DVCS Factorization

- Works great for Q² ≥ 20 GeV²! (HERA)
 - COMPASS (muons), HERMES(fixed target at HERA), Jlab Q² < 10 GeV²
 - Even if vector meson content of photon is suppressed, what about higher order perturbative QCD effects.
 - Enter Amplidute with powers $[\Lambda^2/Q^2]^{n/2}$
 - Coefficients not known *a priori*. Can be large from Chiral symmetry breaking effects.

Higher Order qqg Correlations, as corrections to DVCS

• GPD ~ 1/Q²

qqg Correlation
 ~ 1/[Q²]^{3/2}

qqqq "Cat's Ears" ~1/Q⁴

What do DVCS experiments measure?

• $d\sigma(ep \rightarrow ep\gamma) = twist-2 (GPD) terms + \Sigma_n [twist-n]/Q^{n-2}$

- Isolate twist-2 terms \rightarrow cross sections vs Q² at fixed ($x_{Bi'}$, t); or
- \rightarrow Multiple beam energies at fixed (Q², x_{Bi} , t)
- GPD terms are `Compton Form Factors'

$$CFF(\xi,\Delta^2) = \int dx \frac{GPD(x,\xi,\Delta^2;Q^2)}{x \pm \xi \pm i\varepsilon}$$

• Re and Im parts (accessible via interference with BH):

$$\begin{split} \Im m \Big[CFF(\xi, \Delta^2) \Big] &= \pi \Big[GPD(\xi, \xi, \Delta^2) \pm GPD(-\xi, \xi, \Delta^2) \Big] \\ \Re e \Big[CFF(\xi, \Delta^2) \Big] &= \wp \int dx \frac{GPD(x, \xi, \Delta^2)}{x \pm \xi} \\ &\longrightarrow \wp \int d\xi' \frac{GPD(\xi', \xi', \Delta^2)}{\xi' \pm \xi} + D(\Delta^2) \end{split}$$

Physical Interpretation of GPDs:

 ξ=0: Probability densities of impact parameter b relative to Center-of-Momentum of proton:

 $H(x,0,\Delta^2) \Leftrightarrow q(x,\vec{b})$ $\tilde{H}(x,0,\Delta^2) \Leftrightarrow \Delta q(x,\vec{b})$

• x= ξ : $H(\xi, \xi, \Delta^2)$ - $H(-\xi, \xi, \Delta^2)$, E, etc.

- 2-d Fourier-transform $\Delta_{\perp} \leftrightarrow \mathbf{r}$
- Transition amplitude from longitudinal momentum 0 to $2\xi/(1+\xi)$ at fixed impact parameter **r** relative to CM of *spectators*.
 - Not a positive definite density, but still an image.
- Directly measurable
- Expect size shrinks as $\xi \rightarrow 1$
- Different profiles for *u*, *d*, *glue*,...

Tomography with Generalized Parton Distributions (M. Burkardt)

b

C. Hyde — Lecture

- $H(x,t)\gamma^{\mu} + E(x,t)\sigma^{\mu\nu}\Delta_{\nu}$
 - Proton size shrinks as $x \rightarrow 1$.
 - Spatial separation of upand down-quarks in a transversely polarized proton
- Spin-Flavor dependence to Proton size & profile.
 - up and down quarks separate in transversely polarized proton

$$\varepsilon_f(x,b_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{i\Delta_{\perp} \cdot b_{\perp}} E_f(x,\Delta_{\perp})$$

$$q_X(x,b_{\perp}) = h_q(x,b_{\perp}) + \frac{1}{2M} \frac{\partial}{\partial y} \varepsilon_q(x,b_{\perp})$$

APCTP-2018

Exploiting the harmonic structure of DVCS with polarization

k

φ

 \mathbf{Z}

The difference of cross-sections is a key observable to extract GPDs

With polarized beam and unpolarized target: $\Delta \sigma_{LU} \sim \sin \varphi \left\{ F_1 H + \xi (F_1 + F_2) \tilde{H} + (t / 4M^2) F_2 E \right\} d\varphi$

With unpolarized beam and Long. polarized target: $\Delta \sigma_{UL} \sim \sin \varphi \left\{ F_1 \tilde{H} + \xi (F_1 + F_2) H + (t / 4M^2) F_2 E \right\} d\varphi$

With unpolarized beam and Transversely polarized target:

$$\Delta \sigma_{UT} \sim \cos \varphi \sin(\phi_s - \varphi) \left\{ (t / 4M^2) F_2 H - (t / 4M^2) F_1 E + \dots \right\} d \phi$$

Separations of CFFs $H(\pm\xi,\xi,t)$, $\widetilde{H}(\pm\xi,\xi,t)$, $E(\pm\xi,\xi,t)$,...

Measuring GPDs

- HERA (2001 – 2007)
- HERMES (2001 – 2007)
- JLab 6 GeV (2001 – 2012)
- JLab 12 GeV (2014 –
- COMPASS (2016 –
- EIC (2025+?

 $e p \rightarrow e p \gamma$

APCTP-2018

HERMES overview

27.6 GeV e+/e- HERA beam

M. Contalbrigo

DIS 2011, 13th April 2011, Newport News

HERMES summary

- averaged over
 Q² and t
- Transversely polarized H⁻ target \rightarrow sensitivity to $E(\xi,\xi,\Delta^2),$ $\xi \approx 0.1$

APCTP-2018

DVCS: JLab Hall A 2004, 2010, 2014-2016 L≥ 10³⁷ cm²/s

Precision cross sections

- Test factorization
- Calibrate Asymmetries

16chan VME6U: ARS 128 Digital Trigger Validation e,e')X HRS trigger

208 PbF₂

2. Hyde — Lecture 1

→ e⁻

Hall A Results: Scaling Tests

Q²=2.3 GeV², x_{Bj}=0.36, t=-0.23 GeV²

PRL**97**:262002 (2006) C. Muñoz Camacho, *et al.*, PRC 92, 055202 (2015) M.Defurne, *et al.*,

- Empirical extraction
 - Leading-twist (GPD);
 - Higher-twist terms
- Test Q²-independence of GPD terms

Hall A: $H(e,e'\gamma)$ $x_B = 0.36, Q^2 = 1.5, 1.75, 2.0 \text{ GeV}^2$ M.Defurne *et al., "A Glimpse of Gluons",* Nat. Comm.**8** (2017)

♦ Q² = 1.75

- E_e = 4.455 (left), 5.55 (right)
 GeV
- $d^{4}\sigma/[dQ^{2}dx_{B}dtd\phi_{\gamma\gamma}]$ $\Delta^{4}\sigma = d^{4}\sigma(h=+) - d^{4}\sigma(-)$
- Solid Grey Line = KM2015
- Dashed: Leading Twist / Leading Order (LT/LO) fit with V. Braun Kinematic Twist-4 (t/Q²) constrained by LO/LT:
 - Global fit at each −t :
 3⊗Q² & 2⊗E_e
 - Poor χ^2

Two Fit-Scenarios [Using V. Braun et al, PRD 89, 074022 (2014)]

LO/LT + Twist-3 + Kinematic Twist-4

 $\mathbb{H}(x,\xi,t), \quad \mathbb{H}(x,\xi,t)$

LO+ NLO (gluon transversity) + Kinematic Twist-4

`Global' Fit: $Q^2=1.5$, 1.75, 2.0 GeV² & E_e = 4.45, 5.55 GeV Displayed at $Q^2 = 1.75$ for -t = 0.030 GeV²

Identical fit (blue 1) for either: Twist-3 or NLO (gluon) scenarios. Both fits have Kinematic Twist-4 contribution constrained from Twist-2 component of fit

E07-007 `Global' Fit Separations of Re,Im[DVCS⁺BH], |DVCS|²

 $-t = 0.030 \text{ GeV}^2$ (of three *t*-bins): Displayed at Q² = 1.75

Total Fit (previous slide blue) Sum of Pink (LO+NLO) OR Sum of Cyan (LO+HT)

Model dependence, but full measurement of interference: amplitude & phase

DVCS in CLAS @ 6 GeV

H(e,e'γp)
 Longitudinally polarized NH₃ target.

• Add:

5 Tesla Solenoid 420 PbWO₄ crystals :

~10x10x160 mm³ APD+preamp readout Orsay / Saclay / ITEP / Jlab

CLAS 6 GeV: Exclusivity and Kinematics

• H(e,e'γp')x

Overcomplete
 triple
 coincidence

- Example angular distribution of Beam Spin Asymmetry
 - •One (Q²,x_B) bin
 - •Two *t*-bins.

CLAS DVCS (unpolarized Target)

K.S. Jo, F.-X Girod, *et al.*, Phys.Rev.Lett. 115 (2015) 21, 212003

Model-dependent extraction of Re and Im parts of the $H(\xi,\xi,t)$ Compton form Factor (unpolarized GPD)

The pressure distribution acting on quarks in the proton

 $\int x \left[H(x,\xi,t) - H(x,0,t) \right] dx = \frac{4}{5} \xi^2 d_1(t)$

V.Burkert, L.Elourdrhiri, F.X.Girod, Nature **557** (2018) 396

GPDs: JLab->EIC, C.Hyde

• On to to 11 GeV!

APCTP-2018

GPDs: JLab->EIC, C.Hyde

Hall C:NPS

magnet

NSF MRI + JLab

PbWO4 + Sweep

18 June 2018