The Nature of Hadron Mass and Quark-Gluon Confinement from JLab Experiments in the 12-GeV Era, 1-4, June, 2018, APCTP

KA(1405) & KA photoproduction off the nucleon with nucleon resonances

Sang-Ho Kim (金相鎬) Asia Pacific Center for Theoretical Physics (APCTP), POSTECH

Contents based on • PRD.96.014003 (2017) • arXiv:1806.01992 [hep-ph]

In collaboration with

- Seung-il Nam (PKNU)
- Hyun-Chul Kim (Inha Univ.)
- Yongseok Oh (KNU)
- Daisuke Jido (TMU)

Contents

$$\gamma p \rightarrow K^+ \Lambda(1405)$$

$$\gamma n \to K^0 \Lambda$$

- Introduction
- Theoretical Framework: Regge-plus-Resonance model
- Results : total & differential cross sections(σ & dσ/dΩ) invariant mass distribution (dσ/dM) beam asymmetry (Σ_Y)

♦ Summary

Introduction

Open-Strangeness Photoproduction

□ Some N^{*} have a weak coupling to π N final states but large branching ratios to KY or K^{*}Y ones.

□ A comparison between "experiments" and "theoretical predictions" gives the information on which N*'s significantly contribute to the reaction.

□ Provides useful information for identifying "missing resonances".

Open-Strangeness Photoproduction $(\gamma N \rightarrow K \Lambda)$

 \Box Λ is an isosinglet, so Δ^* resonances cannot contribute to the s-channel diagram. Thus a theoretical interpretation is more simplified.

Up to now, most of the data come from the reaction off a proton target.

 $\gamma p \rightarrow K^{+} \Lambda$

Open-Strangeness Photoproduction $(\gamma N \rightarrow K \Lambda)$

 \Box Λ is an isosinglet, so Δ^* resonances cannot contribute to the s-channel diagram. Thus a theoretical interpretation is more simplified.

Up to now, most of the data come from the reaction off a proton target.

 $\gamma p \rightarrow K^{+} \Lambda$

□ First measurements of the reactions:

 $\gamma p \rightarrow K^{+} \Lambda(1405)$

CLAS [PRC.88.045201(2013)]

 $\gamma \: n \to \: K^{0} \: \Lambda \: [\gamma \: d \to K^{0} \: \Lambda \: (p)]$

 FOREST
 [JPSConf.Proc.17.062007(2017)]

 CLAS
 [PRC.96.065201(2017)]

Theoretical Framework

- Multi-channel framework (rescattering effect)
 - ▷ ANL-Osaka, Bonn-Gatchina, Giessen, Juelich, Shyam & Scholten & Usov
- Single-channel framework
 - Isobar model (effective hadronic Lagrangians)
 - ▷ Williams-Cotanch-Ji, Mart, Kaon-MAID, Skoupil-Bydzovsky
 - Regge-plus-Resonance model
 Ghent group: RPR-2007, RPR-2011

- Multi-channel framework (rescattering effect)
 - ▷ ANL-Osaka, Bonn-Gatchina, Giessen, Juelich, Shyam & Scholten & Usov
- Single-channel framework
 - Isobar model (effective hadronic Lagrangians)
 - Williams-Cotanch-Ji, Mart, Kaon-MAID, Skoupil-Bydzovsky
 - Regge-plus-Resonance model
 Ghent group: RPR-2007, RPR-2011
- □ Our approach is similar to the RPR model but avoids a complex fitting procedure. We construct the relation between "the coupling constants" of effective Lagrangians and "the partial decay widths" that can be obtained by PDG or hadron models. Thus model parameters are much reduced.

Regge-plus-Resonance model

□ preserves unitarity.

Single particle exchange in the t-channel of spin J

Froissart bound :

 $\sigma^{\mathrm{Tot}}(s) \leq \mathrm{constant} \times \log^2(s/s_0)$

Sum up all meson exchanges of various J

K and K* trajectories are degenerated :

$$\alpha_{K} = \alpha_{K}(t) = \frac{0.7}{\text{GeV}^{2}}(t - M_{K}^{2})$$
$$\alpha_{K^{*}} = \alpha_{K^{*}}(t) = \frac{0.83}{\text{GeV}^{2}}t + 0.25$$

Regge-plus-Resonance model

Invariant amplitude: M^{Regge} (background) + $M^{\text{Resonance}}$

□ interpolates between the low and high momentum transfer regions. □ Regge propagators (P^{Regge}) in a gauge invariant manner

$$\mathcal{M}_{t,s}^{\text{Regge}} = \left[(\mathcal{M}_K + \mathcal{M}_N)(t - M_K^2) P_K^{\text{Regge}} + \mathcal{M}_{K^*}(t - M_{K^*}^2) P_{K^*}^{\text{Regge}} \right]$$

$$\frac{1}{t-M_K^2} \rightarrow P_K^{\text{Regge}} = \left(\frac{s}{s_0}\right)^{\alpha_K} \frac{\pi \alpha'_K}{\sin(\pi \alpha_K)} \begin{cases} 1\\ e^{-i\pi \alpha_K} \end{cases} \frac{1}{\Gamma(1+\alpha_K)}, \qquad \text{Guidal,} \\ \frac{1}{t-M_{K^*}^2} \rightarrow P_{K^*}^{\text{Regge}} = \left(\frac{s}{s_0}\right)^{\alpha_{K^*}-1} \frac{\pi \alpha'_{K^*}}{\sin(\pi \alpha_{K^*})} \begin{cases} 1\\ e^{-i\pi \alpha_{K^*}} \end{cases} \frac{1}{\Gamma(\alpha_{K^*})}$$

□ Strong coupling constants ightarrow SU(3)f symmetry : -4.4 ≤ gKNA/4√π ≤ -3.0 ightarrow Nijmegen potentials : -4.9 ≤ gKNA/4√π ≤ -3.8 are constrained by the high energy region.

8

Regge-plus-Resonance model

Invariant amplitude: M^{Regge} (background) + $M^{\text{Resonance}}$

PDG & missing resonances
 Hadronic form factors: monopole, dipole, Gaussian
 Rarita-Schwinger propagators (S(p)) for spin-3/2, -5/2, -7/2 N*'s

[PRD.60.61(1941), Behrends, PR.106.345(1957), Rushbrooke, PR.143.1345(1966), Chang, PR.161.1308(1967)]

$$\begin{split} (i\partial \!\!\!/ -M)R_{\alpha_1\alpha_2\dots\alpha_{n-1}} &= 0 \qquad \qquad \gamma^{\alpha_1}R_{\alpha_1\alpha_2\dots\alpha_s} = 0, \qquad \partial^{\alpha_1}R_{\alpha_1\alpha_2\dots\alpha_s} = 0, \\ g^{\alpha_1\alpha_2}R_{\alpha_1\alpha_2\dots\alpha_s} = 0. \end{split}$$

 $S(p) = \frac{i}{\not p - M} \Delta(J) \qquad \sum_{\text{spins}} R_{\alpha_1 \dots} \bar{R}^{\beta_1 \dots} = \Lambda_{\pm} \Delta_{\alpha_1 \dots}^{\beta_1 \dots} \quad (\Delta_{\alpha}^{\beta} \text{ spin projection operator})$

$$\begin{split} \Delta_{\alpha}^{\beta}(\frac{3}{2}) &= -g_{\alpha}^{\beta} + \frac{1}{3}\gamma_{\alpha}\gamma^{\beta} + \frac{1}{3M}\left(\gamma_{\alpha}p^{\beta} - p_{\alpha}\gamma^{\beta}\right) + \frac{2}{3M^{2}}p_{\alpha}p^{\beta} \\ \Delta_{\alpha_{1}\alpha_{2}}^{\beta_{1}\beta_{2}}(\frac{5}{2}) &= \frac{1}{2}\left(\theta_{\alpha_{1}}^{\beta_{1}}\theta_{\alpha_{2}}^{\beta_{2}} + \theta_{\alpha_{1}}^{\beta_{2}}\theta_{\alpha_{2}}^{\beta_{1}}\right) - \frac{1}{5}\theta_{\alpha_{1}\alpha_{2}}\theta^{\beta_{1}\beta_{2}} - \frac{1}{10}\left(\Gamma_{\alpha_{1}}\Gamma^{\beta_{1}}\theta_{\alpha_{2}}^{\beta_{2}} + \Gamma_{\alpha_{1}}\Gamma^{\beta_{2}}\theta_{\alpha_{1}}^{\beta_{1}} + \Gamma_{\alpha_{2}}\Gamma^{\beta_{2}}\theta_{\alpha_{1}}^{\beta_{1}}\right) \\ \Delta_{\alpha_{1}\alpha_{2}\alpha_{3}}^{\beta_{1}\beta_{2}\beta_{3}}(\frac{7}{2}) &= \theta_{\alpha\beta} = -\left(g_{\alpha\beta} - \frac{1}{M^{2}}p_{\alpha}p_{\beta}\right)\Gamma^{\alpha} = i\left(\gamma^{\alpha} - \frac{1}{M^{2}}pp^{\alpha}\right) \end{split}$$

Tree-diagrams

□ K exchange is excluded because of charge.
 □ Other higher strange mesons are excluded because of their small photocouplings, e.g., Br(K*(1410) → Koγ) < 2.2 × 10⁻⁴.

□ K exchange is excluded because of charge.
 □ Other higher strange mesons are excluded because of their small photocouplings, e.g., Br(K*(1410) → Koγ) < 2.2 × 10⁻⁴.

Theoretical Framework	JLab-APCTP Sangho Kim July 1-4, 2018 (APCTP)

1. Background contributions

 $K^{*+}.K^{+}$ \mathcal{D} t channel Ń \hat{p} s channel $\Lambda, \Sigma^{0}, \Lambda^{*}$ u channel

Effective hadronic Lagrangians

Electromagnetic interactions $\mathcal{L}_{\gamma KK} = -ie_{K}[K^{\dagger}(\partial_{\mu}K) - (\partial_{\mu}K^{\dagger})K]A^{\mu},$ $\mathcal{L}_{\gamma KK^{*}} = g_{\gamma KK^{*}}e^{\mu\nu\alpha\beta}\partial_{\mu}A_{\nu}[(\partial_{\alpha}K_{\beta}^{*-})K^{+} + K^{-}(\partial_{\alpha}K_{\beta}^{*+})],$ $\mathcal{L}_{\gamma NN} = -\bar{N}\left[e_{N}\gamma_{\mu} - \frac{e\kappa_{N}}{2M_{N}}\sigma_{\mu\nu}\partial^{\nu}\right]A^{\mu}N,$ $\mathcal{L}_{\gamma\Lambda^{*}\Lambda^{*}} = \frac{e\mu_{\Lambda^{*}}}{2M_{N}}\bar{\Lambda}^{*}\sigma_{\mu\nu}\partial^{\nu}A^{\mu}\Lambda^{*},$ $\mathcal{L}_{\gamma Y\Lambda^{*}} = \frac{e\mu_{\Lambda^{*} \to Y\gamma}}{2M_{N}}\bar{Y}\gamma_{5}\sigma_{\mu\nu}\partial^{\nu}A^{\mu}\Lambda^{*} + \text{H.c.},$ Strong interactions

$$\begin{split} \mathcal{L}_{KNY} &= -ig_{KNY}\bar{N}\gamma_5YK + \text{H.c.}, \\ \mathcal{L}_{KN\Lambda^*} &= -ig_{KN\Lambda^*}\bar{N}\Lambda^*K + \text{H.c.}, \\ \mathcal{L}_{K^*N\Lambda^*} &= -g_{K^*N\Lambda^*}\bar{N}\gamma_5\gamma_{\mu}\Lambda^*K^{*\mu} + \text{H.c.}. \end{split}$$

form factor:
$$F_B(q^2) = \left[\frac{\Lambda_B^4}{\Lambda_B^4 + (q^2 - M_B^2)^2}\right]^2$$

2. Resonance contributions

Effective hadronic Lagrangians

Electromagnetic interactions

$$\begin{aligned} \mathcal{L}_{\gamma N N^*}^{1/2^{\pm}} &= \frac{eh_1}{2M_N} \bar{N} \Gamma^{\mp} \sigma_{\mu\nu} \partial^{\nu} A^{\mu} N^* + \text{H.c.}, \\ \mathcal{L}_{\gamma N N^*}^{3/2^{\pm}} &= -ie \left[\frac{h_1}{2M_N} \bar{N} \Gamma_{\nu}^{\pm} - \frac{ih_2}{(2M_N)^2} \partial_{\nu} \bar{N} \Gamma^{\pm} \right] F^{\mu\nu} N_{\mu}^* + \text{H.c.}, \\ \mathcal{L}_{\gamma N N^*}^{5/2^{\pm}} &= e \left[\frac{h_1}{(2M_N)^2} \bar{N} \Gamma_{\nu}^{\mp} - \frac{ih_2}{(2M_N)^3} \partial_{\nu} \bar{N} \Gamma^{\mp} \right] \partial^{\alpha} F^{\mu\nu} N_{\mu\alpha}^* + \text{H.c.}, \\ \mathcal{L}_{\gamma N N^*}^{7/2^{\pm}} &= ie \left[\frac{h_1}{(2M_N)^3} \bar{N} \Gamma_{\nu}^{\pm} - \frac{ih_2}{(2M_N)^4} \partial_{\nu} \bar{N} \Gamma^{\pm} \right] \partial^{\alpha} \partial^{\beta} F^{\mu\nu} N_{\mu\alpha\beta}^* + \text{H.c.}. \end{aligned}$$

Strong interactions

$$\mathcal{L}_{K\Lambda^*N^*}^{1/2^{\pm}} = -ig_{K\Lambda^*N^*}\bar{K}\bar{\Lambda}^*\Gamma^{\mp}N^* + \text{H.c.},$$

$$\mathcal{L}_{K\Lambda^*N^*}^{3/2^{\pm}} = \frac{g_{K\Lambda^*N^*}}{M_K}\partial^{\mu}\bar{K}\bar{\Lambda}^*\Gamma^{\pm}N_{\mu}^* + \text{H.c.},$$

$$\mathcal{L}_{K\Lambda^*N^*}^{5/2^{\pm}} = \frac{ig_{K\Lambda^*N^*}}{M_K^2}\partial^{\mu}\partial^{\nu}\bar{K}\bar{\Lambda}^*\Gamma^{\mp}N_{\mu\nu}^* + \text{H.c.},$$

$$\mathcal{L}_{K\Lambda^*N^*}^{7/2^{\pm}} = -\frac{g_{K\Lambda^*N^*}}{M_K^3}\partial^{\mu}\partial^{\nu}\partial^{\alpha}\bar{K}\bar{\Lambda}^*\Gamma^{\pm}N_{\mu\nu\alpha}^* + \text{H.c.},$$

11

Gaussian form factor:

$$F_{N^*}(q_s^2) = \exp\left\{-\frac{(q_s^2 - M_{N^*}^2)^2}{\Lambda_{N^*}^4}\right\}$$

 $\Lambda_{\rm B} = \Lambda_{\rm N^*} = 0.9 {\rm ~GeV}$

Theoretical Framework	Lab-APCTP uly 1-4, 2018	Sangho Kim (APCTP)
	-	

2. Resonance contributions

Oh,Ko,Nakayama, PRC.77.045204(2008)

"Transition magnetic moments" h1, h2 & "Helicity amplitudes" $A\lambda$

$$\frac{A_{\lambda}(j)}{\sqrt{8M_{N}M_{R}k_{\gamma}}} = \frac{1}{\sqrt{8M_{N}M_{R}k_{\gamma}}} \frac{2j+1}{4\pi} \\
\times \int d\cos\theta d\phi e^{-i(m-\lambda)\phi} d^{j}_{\lambda m}(\theta) \langle \mathbf{k}_{\gamma}, \lambda_{\gamma}, \lambda_{N} \mid -\underline{i\mathcal{M}} \mid jm \rangle$$

$$\underbrace{A_{1/2}\left(\frac{1}{2}^{\pm}\right)}_{\underline{M_N}} = \mp \frac{ef_1}{2M_N} \sqrt{\frac{k_{\gamma}M_R}{M_N}}$$

$$\begin{bmatrix} \underline{A_{1/2}(\frac{3}{2}^{\pm})} = \mp \frac{e\sqrt{6}}{12}\sqrt{\frac{k_{\gamma}}{M_{N}M_{R}}} \left[\underline{f_{1}} + \frac{f_{2}}{4M_{N}^{2}}M_{R}(M_{R} \mp M_{N}) \right] \\ \underline{A_{3/2}(\frac{3}{2}^{\pm})} = \mp \frac{e\sqrt{2}}{4M_{N}}\sqrt{\frac{k_{\gamma}M_{R}}{M_{N}}} \left[\underline{f_{1}} \mp \frac{f_{2}}{4M_{N}}(M_{R} \mp M_{N}) \right] \\ \underline{A_{1/2}(\frac{5}{2}^{\pm})} = \pm \frac{e}{4\sqrt{10}}\frac{k_{\gamma}}{M_{N}}\sqrt{\frac{k_{\gamma}}{M_{N}M_{R}}} \left[\underline{f_{1}} \pm \frac{f_{2}}{4M_{N}^{2}}M_{R}(M_{R} \pm M_{N}) \right] \\ \underline{A_{3/2}(\frac{5}{2}^{\pm})} = \pm \frac{e}{4\sqrt{5}}\frac{k_{\gamma}}{M_{N}^{2}}\sqrt{\frac{k_{\gamma}M_{R}}{M_{N}}} \left[\underline{f_{1}} \pm \frac{f_{2}}{4M_{N}^{2}}(M_{R} \pm M_{N}) \right] \\ \underline{A_{3/2}(\frac{5}{2}^{\pm})} = \pm \frac{e}{4\sqrt{5}}\frac{k_{\gamma}}{M_{N}^{2}}\sqrt{\frac{k_{\gamma}M_{R}}{M_{N}}} \left[\underline{f_{1}} \pm \frac{f_{2}}{4M_{N}}(M_{R} \pm M_{N}) \right] \\ \underline{A_{3/2}(\frac{5}{2}^{\pm})} = \pm \frac{e}{4\sqrt{5}}\frac{k_{\gamma}}{M_{N}^{2}}\sqrt{\frac{k_{\gamma}M_{R}}{M_{N}}} \left[\underline{f_{1}} \pm \frac{f_{2}}{4M_{N}}(M_{R} \pm M_{N}) \right] \\ \underline{A_{3/2}(\frac{5}{2}^{\pm})} = \pm \frac{e}{4\sqrt{5}}\frac{k_{\gamma}}{M_{N}^{2}}\sqrt{\frac{k_{\gamma}M_{R}}{M_{N}}} \left[\underline{f_{1}} \pm \frac{f_{2}}{4M_{N}}(M_{R} \pm M_{N}) \right]$$

 A_{λ} can be taken from PDG.

Theoretical Framework	JLab-APCTP Sangho Kim July 1-4, 2018 (APCTP)
2. Resonance contributions $\gamma = K^+$	"Strong coupling constants" $g_{K\Lambda^*N^*}$ & "Decay amplitudes" $G(\ell)$
$\sum_{n}^{\prime} \sum_{n}^{\prime} \sum_{n$	$ \langle K(\mathbf{q})\Lambda^*(-\mathbf{q},m_f) - i\underline{\mathcal{H}_{int}} N^*(0,m_j)\rangle $ = $4\pi M_{N^*}\sqrt{\frac{2}{q}}\sum_{l,m_l} \langle lm_l \frac{1}{2}m_f jm_j \rangle Y_{lm_l}(\mathbf{\hat{q}}) \underline{G(\ell)} $
s channel	$\underline{G(0)} = \sqrt{\frac{ \vec{q} (E_{\Lambda^*} + M_{\Lambda^*})}{4\pi M_{N^*}}} g_{K\Lambda^*N^*} \qquad j = \frac{1}{2}^+$
S.H.Kim, Oh, in preparation	$\underline{G(1)} = -\sqrt{\frac{ \vec{q} (E_{\Lambda^*} - M_{\Lambda^*})}{4\pi M_{N^*}}} g_{K\Lambda^*N^*} \qquad j = \frac{1}{2}^{-1}$
$\Gamma(N^* \to K\Lambda^*) = \sum_{\ell} \underline{G(\ell)} ^2$	$\underline{G(2)} = -\sqrt{\frac{ \vec{q} ^3 (E_{\Lambda^*} - M_{\Lambda^*})}{12\pi M_{N^*}}} \frac{g_{K\Lambda^*N^*}}{M_K} j = \frac{3}{2}^+$
$\Gamma(\frac{1}{2}^{\pm} \to K\Lambda^*) = \frac{1}{4\pi} \frac{q}{M_{N^*}} g_{K\Lambda^*N^*}^2(E_{\Lambda^*} \pm M_{\Lambda^*}),$	$\underline{G(1)} = \sqrt{\frac{ \vec{q} ^3 (E_{\Lambda^*} + M_{\Lambda^*}) g_{K\Lambda^* N^*}}{12\pi M_{N^*}}} \qquad j = \frac{3}{2}^{-1}$
$\Gamma(\frac{3}{2}^{\pm} \to K\Lambda^*) = \frac{1}{12\pi} \frac{q^3}{M_{N^*}} \frac{g_{K\Lambda^*N^*}^2}{M_K^2} (E_{\Lambda^*} \mp M_{\Lambda^*}),$	$\underline{G(2)} = \sqrt{\frac{ \vec{q} ^5 (E_{\Lambda^*} + M_{\Lambda^*})}{30\pi M_{N^*}}} \frac{g_{K\Lambda^*N^*}}{M_K^2} \qquad j = \frac{5}{2}^+$
$\Gamma(\frac{5}{2}^{\pm} \to K\Lambda^*) = \frac{1}{30\pi} \frac{q^5}{M_{N^*}} \frac{g_{K\Lambda^*N^*}^2}{M_K^4} (E_{\Lambda^*} \pm M_{\Lambda^*}),$	$\underline{G(3)} = -\sqrt{\frac{ \vec{q} ^5 (E_{\Lambda^*} - M_{\Lambda^*})}{30\pi M_{N^*}}} \frac{g_{K\Lambda^*N^*}}{M_K^2} j = \frac{5}{2}^{-1}$

 $G(\ell)$ can be taken from quark model predictions.

constituent quark model Capstick,PRD.58.074011(1998)

JLab-APCTP Sangho Kim July 1-4, 2018 (APCTP)

$$\gamma p \rightarrow K^{+} \Lambda(1405)$$

threshold = 1.9 GeV

$$\gamma n \rightarrow K^0 \Lambda$$

threshold = 1.6 GeV

2 PDG resonances + 3 missing resonances

16 PDG resonances + narrow N(1685,1/2⁺)

JLab-APCTP Sangho Kim July 1-4, 2018 (APCTP)

$$\gamma p \rightarrow K^+ \Lambda(1405)$$

threshold = 1.9 GeV

$$\gamma n \rightarrow K^0 \Lambda$$

threshold = 1.6 GeV

2 PDG resonances + 3 missing resonances

16 PDG resonances + narrow N(1685,1/2⁺)

$\gamma p \rightarrow K^+ \Lambda(1405)$					threshold = 1.9 GeV		
		•	EM (γpp*) i	nteractions		Strong in	teractions
	N*	A _{1/2}	A _{3/2}	h_1	h_2	$G(\ell)$	$g_{K\Lambda^*N^*}$
PDG	$N^*(2000, 5/2^+)$	31 ± 10	-43 ± 8	-4.22	3.98	$-0.6^{+0.6}_{-1.6}$	-0.912
	$N^*(2100, 1/2^+)$	10 ± 4		-0.045		$+5.2 \pm 0.8$	0.785
	$N^*(2030, 1/2^-)$	20		0.094		$+1.2^{+0.9}_{-1.1}$	1.78
missing	$N^*(2055, 3/2^-)$	16	0	-0.335	0.419	$+1.2^{+0.5}_{-0.9}$	-0.467
	N*(2095, 3/2 ⁻)	9	-14	0.018	-0.134	$+0.7^{+0.2}_{-0.4}$	-0.228

N(2000) **, N(2100) * $\star \star$ \succ 2018 edition of PDG

JLab-APCTP Sangho Kim July 1-4, 2018 (APCTP)

The data is reproduced mainly by the t-channel K-exchange contribution.
 PDG resonances are more dominant than missing resonances.
 Both constant (1) & rotating (exp[-iπα(t)]) phases are acceptable.

At threshold, the data are reproduced by N* & non-N* contributions constructively.
 The forward-scattering enhancement becomes more obvious as W increases.

 $\gamma p \rightarrow K^+ \Lambda(1405)$ Differential cross sections & Beam asymmetry

❑ At threshold, the data are reproduced by N* & non-N* contributions constructively.
 ❑ The forward-scattering enhancement becomes more obvious as W increases.

(1) The decay widths for the decaying resonances are sufficiently narrow.

(2) The interference between the different resonances in the Dalitz plot is negligible.

JLab-APCTP Sangho Kim July 1-4, 2018 (APCTP)

$\gamma p \rightarrow K^+ \Lambda(1405)$ Constituent counting rule

□ CCR is a method to analyze the internal structure of the hadrons by dimensional considerations of the reaction amplitude in terms of the quark and gluon propagators at the large angle as well as the high energy.

$\gamma p \rightarrow K^+ \Lambda(1405)$ Constituent counting rule

□ CCR is a method to analyze the internal structure of the hadrons by dimensional considerations of the reaction amplitude in terms of the quark and gluon propagators at the large angle as well as the high energy.

$$\frac{d\sigma_{ab\to cd}}{dt} \propto \frac{1}{s^{n-2}}$$

 $\Box \text{ If } \Lambda(1405) \text{ is composed of three quarks, } 1_{\gamma} + 3_{N} + 2_{K} + 3_{\Lambda^*} = 9$ *"*five , $1_{\gamma} + 3_{N} + 2_{K} + 5_{\Lambda^*} = 11$

 $\Box \Lambda(1405)$ is, more or less, possibly distinctive from the simple *uds*-quark state.

$\gamma p \rightarrow K^+ \Lambda(1405)$ Another interpretation

The role of a triangle singularity in the $\gamma p \to K^+ \Lambda(1405)$ reaction

JLab-APCTP Sangho Kim July 1-4, 2018 (APCTP)

 $\gamma n \rightarrow K^0 \Lambda$

EM (γnn^*) interactions

threshold = 1.6 GeV

State	Bating	Width [MeV]	A . /a	Acia	<i>h</i> .	ha
	Trating		<u>11/2</u>	113/2	<i>n</i> 1	112
$N(1650, 1/2^{-})$	****	110-170(120)	$ -50 \pm 20 $		-0.31	• • •
$N(1675, 5/2^{-})$	****	130-165(150)	-60 ± 5	-85 ± 10	4.88	5.45
$N(1680, 5/2^+)$	****	120-140(130)	29 ± 10	-33 ± 9	-7.44	8.57
$N(1700, 3/2^{-})$	***	100-250(150)	25 ± 10	-32 ± 18	-1.43	1.64
$N(1710, 1/2^+)$	****	50-250(100)	-40 ± 20		0.24	
$N(1720, 3/2^+)$	****	150-400(250)	-80 ± 50	-140 ± 65	1.50	1.61
$N(1860, 5/2^+)$	**	300	21 ± 13	34 ± 17	0.28	1.09
$N(1875, 3/2^{-})$	***	300	10 ± 6	-20 ± 15	-0.55	0.54
$N(1880, 1/2^+)$	**★	300	-60 ± 50		0.31	
$N(1895, 1/2^{-})$	***	300	13 ± 6		0.067	
$N(1900, 3/2^+)$	***	300	0 ± 30	-60 ± 45	0.29	-0.56
$N(1990, 7/2^+)$	**	200-400(300)	-45 ± 20	-52 ± 27	6.92	7.54
$N(2000, 5/2^+)$	**	300	$ -18 \pm 12 $	-35 ± 20	-0.47	-0.56
$N(2060, 5/2^{-})$	**★	300	25 ± 11	-37 ± 17	0.027	-2.87
$N(2120, 3/2^{-})$	**★	300	110 ± 45	40 ± 30	-1.71	2.41
$N(2190, 7/2^{-})$	****	300-700 (500)	-15 ± 13	-34 ± 22	-1.57	-0.62
$N(1685, 1/2^+)$		30			-0.315	

 \triangle 2018 edition of PDG

 \Box A_{λ} is taken from PDG.

JLab-APCTP Sangho Kim July 1-4, 2018 (APCTP)

γ	n	\rightarrow	$K^0\Lambda$	

Strong interactions

threshold = 1.6 GeV

State	$G(\ell)$	$g_{K\Lambda N^*}$	$\left \Gamma_{N^*\to K\Lambda}/\Gamma_{N^*}\right \%]$	$ g_{K\Lambda N^*} $	$g_{K\Lambda N^*}(\text{final})$
$N(1650, 1/2^{-})$	-3.3 ± 1.0	-0.78	5 - 15	0.57-0.99	-0.78
$N(1675, 5/2^{-})$	0.4 ± 0.3	1.23			1.23
$N(1680, 5/2^+)$	$\simeq 0.1 \pm 0.1$	-2.84			-2.84
$N(1700, 3/2^{-})$	-0.4 ± 0.3	2.34			2.34
$N(1710, 1/2^+)$	4.7 ± 3.7	-7.49	5-25	3.5-7.9	-3.5
$N(1720, 3/2^+)$	-3.2 ± 1.8	-1.80	4-5	1.8-2.0	-1.1
$N(1860, 5/2^+)$	-0.5 ± 0.3	1.40			1.40
$N(1875, 3/2^{-})$	$\simeq 1.7 \pm 1.0$	-2.47			-2.47
$N(1880, 1/2^+)$			1 - 3	1.3 - 2.3	1.6
$N(1895, 1/2^{-})$	2.3 ± 2.7	0.34	13 - 23	0.92 - 1.2	0.34
$N(1900, 3/2^+)$			2 - 20	0.64 - 2.0	1.2
$N(1990, 7/2^+)$	$\simeq 1.5 \pm 2.4$	0.61			0.61
$N(2000, 5/2^+)$	-0.5 ± 0.3	0.61			0.61
$N(2060, 5/2^{-})$	$\simeq -2.2 \pm 1.0$	-0.52			-0.52
$N(2120, 3/2^{-})$	$\simeq 1.7 \pm 1.0$	-1.05			-1.05
$N(2190, 7/2^{-})$	$\simeq -1.1$	0.67	0.2-0.4	0.60 - 0.85	0.67
$N(1685, 1/2^+)$					-0.9

□ $G(\ell)$ is taken from quark model predictions [Capstick,PRD.58.074011(1998)]. □ $Br(N^* \rightarrow K\Lambda)$ is taken from PDG.

Only rotating phase is acceptable.
 Main contribution comes from 1/2⁺, 1/2⁻, 3/2⁺ N^{*} resonances.

JLab-APCTP Sangho Kim July 1-4, 2018 (APCTP)

□ N(1685,1/2⁺) has a certain contribution to the differential cross sections at threshold but not to the total cross section.

JLab-APCTP Sangho Kim July 1-4, 2018 (APCTP)

JLab-APCTP Sangho Kim July 1-4, 2018 (APCTP)

Summary

 \diamond The $\gamma p \rightarrow K^+\Lambda(1405)$ & $\gamma n \rightarrow K^0\Lambda$ are studied using

an effective Lagrangian approach combining with a Regge model.

◇ K- and K*-Reggeon exchanges are dominant background contributions, respectively.
 ◇ PDG resonances "N(2000,5/2+), N(2100,1/2-)" and "N(1650,1/2-), N(1710,1/2+), N(1720,3/2+), N(1900,3/2+)" are crucial to reproduce the FOREST & CLAS data, respectively, near threshold.

Future work:

 \diamond Polarization observables will be also calculated.

 \diamond Vector meson (ρ, ω, ϕ) photoproduction off the nucleon and nuclei(⁴He,...)

Back Up

 $\alpha(t)$ categorizes hadrons with the same internal quantum numbers, M and J are the mass and the spin of related hadrons.

