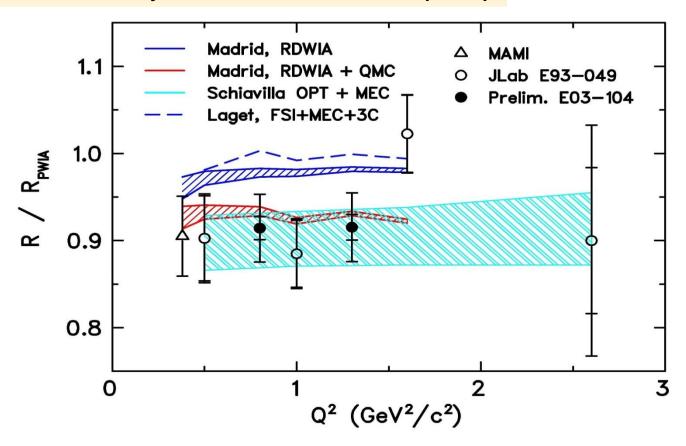
Introduction, Motivations: QMC model


Motivations

- (Large) nuclei, and nuclear matter in terms of quarks and gluons
- (eventually by QCD) ???!!!
- NN,NNN,NNNN... interactions →
 - **Nucleus** ? ← shell model, MF model,...
- Lattice QCD: still extracting NN, NY and YY interactions, [Y=hyperons: Λ,Σ,Ξ]
- Quark model based description of nucleus
- Hadron properties in a nuclear medium

K. Tsushima 2

$R=(p'x/p'z)=(GE/GM):^{4}He/^{1}H$

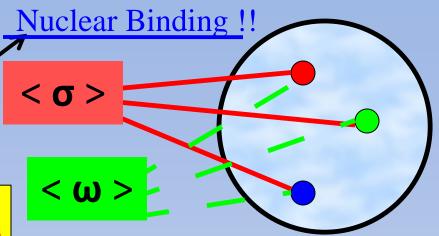
- S. Malace, M. Paolone and S. Strauch, arXiv:0807.2251 [nucl-ex]
- S. Strauch et al., Phys. Rev. Lett. 91, 052301 (2003)

The QMC model P. Guichon, PLB 200, 235 (1988)

(For a review, PPNP 58, 1 (2007))

Light (u,d) quarks interact self-consistently with mean σ and ω fields

$$m*_q=m_q-g^q\sigma=m_q-V^q$$


$$M*_N \approx M_N - g_\sigma^N \sigma + (d/2) (g_\sigma^N \sigma)^2$$

$$[i \Upsilon \cdot \partial - (m - V \sigma) + \Upsilon_0 V \omega] q = 0$$

$$[i \Upsilon \cdot \partial - M^*_{N} + \Upsilon_0 V_{\omega}^{N}] N = 0$$

(Applied quark model!)

K. Tsushima

$$M*_{N} = M_{N} - V_{\sigma}^{N}$$

$$V_{\omega}^{N} = 3V_{\omega}^{q}$$

Self-consistent!

Bound quark Dirac spinor (1s1/2)

Quark Dirac spinor in a bound hadron:

$$q_{1s}(r) = \begin{bmatrix} U(r) \\ i\sigma \cdot \hat{r} L(r) \end{bmatrix} \chi$$

Lower component is enhanced!

$$\Rightarrow$$
 $g_A^* < g_A^* : \sim |U|^{**2} - (1/3) |L|^{**2}$

Decrease in Scalar Density

Scalar density (quark): ~ |U|**2 - |L|**2, ↓

Mn*, N wave function, Nuclear scalar density etc., are self-consistently modified due to the N internal structure change!

⇒ Novel Saturation mechanism!

At Nucleon Level Response to the Applied Scalar Field is the Scalar Polarizability

Nucleon response to a chiral invariant scalar field is then a nucleon property of great interest...

$$M^*(R) \approx M - g_\sigma \sigma(R) + (d/2) (g_\sigma \sigma(R))^{**}2$$

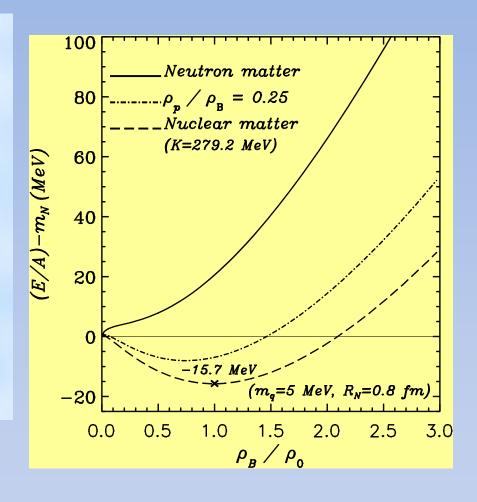
Non-linear dependence scalar polarizability
0.22 d**1/4 R in original QMC (MIT bag)

Indeed, in nuclear matter at mean-field level (e.g. QMC), this is the **ONLY place the response of the internal** structure of the nucleon enters.

K. Tsushima 7

Nuclear (Neutron) matter, E/A

Novel saturation mechanism!


Incompressibility

QHD: K≈500 MeV

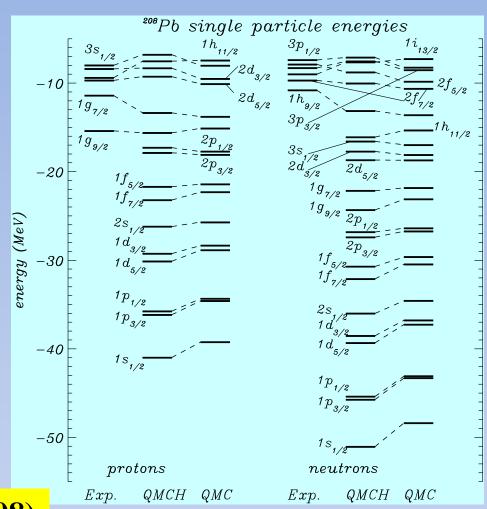
QMC: K ≈ 280 MeV

(Exp. 200 ~ 300 MeV)

PLB 429, 239 (1998)

K. Tsushima 8

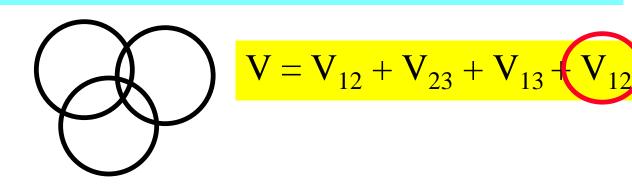
Finite nuclei (208 Pb energy levels)


NPA 609, 339 (1996)

Large mass **nuclei Nuclear matter**

Based on quarks!

Hadrons Hypernuclei


latest QMC, NPA 814, 66 (2008)

K. Tsushima

9

Summary: Scalar Polarizability

- Can always rewrite non-linear coupling as linear coupling plus non-linear scalar self-coupling – likely physical origin of non-linear versions of QHD
- In nuclear matter this is **the only place** the internal structure of the nucleon enters in MFA
- Consequence of polarizability in atomic physics is many-body forces:

QMC ··QHD

- QHD shows importance of **relativity** : mean σ , ω and ρ fields
- QMC goes far beyond QHD by incorporating effect of hadron *internal structure*
- Minimal model couples these mesons to *quarks* in relativistic quark model e.g. MIT bag, or confining NJL
- $g_{\sigma}^{\ q}$, $g_{\omega}^{\ q}$, $g_{\rho}^{\ q}$ fitted to ρ_0 , E/A and symmetry energy
- No additional parameters: predict change of structure and binding in nuclear matter of all hadrons: e.g. ω , ρ , η , J/ψ , N, Λ , Σ , Ξ see later!

Linking QMC to Familiar Nuclear Theory

Since early 70's tremendous amount of work in nuclear theory is based upon **effective forces**

- Used for everything from nuclear astrophysics to collective excitations of nuclei
- Skyrme Force: Vautherin and Brink

In Paper: Guichon and Thomas, Phys. Rev. Lett. 93, 132502 (2004)

explicitly obtained effective force, 2- plus 3- body, of Skyrme type

- equivalent to QMC model (required expansion around $\sigma = 0$)

Physical Origin of Density Dependent Force of the Skyrme Type within the QMC model

That is, apply new **effective force** directly to calculate nuclear properties using Hartree-Fock (as for usual well known force)

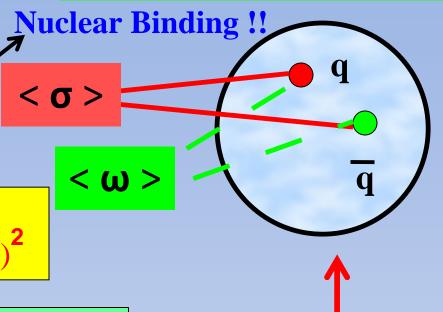
	E_B (MeV, exp)	E_B (MeV, QMC)	$r_c \text{ (fm, exp)}$	r_c (fm, QMC)
^{16}O	7.976	7.618	2.73	2.702
^{40}Ca	8.551	8.213	3.485 »	1% 3.415
^{48}Ca	8.666	8.343	3.484	3.468
^{208}Pb	7.867	7.515	5.5	5.42

• Where analytic form of (e.g. $H_0 + H_3$) piece of energy functional derived from QMC is:

$$\mathcal{H}_{0} + \mathcal{H}_{3} = \rho^{2} \left[\frac{-3 G_{\rho}}{32} + \frac{G_{\sigma}}{8 (1 + O G_{\sigma})^{3}} - \frac{G_{\sigma}}{2 (1 + O G_{\sigma})} + \frac{3 G_{\omega}}{8} \right] + \frac{1}{8} \left[(\rho_{n} - \rho_{p})^{2} \left[\frac{5 G_{\rho}}{32} + \frac{G_{\sigma}}{8 (1 + O G_{\sigma})^{3}} - \frac{G_{\omega}}{8} \right] \right],$$

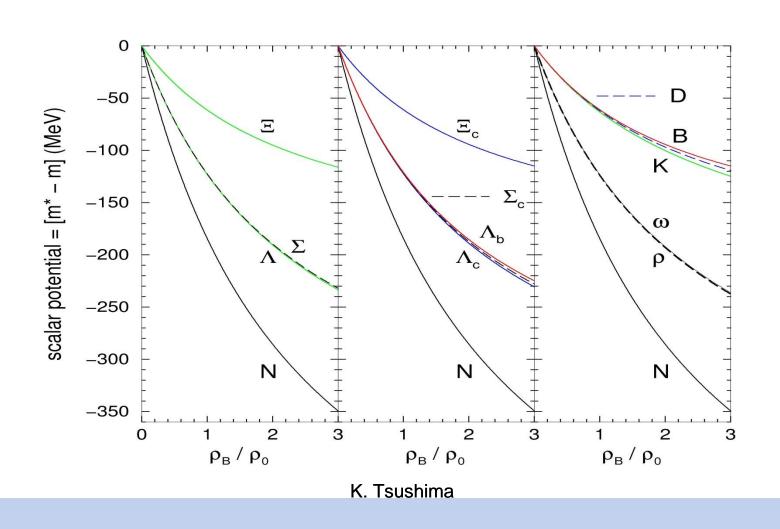
Mesons in nuclear medium in QMC

Light (u,d) quarks interact self-consistently with mean σ and ω fields


$$m*_q=m_q-g^q\sigma=m_q-V^q$$

↓ nonlinear in σ M*_M ≈ M_M - g^M_σσ + (d^M/2) (g^M_σσ)²

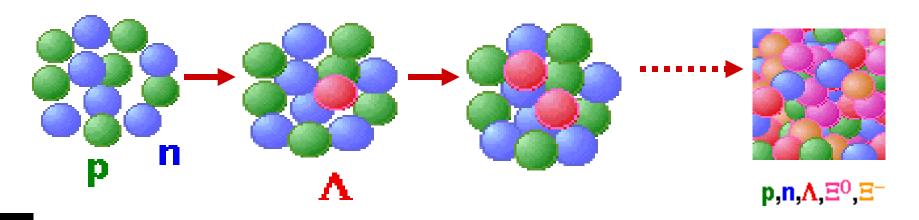
[
$$i \Upsilon \cdot \partial - (m_q - V_\sigma^q) + \Upsilon_0 V_\omega^q$$
] $q = 0$


σ,ω fields: <u>no couplings</u> with s,c,b quarks!!

(For a review, PPNP 58, 1 (2007))

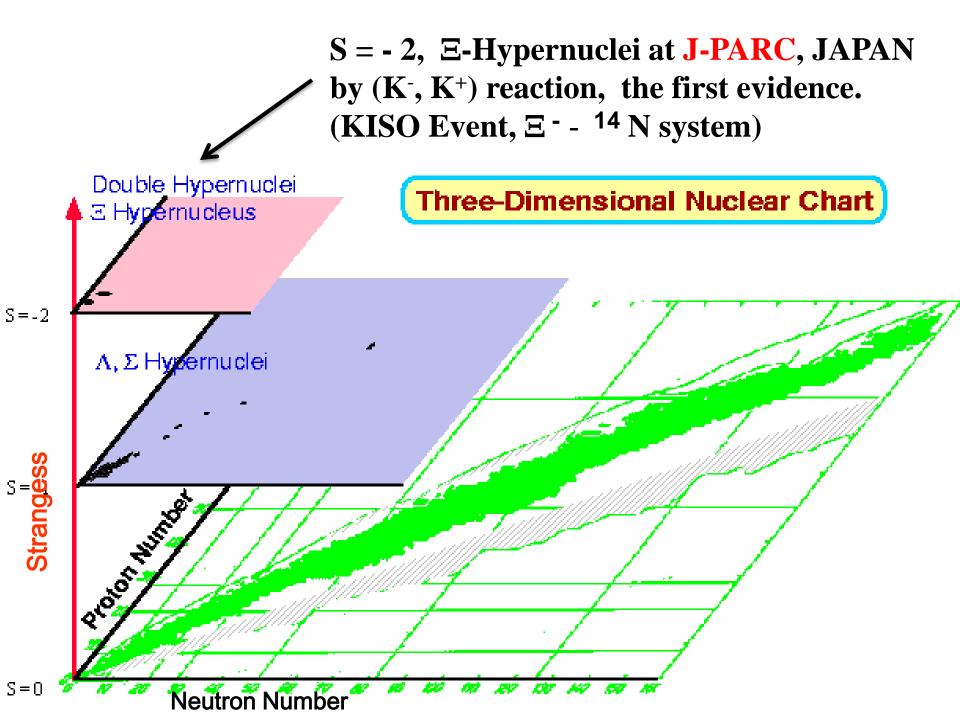
K. Tsushima

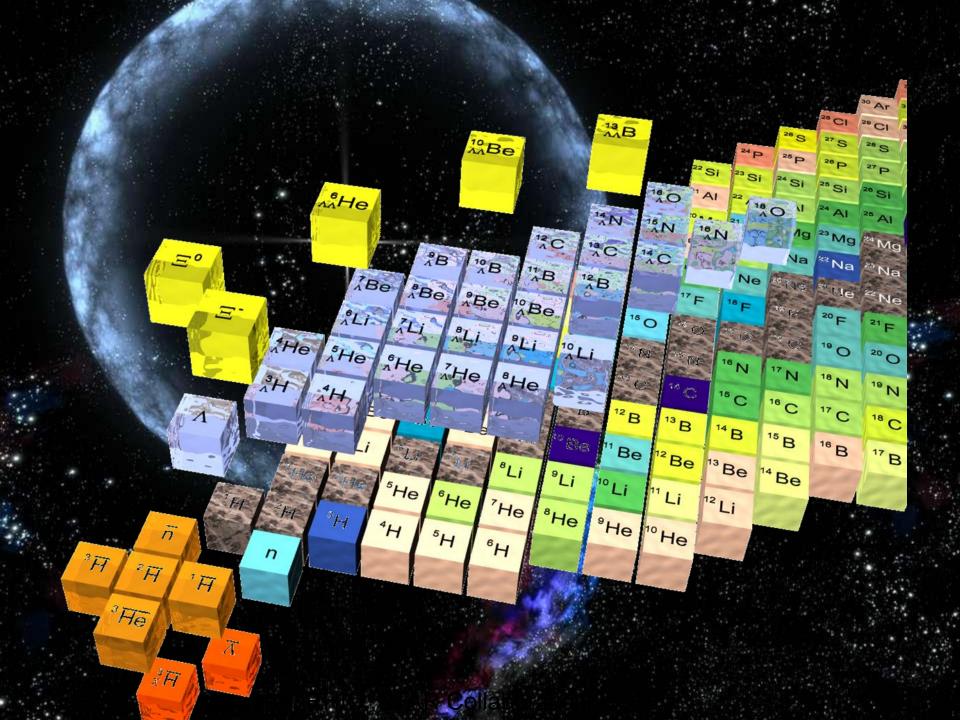
Scalar potentials in QMC respects SU(3) (light quark #!)

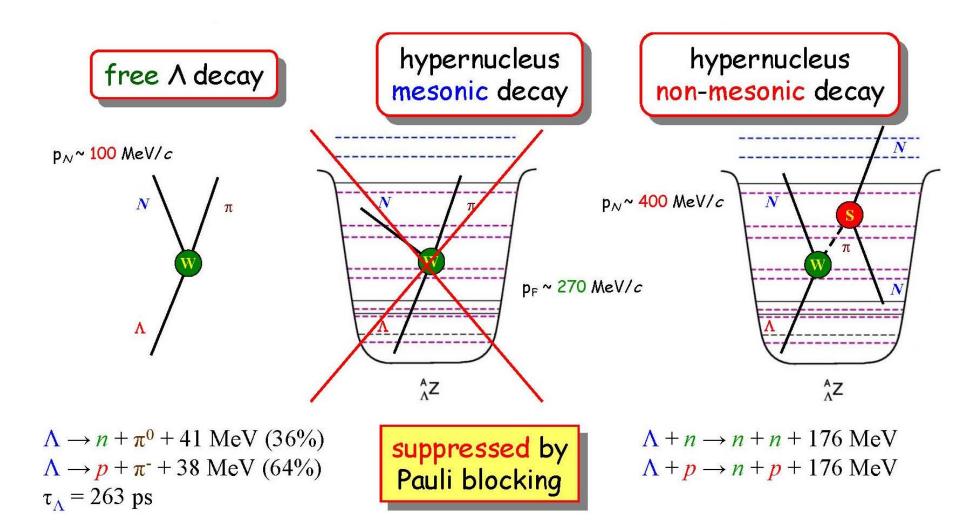


15

Hypernuclei (Introduction)


What are Hypernuclei?

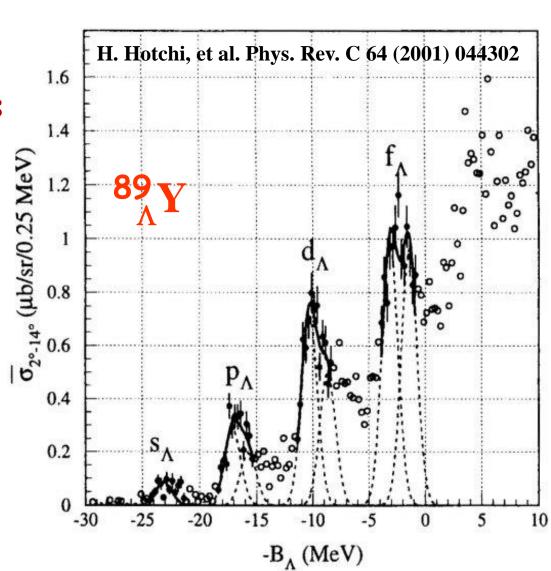

Hypernuclei are nuclear systems where at least one nucleon is replaced by a hyperon (e.g. Λ).


 \mathbf{Z} is a bound state of \mathbf{Z} protons (A-Z-1) neutrons and a \mathbf{A} hyperon

Hypernuclei are a laboratory to study the hyperon-nucleon, Hyperon-hyperon interactions.

A hyperon can stay in contact with nucleons inside a Nucleus

Why are Hypernuclei interesting!


New type of nuclear matter, new symmetries, New selection rules. First kind of flavored nuclei.

Hyperons are free from Pauli principle restrictions

Can occupy quantum states already filled up with nucleons

This makes a hyperon embedded in the nucleus a unique tool for exploring the nuclear structure.

Good probe for deeply bound single particle states.

Study of S = -1 hypernuclei (Λ or Σ)

The nuclear structure and the many body nuclear dynamics is extended to new non conventional symmetries, due to the inclusion of an $S \neq 0$ degree of freedom in the nucleus, YN interaction

The Skyrme type ΛN interaction from the known BE of Λ hypernuclei.

Neelam Guleria, S.K. Dhiman and R. Shyam, Nucl. Phys. A 886, 71 (2012)

The role played by quark degrees of freedom in nuclear phenomena:

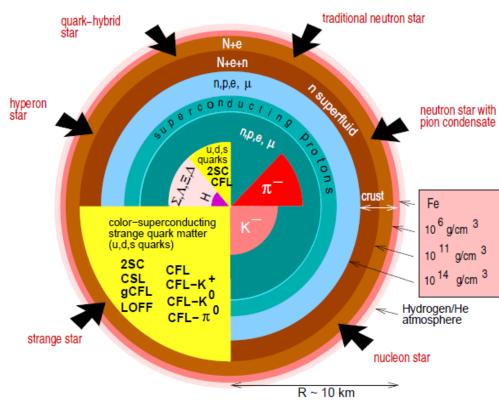
Quark-Meson coupling model, extended for hypernuclei

Guichon, KT, Saito, Thomas

The study of four fermion, strangeness changing, baryon-baryon weak interaction $YN \rightarrow NN$, which can occur only inside hypernuclei

S = -2 systems

New Physics items


- For a detailed understanding of the quark aspect of the baryon-baryon forces in the SU(3) space, information on the YY channel is essential.
- Are there S=-2 deeply bound multi K states??
- Search for *H particle* six-quark system uuddss

Conjectured composition of a neutron star

Neutron star composition

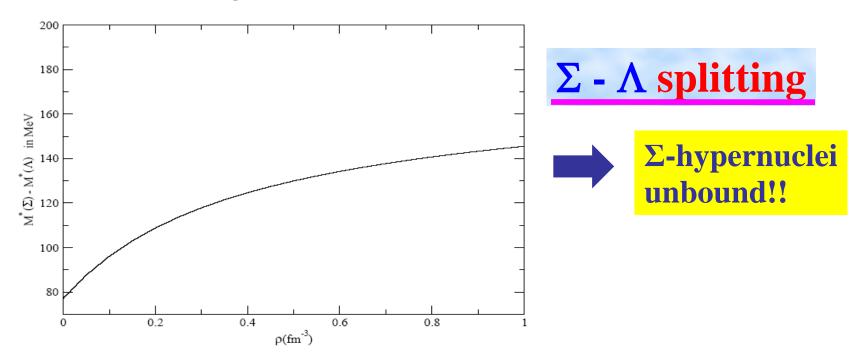
 Formation of compact stars depends On the nature of the YY interaction.

Juergen Schaffner-Bielich, Nucl. Phys. A804 (2008)

Experiments No! Σ-Hypernuclei Naïve SU(3) based model yield Σ-Hypernuclei! \rightarrow QMC?

Λ, Σ ⇔ Self-consistent OGE color hyperfine interaction

A and hypernuclei are more or less similar (channel couplings) 👄 improve! potential: weaker (~1/2) of Λ and Σ (Light quark #) Very small spin-orbit splittings for ↑ hypernuclei ⇔ SU(6) quark model


Bag mass and color mag. HF int. contribution (OGE)

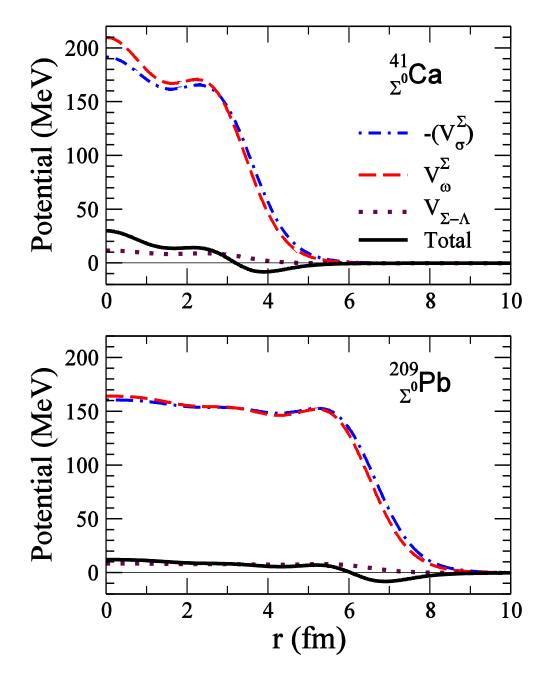
```
T. DeGrand et al., PRD 12, 2060 (1975)
M = [Nq\Omega q + Ns\Omega s]/R - Z_0/R + 4\pi BR^3/3
         + (Fs)^n \Delta Em (f) (f=N,\Delta,\Lambda,\Sigma,\Xi...)
\Delta E_{M} = -3\alpha_{c} \sum_{i} \lambda_{i} \lambda_{j} \overrightarrow{\sigma}_{i} \cdot \overrightarrow{\sigma}_{j} M(m_{i}, m_{j}, R)
\Delta \text{EM}(\Lambda) = -3 \overset{\text{a. i} < j}{\alpha c} M(mq, mq, R), (q=u,d)
\Delta E_M(\Sigma) = \alpha_c M(m_q, m_q, R)
   -4\alpha cM(mq, ms, R)
```

Latest QMC: Includes Medium Modification of Color Hyperfine Interaction

 $N - \Delta$ and $\Sigma - \Lambda$ splitting arise from one-gluon-exchange in MIT Bag Model : as " σ " so does this splitting...

Difference of Sigma and Lambda effective mass

Guichon, Thomas, Tsushima, Nucl. Phys. A841 (2008) 66


\sum_{1}^{0} potentials (1s_{1/2})

Repulsion
in center
Attraction

No ∑ nuclear bound state!

in surface

HF couplings for hyperons
successful for high density neutron star (NPA 792, 341 (2007))

Hypernuclei spectra 1

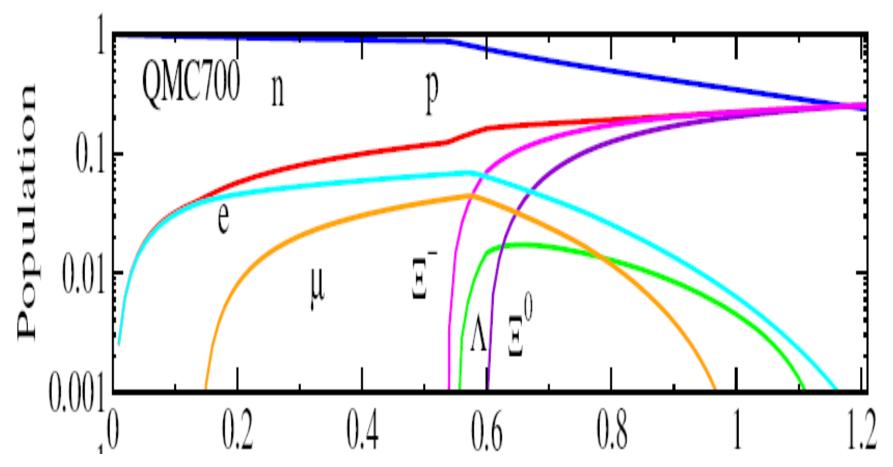
NPA 814, 66 (2008)

	16 Ο Εxp.	17 Ο	17 _E 0	40 Ca Exp.	⁴¹ Ca	$^{41}_{\Xi^0}$ Ca	⁴⁹ Λ Ca	⁴⁹ Ca ≡
181/2	-12.4	-16.2	-5.3	-18.7	-20.6	-5.5	-21.9	-9.4
1p3/2		-6.4			-13.9	-1.6	-15.4	-5.3
1p _{1/2}	-1.85	-6.4			-13.9	-1.9	-15.4	-5.6
1d5/2					-5.5		-7.4	
281/2					-1.0		-3.1	
1d3/2					-5.5		-7.3	

Hypernuclei spectra 2

NPA 814, 66 (2008)

	89 Yb A Exp.	91 Zr	91Zr	²⁰⁸ Pb _{Exp.}	²⁰⁹ Рb	$^{209}_{\Xi^0}\mathrm{Pb}$
1 _{S1/2}	-23.1	-24.0	-9.9	-26.3	-26.9	-15.0
1p _{3/2}		-19.4	-7.0		-24.0	-12.6
1p _{1/2}	-16.5	-19.4	-7.2	-21.9	-24.0	-12.7
1d _{5/2}	-9.1	-13.4	-3.1	-16.8	-20.1	-9.6
2s _{1/2}		-9.1	_		-17.1	-8.2
1d _{3/2}	(-9.1)	-13.4	-3.4	(-16.8)	-20.1	-9.8


Summary: hypernuclei

- The latest version of QMC (OGE color hyperfine interaction included self-consistently in matter)
- ↑ Single-particle energy 1s_{1/2} in Pb is -26.9 MeV (Exp. -26.3 MeV) ← no extra parameter!
- Small spin-orbit splittings for the \(\Lambda\)
- No ∑ nuclear bound state !!
- E is expected to form nuclear bound state

Consequences for Neutron Star ->

D.L.Whittenbury et.al., Phys.Rev. C89 (2014) 06580

New QMC model, relativistic, Hartree-Fock treatment

Stone et al., Nucl. Phys. A792 (2007) 341

