \lambda_{j} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j} M(m_{i}, m_{j}, R)$ $\Delta E_{M}(\Lambda) = -3 \alpha c M(mq, mq, R), \quad (q=u,d)$ $\Delta E_M(\Sigma) = \alpha_c M(m_q, m_q, R)$ -4α cM(mq, ms, R)

Latest QMC: Includes Medium Modification of Color Hyperfine Interaction

N - Δ and Σ - Λ splitting arise from **one-gluon-exchange** in MIT Bag Model : as " σ " so does this splitting...

Thomas Jefferson National Accelerator Facility

U.S. DEPARTMENT OF ENERGY

Operated by Jefferson Science Association for the U.S. Department of Energy

\sum^{0} potentials (1s_{1/2})

Repulsionin centerAttractionin surfaceNo Σ nuclearbound state!

HF couplings for hyperons ↔ successful for high density neutron star (NPA 792, 341 (2007))

Hypernuclei spectra 1

NPA 814, 66 (2008)

	$^{16}_{\Lambda} \underset{Exp.}{O}$	$^{17}_{\Lambda}\mathrm{O}$	$^{17}_{\Xi^0}O$	${}^{40}_{\Lambda} Ca_{{\rm Exp.}}$	$^{41}_{\Lambda}$ Ca	${}^{41}_{\Xi^0}$ Ca	$^{49}_{\Lambda}$ Ca	${}^{49}_{\Xi^0}\mathrm{Ca}$
1s 1/2	-12.4	-16.2	-5.3	-18.7	-20.6	-5.5	-21.9	-9.4
1p3/2		-6.4			-13.9	-1.6	-15.4	-5.3
1p1/2	-1.85	-6.4			- <u>13.9</u>	-1.9	-15.4	-5.6
1d5/2					-5.5		-7.4	
2s1/2					-1.0		-3.1	
1d3/2					-5.5		-7.3	

Hypernuclei spectra 2

NPA 814, 66 (2008)

	$^{89}_{\Lambda}$ Yb Exp.	$^{91}_{\Lambda}$ Zr	$\frac{91}{20}$ Zr	$^{208}_{\Lambda} Pb_{Exp.}$	²⁰⁹ Pb	$^{209}_{\Xi^0}$ Pb
1 s 1/2	-23.1	-24.0	-9.9	-26.3	-26.9	-15.0
1p _{3/2}		-19.4	-7.0		-24.0	-12.6
1p1/2	-16.5	-19.4	-7.2	-21.9	-24.0	-12.7
1d5/2	-9.1	-13.4	-3.1	-16.8	-20.1	-9.6
2s _{1/2}		-9.1	_		-17.1	-8.2
1d3/2	(-9.1)	-13.4	-3.4	(-16.8)	-20.1	-9.8

Summary: hypernuclei

- The latest version of QMC (OGE color hyperfine interaction included selfconsistently in matter) =>
- A single-particle energy 1s1/2 in Pb is -26.9 MeV (Exp. -26.3 MeV) ⇐ no extra parameter!
- Small spin-orbit splittings for the Λ
- No Σ nuclear bound state !!
- Ξ is expected to form nuclear bound state

Consequences for Neutron Star

D.L.Whittenbury et.al., Phys.Rev. C89 (2014) 06580

New QMC model, relativistic, Hartree-Fock treatment

QMC model 1: Hadron level

$$\mathcal{L} = \bar{\psi} [i\gamma \cdot \partial - m_{N}^{*}(\sigma) - g_{\omega}\omega^{\mu}\gamma_{\mu}]\psi + \mathcal{L}_{meson},$$

$$m_{N}^{*}(\sigma) \equiv m_{N} - g_{\sigma}(\sigma)\sigma \simeq m_{N} - g_{\sigma}[1 - (a_{N}/2)(g_{\sigma}\sigma)]\sigma$$

$$g_{\sigma} \equiv g_{\sigma}(\sigma = 0)$$

$$\begin{split} \mathcal{L}_{\mathrm{meson}} &= \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - \mathsf{m}_{\sigma}^{2} \sigma^{2} - \frac{1}{2} \partial_{\mu} \omega_{\nu} (\partial^{\mu} \omega^{\nu} - \partial^{\nu} \omega^{\mu}) \\ &+ \frac{1}{2} \mathsf{m}_{\omega}^{2} \omega^{\mu} \omega_{\mu} , \end{split}$$

$$\begin{split} \rho_{\rm B} &= \frac{4}{(2\pi)^3} \int {\rm d}^3 k \; \theta(k_{\rm F} - |\vec{k}|) = \frac{2k_{\rm F}^3}{3\pi^2}, \\ \rho_{\rm s} &= \frac{4}{(2\pi)^3} \int {\rm d}^3 k \; \theta(k_{\rm F} - |\vec{k}|) \frac{m_{\rm N}^*(\sigma)}{\sqrt{m_{\rm N}^{*2}(\sigma) + \vec{k}^2}}, \end{split}$$

 $- \bigcirc \bigcirc$

÷.

QMC model 2: Quark level

 $x = (t, \vec{r}) (|\vec{r}| \le bag radius)$

$$\begin{split} & \left[\mathsf{i}\gamma \cdot \partial_{\mathsf{x}} - (\mathsf{m}_{\mathsf{q}} - \mathsf{V}_{\sigma}^{\mathsf{q}}) \mp \gamma^{0} \left(\mathsf{V}_{\omega}^{\mathsf{q}} + \frac{1}{2} \mathsf{V}_{\rho}^{\mathsf{q}} \right) \right] \left(\begin{array}{c} \psi_{\mathsf{u}}(\mathsf{x}) \\ \psi_{\bar{\mathsf{u}}}(\mathsf{x}) \end{array} \right) = \mathbf{0} \\ & \left[\mathsf{i}\gamma \cdot \partial_{\mathsf{x}} - (\mathsf{m}_{\mathsf{q}} - \mathsf{V}_{\sigma}^{\mathsf{q}}) \mp \gamma^{0} \left(\mathsf{V}_{\omega}^{\mathsf{q}} - \frac{1}{2} \mathsf{V}_{\rho}^{\mathsf{q}} \right) \right] \left(\begin{array}{c} \psi_{\mathsf{d}}(\mathsf{x}) \\ \psi_{\bar{\mathsf{d}}}(\mathsf{x}) \end{array} \right) = \mathbf{0} \\ & \left[\mathsf{i}\gamma \cdot \partial_{\mathsf{x}} - \mathsf{m}_{\mathsf{Q}} \right] \psi_{\mathsf{Q}}(\mathsf{x}) \text{ (or } \psi_{\overline{\mathsf{Q}}}(\mathsf{x})) = \mathbf{0} \end{split}$$

$$\begin{split} \mathbf{m}_{h}^{*} &= \sum_{\mathbf{j}=\mathbf{q}, \overline{\mathbf{q}}, \mathbf{Q}\overline{\mathbf{Q}}} \frac{\mathbf{n}_{\mathbf{j}}\Omega_{\mathbf{j}}^{*} - \mathbf{z}_{h}}{\mathbf{R}_{h}^{*}} + \frac{4}{3}\pi\mathbf{R}_{h}^{*3}\mathbf{B}, \quad \frac{\partial\mathbf{m}_{h}^{*}}{\partial\mathbf{R}_{h}}\Big|_{\mathbf{R}_{h}=\mathbf{R}_{h}^{*}} = \mathbf{0} \\ \Omega_{\mathbf{q}}^{*} &= \Omega_{\overline{\mathbf{q}}}^{*} = [\mathbf{x}_{\mathbf{q}}^{2} + (\mathbf{R}_{h}^{*}\mathbf{m}_{\mathbf{q}}^{*})^{2}]^{1/2}, \text{ with } \mathbf{m}_{\mathbf{q}}^{*} = \mathbf{m}_{\mathbf{q}} - \mathbf{g}_{\sigma}^{\mathbf{q}}\sigma \\ \Omega_{\mathbf{Q}}^{*} &= \Omega_{\overline{\mathbf{Q}}}^{*} = [\mathbf{x}_{\mathbf{Q}}^{2} + (\mathbf{R}_{h}^{*}\mathbf{m}_{\mathbf{Q}})^{2}]^{1/2} \quad (\mathbf{Q} = \mathbf{s}, \mathbf{c}, \mathbf{b}) \end{split}$$

 $- \bigcirc \bigcirc$

÷

QMC model 3: From quarks

$$\begin{split} \omega &= \frac{g_{\omega}\rho_{B}}{m_{\omega}^{2}}, \\ \sigma &= \frac{g_{\sigma}}{m_{\sigma}^{2}}C_{N}(\sigma)\frac{4}{(2\pi)^{3}}\int d^{3}k\;\theta(k_{F}-|\vec{k}|)\frac{m_{N}^{*}(\sigma)}{\sqrt{m_{N}^{*2}(\sigma)+\vec{k}^{2}}} \\ &= \frac{g_{\sigma}}{m_{\sigma}^{2}}C_{N}(\sigma)\rho_{s} \quad (g_{\sigma}\equiv g_{\sigma}(\sigma=0)), \\ C_{N}(\sigma) &= \frac{-1}{g_{\sigma}(\sigma=0)}\left[\frac{\partial m_{N}^{*}(\sigma)}{\partial\sigma}\right], \\ E^{tot}/A \quad - m_{N} &= \frac{4}{(2\pi)^{3}\rho_{B}}\int d^{3}k\;\theta(k_{F}-|\vec{k}|)\sqrt{m_{N}^{*2}(\sigma)+\vec{k}^{2}} \\ &\quad + \frac{m_{\sigma}^{2}\sigma^{2}}{2\rho_{B}} + \frac{g_{\omega}^{2}\rho_{B}}{2m_{\omega}^{2}} - m_{N}. \end{split}$$

7 / 31

Kazuo Tsushima (LFTC, UNICSUL (Unive In-medium properties of the low-lying stran

QMC model 4: Couplings etc.

m _q (MeV)	$\mathbf{g}_{\sigma}^2/4\pi$	${ m g}_{\omega}^2/4\pi$	m _N *	K	Z _N	$B^{1/4}(MeV)$
5	5.39	5.30	754.6	279.3	3.295	170
220	6.40	7.57	698.6	320.9	4.327	148

 $\frac{\partial m_{N}^{*}(\sigma)}{\partial \sigma} = -3g_{\sigma}^{q} \int_{bag} d^{3}r \ \overline{\psi}_{q}(\vec{r})\psi_{q}(\vec{r}) \quad \text{the lowest bag w.f.}$ $\equiv -\underline{3g_{\sigma}^{q}S_{N}(\sigma)} = -\frac{\partial}{\partial\sigma} \left[g_{\sigma}(\sigma)\sigma\right],$ $C_{N}(\sigma) = \frac{-1}{g_{\sigma}(\sigma=0)} \left[\frac{\partial m_{N}^{*}(\sigma)}{\partial\sigma}\right],$

$$\mathbf{g}_{\sigma} ~\equiv~ \mathbf{g}_{\sigma}^{\mathsf{N}} \equiv 3\mathbf{g}_{\sigma}^{\mathsf{q}}\mathsf{S}_{\mathsf{N}}(\sigma=0).$$

Results: Quark Meson Coupling (Standard)

• Symmetric Nuclear Matter - Biding Energy per Nucleon • $m_q = 5 \text{ MeV}, \text{ K} = 279.3 \text{ MeV}$

• □]

• Nucleon effective mass: $m_q = 5 \text{ MeV}$

÷

• Effective mass of constituent quarks: $m_q = 5 \text{ MeV}$ •All the light-quarks in any hadrons feel the same potentials !!

11 / 31

Comparison of Energy/nucleon

• Symmetric Nuclear Matter - Biding Energy per Nucleon (scale !!)

- LF pion model (left): $m_q = 220$ MeV, K = 320.9 MeV
- Standard QMC (right): $m_q = 5$ MeV, K = 279.3, MeV

긑

 $\cdot \bigcirc \bigcirc$

13 / 31

Nucleon effective mass •LF pion model (left: $m_q = 220 MeV$) •Standard QMC (right: $m_q = 5 MeV$)

LF pion model and Standard QMC: m^{*}_q (potentials)

•Effective mass of constituent quarks, up and down •LF pion model: $m_q = 220 \text{ MeV}$ (left) •Standard QMC $m_q = 5 \text{ MeV}$ (right)

Standard QMC, π, ρ in LF model parameters comparison

• Motivation: The present model works well (Symmetric Vertex)!

m _q (MeV)	$\mathbf{g}_{\sigma}^{2}/4\pi$	${f g}_\omega^2/4\pi$	m _N *	K	Z _N	$B^{1/4}(MeV)$
5	5.39	5.30	754.6	279.3	3.295	170
220	6.40	7.57	698.6	320.9	4.327	148
430	8.73	11.93	565.25	361.4	5.497	69.75

• Refs. LF π , ρ model: J.P.B.C. de Melo, KT et al., LF π model (m_q = 220 MeV): Phys.Rev. C90 (2014) no.3, 035201; Phys.Lett. B766 (2017) 125; Few Body Syst. 58 (2017) no.2, 85 LF ρ model (m_q = 430 MeV): Few Body Syst. 58 (2017) no.2, 82; arXiv:1802.06096 [hep-ph]

QMC: Hadron masses in medium

 $x = (t, \vec{r}) \; (|\vec{r}| \le bag \; radius)$

$$\begin{split} & \left[i\gamma \cdot \partial_{x} - (m_{q} - V_{\sigma}^{q}) \mp \gamma^{0} \left(V_{\omega}^{q} + \frac{1}{2} V_{\rho}^{q} \right) \right] \left(\begin{array}{c} \psi_{u}(x) \\ \psi_{\bar{u}}(x) \end{array} \right) = 0 \\ & \left[i\gamma \cdot \partial_{x} - (m_{q} - V_{\sigma}^{q}) \mp \gamma^{0} \left(V_{\omega}^{q} - \frac{1}{2} V_{\rho}^{q} \right) \right] \left(\begin{array}{c} \psi_{d}(x) \\ \psi_{\bar{d}}(x) \end{array} \right) = 0 \\ & \left[i\gamma \cdot \partial_{x} - m_{Q} \right] \psi_{Q}(x) \text{ (or } \psi_{\overline{Q}}(x)) = 0 \end{split}$$

$$\begin{split} \mathbf{m}_{h}^{*} &= \sum_{j=q,\overline{q},Q\overline{Q}} \frac{\mathbf{n}_{j}\Omega_{j}^{*} - \mathbf{z}_{h}}{\mathbf{R}_{h}^{*}} + \frac{4}{3}\pi\mathbf{R}_{h}^{*3}\mathbf{B}, \quad \frac{\partial\mathbf{m}_{h}^{*}}{\partial\mathbf{R}_{h}}\Big|_{\mathbf{R}_{h}=\mathbf{R}_{h}^{*}} = \mathbf{0}\\ \Omega_{q}^{*} &= \Omega_{\overline{q}}^{*} = [\mathbf{x}_{q}^{2} + (\mathbf{R}_{h}^{*}\mathbf{m}_{q}^{*})^{2}]^{1/2}, \text{ with } \mathbf{m}_{q}^{*} = \mathbf{m}_{q} - \mathbf{g}_{\sigma}^{q}\sigma\\ \Omega_{Q}^{*} &= \Omega_{\overline{Q}}^{*} = [\mathbf{x}_{Q}^{2} + (\mathbf{R}_{h}^{*}\mathbf{m}_{Q})^{2}]^{1/2} \quad (\mathbf{Q} = \mathbf{s}, \mathbf{c}, \mathbf{b}) \end{split}$$

-

< □ > < 급 > < 급 > < 급 > ·

Hadron masses (ratios) in medium

•

 $- \bigcirc \bigcirc$

÷

Introduction: QMC

Scalar potentials: $m_h^* - m_h$ (in medium)

Kazuo Tsushima (LFTC, UNICSUL (Unive In-medium properties of the low-lying stran

In-medium properties of the low-lying Strange, Charm, Bottom baryons

- •Effective masses $(\Sigma_b, \Xi_b !!)$
- •In-medium bag radii
- •In-medium bag eigenfrequencies
- •Scalar and vector (plus Pauli) potentials
- •Excitation (total) energies $(\Sigma_b, \Xi_b !!)$

In vacuum (inputs)

$B(q_1,q_2,q_3)$	z _B	m _B	R _B	x ₁	x ₂	X 3
N(qqq)	3.295	939.0	0.800	2.052	2.052	2.052
Λ(uds)	3.131	1115.7	0.806	2.053	2.053	2.402
Σ(qqs)	2.810	1193.1	0.827	2.053	2.053	2.409
Ξ(qss)	2.860	1318.1	0.820	2.053	2.406	2.406
$\Omega(sss)$	1.930	1672.5	0.869	2.422	2.422	2.422
$\Lambda_{c}(udc)$	1.642	2286.5	0.854	2.053	2.053	2.879
$\Sigma_{c}(qqc)$	0.903	2453.5	0.892	2.054	2.054	2.889
$\Xi_{c}(qsc)$	1.445	2469.4	0.860	2.053	2.419	2.880
$\Omega_{c}(ssc)$	1.057	2695.2	0.876	2.424	2.424	2.884
$\Lambda_{\rm b}({\rm udb})$	-0.622	5619.6	0.930	2.054	2.054	3.063
Σ _b (qqb)	-1.554	5813.4	0.968	2.054	2.054	3.066
Ξ _b (qsb)	-0.785	5793.2	0.933	2.054	2.441	3.063
$\Omega_{\rm b}({ m ssb})$	-1.327	6046.1	0.951	2.446	2.446	3.065

Ξ.

< □ ► + 클 > + 클 > + 클 >

In medium at $ho_0 = 0.15 \, { m fm}^3$

$B(q_1,q_2,q_3)$	m _B *	R _B *	x ₁ *	x ₂ *	x ₃ *
N(qqq)	754.5	0.786	1.724	1.724	1.724
Λ(uds)	992.7	0.803	1.716	1.716	2.401
Σ(qqs)	1070.4	0.824	1.705	1.705	2.408
Ξ(qss)	1256.7	0.818	1.708	2.406	2.406
Ω(sss)					
$\Lambda_{c}(udc)$	2164.2	0.851	1.691	1.691	2.878
Σ _c (qqc)	2331.8	0.889	1.671	1.671	2.888
$\Xi_{c}(qsc)$	2408.3	0.859	1.687	2.418	2.880
$\Omega_{c}(ssc)$					
$\Lambda_{\rm b}({\rm udb})$	5498.5	0.927	1.651	1.651	3.063
Σ _b (qqb)	5692.8	0.966	1.630	1.630	3.066
Ξ _b (qsb)	5732.7	0.931	1.649	2.440	3.063
$\Omega_{\rm b}({\rm ssb})$					

2

Effective masses: Strange (left), Charm (right) baryons

Ξ

22 / 31

Effective masses: Strange (left), Bottom (right) baryons

Ξ

Bag eigenfrequencies: Strange (left), Charm (right) baryons

3

Bag eigenfrequencies: Strange (left), Bottom (right) baryons

2

Bag radii: Strange, Charm, Bottom baryons

₹

Scalar and (Vector+Pauli) potentials: Strange (left), Charm (right) baryons

Scalar and (Vector+Pauli) potentials: Strange (left), Bottom (right) baryons

Excitation energies (scalar + vector pots.): Σ_b, Ξ_b Vector + "Pauli" (left), Vector (right)

29 / 31

Summary, Perspective

•QMC model: In-medium properties of the low-lying Strange, Charm, Bottom baryons (completed) effective masses, bag radii, bag eigenfrequencies, (two different) vector potentials, excitation (total) energies

$$\implies \bullet \boxed{\Sigma_{b}, \Xi_{b}} \text{ baryon effective masses!! excitation energies !!!}$$

 $\implies \bullet$ **EM FFs., Weak-interaction FFs.** for heavy baryons in medium $\implies \bullet$ in the near future !!

 $\implies \bullet$ Heavy ion collisions involving heavy baryons!!!

⇒•Other interesting applications ??!! Your Suggestions !!!

References:

Quarkonia-nuclear bindings (QMC summary): G. Krein, A. W. Thomas, K. Tsushima Prog. Part. Nucl. Phys. 100 (2018) 161

QMC model: K. Saito, K. Tsushima and A. W. Thomas Prog. Part. Nucl. Phys. 58 (2007) 1