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We now switch to scattering in the electrostatic field: essentially everything is the same as in the case of
gravity, except that the force can be both attractive and repulsive, the latter being the case for alpha particles
and a positively charged nucleus.  Below is a sketch of this process with the relevant kinematic variables,
the impact parameter b and the scattering angle :

Exercise 2:  Prove that the equations of motions of the alpha particle in the electric field of the nucleus,
expressed in terms of b , , total energy E (which is conserved since the scattering is elastic) and charge of
the nucleus e' is:

Cross section
For a beam of particles hitting a target, the cross section is defined as

The product of cross section and the incident flux tells us the total number of particles that will be
scatterered by the target.  The cross section is a property of the physical process itself and does not depend
on the incident flux (which is an external input).  For this reason the cross section is the preferred type of
quantity reported by experimenters in atomic, nuclear and particle physics, and the preferred type of
quantity calculated by theorists in those disciplines.

Obviously, the unit of cross section is area, so according to SI system it must be meter-squared.  However a
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how one can measure and analyze the internal structure of hadrons.  The 
basic idea is the scattering of electrons to the target hadron.  Suppose that the 
energy and momentum of the electron before and after the scattering are 

given by ),,( and ),( p
c
Ep

c
E

ʹ
ʹ !!

 respectively, and the spatial size of the 

target hadron is given by R . Then, in the energy range ,
R
cE !

<  the 

wavelength of the electron beam is larger than the target size and the target 
would be seen as a point object. Thus, the differential cross section is given  
by the Rutherford scattering formula in this case; 
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where θ is the scattering angle.  As the energy gets larger so that ,
R
cE !

>  

the electron beam has the shorter wavelength than the target size and the 
internal structure of the target would be revealed.  The point electric charge e 
of the target should be replaced by the charge density );(r!ρ  
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Thus, the differential cross section of the point object is modified by 
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where )( 2qF  is called the form factor and given by the Fourier 
transformation of the charge density in the non-relativistic limit, i.e. 
 

).()( 32 rerdqF rqi !!! !!
ρ⋅∫=             (6.12) 
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Stability of Nuclear Matter 
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•  Relativity is crucial for the stabilization of nuclear matter. 
•  Proton has quarks and gluons inside.  
•  Quantum Chromodynamics (QCD) governs them. 





Proton Charge Form Factor LFD in Exclusive Processes
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Feynman Diagram of Electron-Proton Scattering 
LFD in Exclusive Processes
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1)( 2
1 =qF               (6.18) 

and 
,0)( 2

2 =qF               (6.19) 
 

for any q2 .  Therefore, the two form factors )( and )( 2
2

2
1 qFqF  represent 

the internal structures of the target deviated from the simple point-like 
structure.  Considering the lowest order Feynman diagram of the electron 
and proton elastic scattering given by Fig. 6.4, one can obtain the following 
invariant amplitude; 

 
Fig. 6.4 : Feynman Diagram of Electron-Proton Scattering. 

 

,
)(

M 2
31

2
Hadron

lepton
e Jj
pp

g
µ

µ

−
−=            (6.20) 

where 
)()( 13 pupujlepton

µµ γ=             (6.21) 

and 
).()( 24 pupuJ Hadron µµ Γ=             (6.22) 

 
The condition of the gauge invariance of Eq. (6.20) yields the conservation 
of both the leptonic and hadronic currents, i.e., 
 

.0== Hadron
lepton Jqjq µ

µµ
µ             (6.23) 

 
By squaring the invariant amplitude and taking the spin average, we obtain 
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Here, the momentum transfer of the electron scattering is given by 
 

ppq !!!
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and the four momentum transfer square in the relativistic extension is given 
by 
 

.)(

)(

2
2

22

pp
c
EE

ppq

!!
−ʹ−⎟

⎠

⎞
⎜
⎝

⎛ −ʹ
=

−ʹ=

            (6.14) 

 
Note that in Eq. (6.11) we put the argument of the form factor as q2 rather 
than  2q!  because we consider here the relativistic collision.  For the spin 1/2 
target such as the proton, more form factors are involved to represent the 
internal structure because of the spin content of the target.  Due to the gauge 
invariance and the parity conservation in the electromagnetic interaction, the 
most general electromagnetic vertex of the proton (or any other spin 1/2 
object) is given by 
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where the two form factors F1 and F2 are called the Dirac and Pauli form 
factors, respectively, and normalized by the conditions at ;02 =q  
 

(Charge)      1)0(1 =F              (6.16) 
and 

moment). magnetic (Anomalous    7928.1)0(2 =F  (6.17) 
 

In Eq. (6.15), M is the mass of the proton (or target) and ].,[
2

νµµν γγσ
i

=   

If the target is a point-like object such as the electron, then the form factors 
are fixed to be 
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Differential Cross Section of Elastic Scattering 
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Deep Inelastic Scattering (DIS) 
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Note that in Eq. (6.11) we put the argument of the form factor as q2 rather 
than  2q!  because we consider here the relativistic collision.  For the spin 1/2 
target such as the proton, more form factors are involved to represent the 
internal structure because of the spin content of the target.  Due to the gauge 
invariance and the parity conservation in the electromagnetic interaction, the 
most general electromagnetic vertex of the proton (or any other spin 1/2 
object) is given by 
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where the two form factors F1 and F2 are called the Dirac and Pauli form 
factors, respectively, and normalized by the conditions at ;02 =q  
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If the target is a point-like object such as the electron, then the form factors 
are fixed to be 
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for any q2 .  Therefore, the two form factors )( and )( 2
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1 qFqF  represent 

the internal structures of the target deviated from the simple point-like 
structure.  Considering the lowest order Feynman diagram of the electron 
and proton elastic scattering given by Fig. 6.4, one can obtain the following 
invariant amplitude; 
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Eq. (6.38) is known as the Rosenbluth separation38 because it is a crucial 
equation to separate Dirac and Pauli form factors.  If the electron energy 
becomes large, then the target proton does not remain as the proton but 
breaks into small debrises and the scattering is no longer elastic.  For the 
inelastic scattering, the Feynman diagram given by Fig. 6.4 may be replaced 
by Fig. 6.5. 

 
Fig. 6.5 : Electron-Proton Inelastic Scattering 
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the internal structures of the target deviated from the simple point-like 
structure.  Considering the lowest order Feynman diagram of the electron 
and proton elastic scattering given by Fig. 6.4, one can obtain the following 
invariant amplitude; 
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Note that in Eq. (6.11) we put the argument of the form factor as q2 rather 
than  2q!  because we consider here the relativistic collision.  For the spin 1/2 
target such as the proton, more form factors are involved to represent the 
internal structure because of the spin content of the target.  Due to the gauge 
invariance and the parity conservation in the electromagnetic interaction, the 
most general electromagnetic vertex of the proton (or any other spin 1/2 
object) is given by 
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where the two form factors F1 and F2 are called the Dirac and Pauli form 
factors, respectively, and normalized by the conditions at ;02 =q  
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If the target is a point-like object such as the electron, then the form factors 
are fixed to be 
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where the structure functions 21  and WW  are the functions of q2 and the 
Bjorken variable39 
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Even though the structure functions are unknown, one can predict them by 
considering a model based on the compositeness of the proton.  A typical 
model to analyze the structure functions is the Parton model. 
 

 
Fig. 6.6 : Parton Model 

 
In this model, the electron-proton inelastic scattering is replaced by the 
electron-parton elastic scattering by assuming that the proton is made of 
partons.  As we will find from the experimental data, the partons are actually 
quarks.  With this assumption, one can consider the probability function 
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)( ii zf  as the probability to find the i’th parton with the momentum fraction 

iz  inside the proton, i.e. 
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Using Eqs. (6.48) and (6.49), Eqs. (6.46) and (6.47) are given by 
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Thus, in the parton model, the structure functions given by Eq. (6.45) are 
found as 
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Parton model picture of DIS:
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Interestingly, even though 21  and WW  are functions of q2 and x, the parton 
model predicts the scaling of structure functions only with the Bjorken 
variable x.  The prediction of scaling behavior is a direct consequence of the 
point-like parton assumption.  If the target proton is made of point-like 
constituents, then the structure functions must have the scaling behavior.  To 
see this more clearly, let us define ),( and ),( 2

2
2

1 qxFqxF  as follows; 
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In Fig. 6.7, ),( 2

2 qxF data are plotted for various q2 values.  As we see from 

these data, in the wide range of q2, ),( 2
2 qxF  clearly show the scaling 

behavior indicating that the proton is made of the more fundamental point-
like object, parton or quark.  By comparing Eqs. (6.54) and (6.55), one can 
easily find the relation 
 

),(2)( 12 xxFxF =              (6.56) 
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which is known as Callen-Gross relation40.  This relation is a direct 
consequence of the assumption that the parton has the spin-1/2.  As shown in 
Fig. 6.8, the Callen-Gross relation is in an excellent agreement with 
experimental data and supports that the parton has spin-1/2 and is actually 
quark.  More concrete evidence that the parton is actually quark can be 
observed by comparing the structure functions of proton and neutron. 
 

 
Fig. 6.7 : Scaling behavior of the structure function  2W  in deep inelastic scattering. 

Here the quantity  2 2 2
2( 2 ) ( , )/q Mc x W q x−  is plotted against 2 2(in GeV )/q c− , 

for 0 25.x = . 
 
By assuming that the proton is made of two up-quarks and one down-quark, 
one can predict from Eq. (6.55); 
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where u(x) and d(x) are the probability functions of u and d quarks. In the 
limit ,1→x  since, proton has twice more u quarks than d quark, one can 
predict that u(x) dominates over d(x),  i.e. 



● Figure shows F2 structure function for proton target. Although Q2 varies by two orders of
magnitude, in first approximation data lie on universal curve.

● Bjorken scaling implies that virtual photon is scattered by pointlike constituents (partons)
— otherwise structure functions would depend on ratio Q/Q0, with 1/Q0 a length scale
characterizing size of constituents.

3



The scaling behavior of  
the structure functions indicate  
that the proton is made of  
the more fundamental point-like  
object, parton or quark.  
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Fig. 6.8 : The ratio 1 22 /xF F  measured in SLAC electron-nucleon scattering 

experiments. For  spin-
1
2

 partons, with 2g = , a ratio of unity is expected in the limit 

of large 2q - the Callan-Gross relation. Data compiled from published SLAC data. 

 
However, using the isospin symmetry, i.e. du⇔  when ,np⇔  one can 
also predict 
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Kinematics of DIS

Experimental facts

Naive parton model
● e-mu cross-section
●Naive parton model
●Towards a field theory

Bjorken scaling from field theory

Scaling violations

Factorization

CERN

François Gelis – 2007 Lecture I / III – X Hadron Physics, Florianopolis, Brazil, March 2007 - p. 26/73

Naive parton model
■ This model provides an explicit realization of Bjorken scaling
■ The relation F2 = 2xF1 implies that the cross-section
between a longitudinally polarized photon and the nucleon is
suppressed compared to that of a transverse photon
◆ The observation of this property provides further support of the
fact that the relevant constituents are spin 1/2 fermions

◆ If the partons were spin 0 particles, we would have

W µν
i ∝ (2xF P µ + qµ)(2xF P ν + qν)

and it is easy to check that this leads to F1 = 0 (σtransverse = 0)
■ Caveats and puzzles :

◆ The parton model assumes that partons are free inside the
nucleon. How can this be true in a strongly bound state ?

◆ One would like to have a field theoretical description of what is
going on, including the effect of interactions, quantum
fluctuations, etc...
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1 qxFqxF  as follows; 
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In Fig. 6.7, ),( 2

2 qxF data are plotted for various q2 values.  As we see from 

these data, in the wide range of q2, ),( 2
2 qxF  clearly show the scaling 

behavior indicating that the proton is made of the more fundamental point-
like object, parton or quark.  By comparing Eqs. (6.54) and (6.55), one can 
easily find the relation 
 

),(2)( 12 xxFxF =              (6.56) 
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which is known as Callen-Gross relation40.  This relation is a direct 
consequence of the assumption that the parton has the spin-1/2.  As shown in 
Fig. 6.8, the Callen-Gross relation is in an excellent agreement with 
experimental data and supports that the parton has spin-1/2 and is actually 
quark.  More concrete evidence that the parton is actually quark can be 
observed by comparing the structure functions of proton and neutron. 
 

 
Fig. 6.7 : Scaling behavior of the structure function  2W  in deep inelastic scattering. 

Here the quantity  2 2 2
2( 2 ) ( , )/q Mc x W q x−  is plotted against 2 2(in GeV )/q c− , 

for 0 25.x = . 
 
By assuming that the proton is made of two up-quarks and one down-quark, 
one can predict from Eq. (6.55); 
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where u(x) and d(x) are the probability functions of u and d quarks. In the 
limit ,1→x  since, proton has twice more u quarks than d quark, one can 
predict that u(x) dominates over d(x),  i.e. 
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one may predict that u(x) dominates over d(x) as x ! 1. 
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Fig. 6.8 : The ratio 1 22 /xF F  measured in SLAC electron-nucleon scattering 

experiments. For  spin-
1
2

 partons, with 2g = , a ratio of unity is expected in the limit 

of large 2q - the Callan-Gross relation. Data compiled from published SLAC data. 
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Due to the isospin symmetry,   
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Therefore, the ratio of pn FF 22 /  is given by the charge-square ratio of d to u;  
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   (6.60) 

 
This is in a good agreement with experimental data shown in Fig. 6.9, 

indicating that the u and d quarks have the fractional charges ,
3
1 and 

3
2

−  

respectively. 
 

 
Fig. 6.9 : The ratio 2 2/eN ePF F  as a function of x  
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 3.5 Further DIS Experiments

• Fixed target µN scattering.
  Higher beam energies from muons produced in pN −> π, Κ −> µ
  Today, most precise data (reaching 1-2%) from

   + newer dedicated experiments on polarized structure functions

• Fixed target νN scattering

• HERA ep collider                                             DESY    1992-2007

BCDMS (Bologna-Cern-Dubna-Munich-Saclay)    CERN SPS      1978–85   120 – 280 GeV 
NMC (New Muon Collaboration)                          CERN SPS      1986–89     90 – 280 GeV
E665                                                            FNAL Tevatron   1987–92       470 GeV

CDHSW (CERN-Dortmund-Heidelberg-Saclay-Warsaw)  CERN     1976–84        400 GeV
CCFR (Chicago-Columbia-Fermilab-Rochester)               FNAL     1984–88    400-600 GeV
NuTeV (based on CCFR detector)                             FNAL     1996–97

• To test Bjorken scaling: go to higher Q²
• To study sea quarks: go to small Bjorken x

       Q² = x y s            go to higher s

proton energy

muon energy

  

Scaling violation
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Region of 1st SLAC 
measurement (1972)



 

3.3 Structure functions – Nucleon structure 
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Scaling Violation and DGLAP Equation

● Bjorken scaling is not exact. This is due to enhancement of higher-order contributions from
small-angle parton branching, discussed earlier.

● Incoming quark from target hadron, initially with low virtual mass-squared −t0 and carrying
a fraction x0 of hadron’s momentum, moves to more virtual masses and lower momentum
fractions by successive small-angle emissions, and is finally struck by photon of virtual
mass-squared q2 = −Q2.

● Cross section will depend on Q2 and on momentum fraction distribution of partons seen by
virtual photon at this scale, D(x, Q2).

● To derive evolution equation for Q2-dependence of D(x, Q2), first introduce pictorial
representation of evolution, also useful for Monte Carlo simulation.
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QCD explains observed scaling violation

Large x: valence quarks Small x: Gluons, sea quarks

Q2 ↑ ⇒  F2 ↓ for fixed x Q2 ↑ ⇒  F2 ↑ for fixed x

  

Quantitative description of scaling violation 
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DGLAP evolution equation 
(Dokshitzer, Gribov, Lipatov, Altarelli, Parisi, 1972 – 1977)

Changing to the quark densities:
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quarks q(x) are surrounded 
by softer quarks

  

Evolution of parton densities  (quarks and gluons)

evolution of quark 
density with lnQ2 z x z

x

Splitting functions:  Probability that a parton (quark or gluon) emits 
a parton (q, g) with momentum fraction ε=x/z of the parent parton.
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Splitting functions are calculated as power series in αs up to a given order:
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DGLAP Evolution (“symbolic”):
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DGLAP Evolution (“symbolic”):
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Bjorken x dependence of parton densities:

DGLAP: 
Q2 dependence at given x        
but no prediction for the x 
dependence of the parton 
densities.
Status in 1991 (pre HERA):  
Data limited to a not very 
small x region. Models to 
extrapolate to smaller x differ 
significantly. 

Measure structure functions 
(parton densities)  at low x.
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Figure 19.2: The proton structure function F p
2 given at two Q2 values (6.5 GeV2

and 90 GeV2), which exhibit scaling at the ‘pivot’ point x ∼ 0.14. See the captions
in Fig. 19.8 and Fig. 19.10 for the references of the data. The various data sets have
been renormalized by the factors shown in brackets in the key to the plot, which
were globally determined in a previous HERAPDF analysis [13]. The curves were
obtained using the PDFs from the HERAPDF analysis [14]. In practice, data for
the reduced cross section, F2(x, Q2) − (y2/Y+)FL(x, Q2), are fitted, rather than F2

and FL separately.

In QCD, the above processes are described in terms of scale-dependent parton
distributions fa(x, µ2), where a = g or q and, typically, µ is the scale of the probe Q. For
Q2 ≫ M2, the structure functions are of the form

Fi =
∑

a

Ca
i ⊗ fa, (19.21)

where ⊗ denotes the convolution integral

C ⊗ f =

∫ 1

x

dy

y
C(y) f

(

x

y

)

, (19.22)

and where the coefficient functions Ca
i are given as a power series in αs. The parton

distribution fa corresponds, at a given x, to the density of parton a in the proton
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Figure 19.4: Kinematic domains in x and Q2 probed by fixed-target and collider
experiments. Some of the final states accessible at the LHC are indicated in
the appropriate regions, where y is the rapidity. The incoming partons have
x1,2 = (M/14 TeV)e±y with Q = M where M is the mass of the state shown in
blue in the figure. For example, exclusive J/ψ and Υ production at high |y| at the
LHC may probe the gluon PDF down to x ∼ 10−5.

representation of the probability measure in the space of PDFs with the use of neural
networks. Fits are performed to a number of “replica” data sets obtained by allowing
individual data points to fluctuate randomly by amounts determined by the size of the
data uncertainties. This results in a set of replicas of unbiased PDF sets. In this case
the best prediction is the average obtained using all PDF replicas and the uncertainty is
the standard deviation over all replicas. It is now possible to convert the eigenvectors of
Hessian-based PDFs to Monte Carlo replicas [60] and vice versa [61]. PDFs are made

October 4, 2016 22:11



  

Large increase of F2(x) for 
very small x

When does the rise stop?       
   will be discussed later

Fixed Traget

2-3% precision for F2
at low-medium Q²

  

! ! ! " #$
! "

described by QCD evolution

5 orders of magnitude
in x and Q²

valence quarks

sea quarks



  

Structure of the proton as seen by HERA

!

"#

  

PDF fits

Many options - uncertainties:

• Which datasets? [HERA only? Also some fixed target? Also pp data?]
• Which order of perturbation theory [LO, NLO, NNLO]?
• Form of parameterization q(x), g(x) [How many parameters?]

        characterizes at x -> 0        characterizes at x -> 1         “fine tuning”    
          sea: a < 0, valence a>0       always b > 0                        weakly x-dependent function

• Which PDFs? For each flavour? Some combination?
• Pure DGLAP or some extention/alternative?
• Start-up scale Q²
• Sum rules
• Heavy quark treatment [What to do with c(x), b(x) at low Q²?]

H1 and ZEUS do their own fits based mostly on their own data.
Theor. groups (e.g. CTEQ, MRST/MSTW,...) do combined fits of many datasets
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Structure of the proton as seen by HERA
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Current knowledge of PDFs

!

"#

Uncertainties:
• u-density: ~3%
• d-density: ~10%
• g-density: 10-20% and more

u is better known than d
due to el. charge (squared):

F2 = x(8/9 u + 1/9 d + ...)

gluon is known worse,
as it is determined from
scaling violations (derivatives)

How to separate valence, sea, flavours from HERA only?

  

Electroweak effects at high Q²
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Figure 19.5: The bands are x times the unpolarized (a,b) parton distributions
f(x) (where f = uv, dv, u, d, s ≃ s̄, c = c̄, b = b̄, g) obtained in NNLO NNPDF3.0
global analysis [56] at scales µ2 = 10 GeV2 (left) and µ2 = 104 GeV2 (right), with
αs(M2

Z) = 0.118. The analogous results obtained in the NNLO MMHT analysis can
be found in Fig. 1 of Ref [55]. The corresponding polarized parton distributions
are shown (c,d), obtained in NLO with NNPDFpol1.1 [15].
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