CLAS12 First Physics Run: Jan 11-May 7 2018

- 0.3% of data analyzed.
- Calibrations in continuous progress
- More data in Fall 2018

CLAS12 A_{UL} projections for protons

CLAS 12 Time-Like Compton Scattering $\gamma p \rightarrow p e^+ e^-$

- Two bins in s
- Lowest bin in Q'²
- t-dependence of Interference observable
- Illustrative GPD models

Statistical uncertainties for 100 days at a luminosity of 10³⁵ cm⁻²s⁻¹

Pseudo-Scalars

JLab Hall A: Cross section separation:

- Longitudinally (Coulomb) and transversely polarized virtual photons H(e,e' π^0)p and D(e,e' π^0)pn
- $\sigma_T >> \sigma_L$ (naïve factorization predicted $\sigma_L >> \sigma_T$)
- JLab CLAS: σ_T + ε σ_L for H(e,e' p π⁰), H(e,e' p η)
 σ_T + ε σ_L >> σ_L [naïve collinear factorization].
- Helicity flip meson DA enhanced by χ SB \rightarrow coupling to nucleon transversity GPD: $\langle \pi(q') | \overline{\psi} \sigma^{+-} \psi | 0 \rangle \otimes \mathcal{H}_T$
 - S. Goloskokov, P. Kroll, Eur. Phys. J. A 47, 112 (2011).
 - S. Ahmad, G. R. Goldstein, and S. Liuti, Phys. Rev. D 79, 054014 (2009).

Hall A: Deep π^0 , $E_e = 7.4$ GeV $H(e,e'\gamma\gamma)X$

[Flavor Spin]-Structure Separation

Vector mesons

- ϕ : JLab12 kinematics, predictions:
 - Gluon GPDs + ≤20% gluon⊗strange
- J/Psi: seen in Hall D.
 - Threshold production \rightarrow large $-t_{min}$.
 - CLAS12 search for LHCb J/ $\psi \otimes p$ states

• ρ, φ

- Slow approach to longitudinal dominance in HERA ρ data
- Unexplained enhancement in ρproduction at low W² in CLAS data.
 - Helicity violating amplitudes → Transversity GPDs à la pseudo-scalars?
- ω: strong violation of SCHC @ CLAS

GPDs: JLab->EIC, C.Hyde

 $\gamma' \rho \rightarrow \rho^{0}$

Deep ϕ Deep p, S. Goloskokov, P. Kroll EPJC 50 (2007) 829 $e p \rightarrow e p \rho$ $e p \rightarrow e p \phi$ $ep \rightarrow ep \phi$ Leading $\begin{bmatrix} qu \\ d\phi \\ \uparrow d\phi \end{bmatrix}^{1} t 0^{1}$ Order z _[(y ًp->ρp) [nb] 5 ل⁽(¢⁺−−⁴b) [hb] 10² Sudakov 10¹ suppression 10°

10

8 10

 $Q^2 ~[{
m GeV}^2]$

6

4

 $\overline{20}$

40

Vector and pseudo-scalar mesons show evidence for Hard/Soft separation -> [nucleon structure] \otimes [finite transverse size $\gamma^* \rightarrow$ meson amplitude].

6 810

4

20

W[GeV]

40 60 100

Strong corrections, new amplitudes for $Q^2 \le 10 \text{ GeV}^2$.

ZEUS (□), H1 (■), CLAS (○)

E665 (\triangle), HERMES (\bullet), CORNELL (\blacktriangle)

10¹

6 810

4

 $Q^2 = 4 \,\mathrm{GeV}^2$

20

W[GeV]

40 60 100

Exclusive ϕ : **CLAS12** experiment

- *t*-dependence of 6 GeV ϕ data consistent with gluonic radius measured at high energies Extrapolation of HERA, FNAL J/ψ results
- CLAS12: Test reaction mechanism and harden GPD-based description

When does *t*-slope become independent of Q^2 ?

How does W-dependence change with Q^2 ?

L/T ratio from vector meson decay and $s\mathchar`-\mbox{channel}$ helicity conservation

• CLAS12: Extract *t*-dependence of gluon GPD at x = 0.2 - 0.5

Obtained from relative *t*-dependence of $d\sigma_L/dt$

First accurate gluonic image of nucleon at large x!

What about the Ji Sum-Rule?

- $\lim_{t\to 0} \int x dx [H_f(x,\xi,t) + E_f(x,\xi,t)] = 2 J_f$
 - Skewing effects, Extracting E?
 - u,d flavor separations from proton, neutron
 - $E^{(n)}$ dominates unpolarized $n(e,e'\gamma)n \rightarrow CLAS12$ RG-B
 - E^(p) requires transversely polarized targets
 - HD_{ice} for CLAS12
 - NH₃, ³He with SOLiD or TCS?
 - Glue from Deep ϕ at JLab12 and Deep ϕ & J/ ψ at EIC
 - ~50% of momentum sum rule comes from gluons
 - ~50% of gluon momentum is at $x_q > 0.1$
 - Important role for JLab12!

Constraints on Ji Sum Rule

- $H_f(x,0,t)$ valence essentially known from fits to $F_{1f}(-t) \otimes q_f(x)$ Diehl (2013), Ahmad (2007)
 - Measure $H_f(x,x,t) \rightarrow Determines DD Profile function$
 - Calibrate "skewing effect"
- $E_f(x,0,t)$ constrained from $F_{2f}(-t)$ and assumption $e_f(x)$ does not change sign.
 - Test this assumption
 - x≈0.1 COMPASS ⊕ x≈0.4 JLab12 ⊕ Lattice QCD ⊕ ...
- Transverse polarization data + Theory + Models → Tight constraint on q - q
 contribution to Ji Sum Rule from JLab 12 GeV era.
- Need the EIC to constrain the sea & gluons

Conclusions

- Spatial Imaging is possible (in 1+2 dimensions)
- New experimental and theoretical tools are helping us to understand how QCD generates
 - The mass of ordinary matter (98%)
 - The spin of the hadrons: proton, neutron, vector mesons...
 - proton spin ~25% from spin of quarks
 - How much is gluons? How much is Orbital Angular Momentum.
 - Spatial distribution of charge and matter in hadrons. (non-trivial flavor, momentum-fraction dependence)
 - Nuclear Binding (Lecture 3)
 - Why is the deuteron (*np*) bound but *nn* not?
 - Why are ⁴He, ⁶He(β⁻ 1sec), ⁸He(β⁻ 0.1sec) bound, but not ⁵He ?

Backup Slides

TCS Deep Virtual Meson Production

DVCS, GPDs, Compton Form Factors(CFF), and Lattice QCD

GPDs at JLab: Future Upgrades

(Mostly motivated by non-GPD topics)

- RICH Detector (partial) in CLAS 12: π/K id
 - INFN participation
- Solenoidal Large Intensity Detector (SoLID) in Hall A (CLEO Solenoid)
 - TCS, J/Ψ
 - Chinese participation
- Super BigBite Spectrometer
 - Dipole from BNL
 - Funded, under construction
 - GEM trackers for high rates

DVCS-Deuteron, Hall A

• E03-106:

- D(e,e'γ)X ≈
 d(e,e'γ)d+n(e,e'γ)n+p(e,e'γ)p
- Sensitivity to E_n(ξ,ξ,t) in Im[DVCS*BH]

- Reduce the systematic errors
 - Expanded PbF₂ calorimeter for π⁰ subtraction
- Separate the *Re[DVCS*BH]* and *|DVCS|²* terms on the neutron via two beam energies.

APCTP-2018

Form Factors and Charge Distributions, revisited

- Dirac Form Factor $F_1(Q^2)$:
 - 2-D Fourier transform of the charge distribution of the nucleon (proton or neutron)
 - Integrate over the momentum axis (M. Burkardt)
- Flavor Separations

 $F_1^{(u)}(Q^2) - F_1^{(\overline{u})}(Q^2)$

 $F_1^{(d)}(Q^2) - F_1^{(d)}$

C

