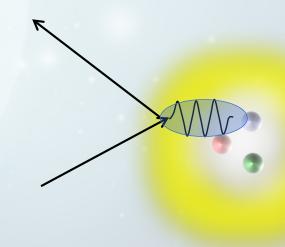
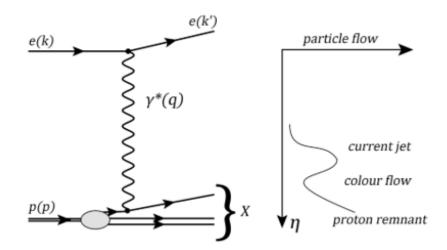
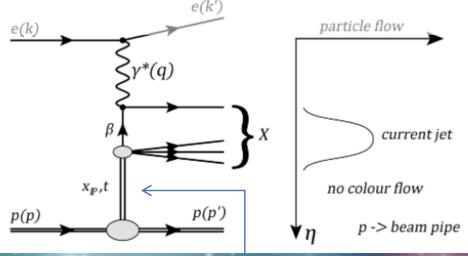

Why a high energy EIC to investigate low energy nuclear binding?


- II. High energy probe travels through nucleus at speed of light, interacting at equal light-cone time x⁺
 - Hard scattering scale results in perturbative dynamics:
 - LargeQ², and/or large p_T
 - Direct probe of quark-gluon structure of nuclear dynamics
 - Reconstruction of full nuclear final state constrains the initial state via principle of "Quantum Post-Selection"

The Tools of Deep Inelastic Scattering

•
$$\frac{\alpha_S(Q^2)}{\pi} = \frac{4}{(11 - 2N_f/3)} \ln \frac{Q^2}{\Lambda^2} \dots$$

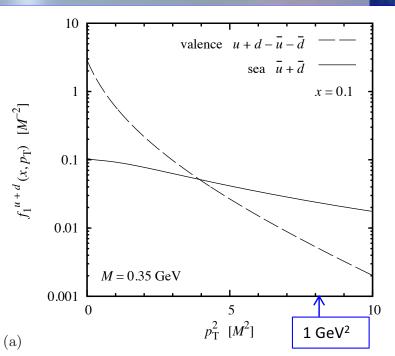

- Basic Variables: Q², x_{Bj}
 - $\alpha_s(Q^2)/\pi < 0.5$ for $Q^2 > 1$ GeV²
 - Transverse spatial resolution $\delta b \sim \hbar c / [Q^2]^{1/2}$
 - Longitudinal coherence length of virtual photon $\lambda \approx 1/(2Mx_{Bi})$
 - $x < 0.1 \iff \lambda \ge 1 \text{ fm}$


Final States: DIS & Diffractive DIS

Deep Inelastic Scattering (DIS)

Diffractive Scattering (DDIS)

~10% of HERA DIS events



Rapidity Gap: $\Delta \eta \ge 2$

- Proton Remnant:
- Di-quark/ tetra-quark color triplet
- Color octet

Correlations between Current & Target fragments

- Chiral Symmetry Breaking: Parton-parton correlations at $p_T \sim \Lambda \chi \simeq 1$ GeV.
- Coincident hadrons in target and current fragments, with correlated & spindependent p_T.
- Multiparton interactions in LHC pp collisions do not scale as average density

P. Schweitzer, Ch. Weiss, M. Strikman, JHEP **1301** (2013) 163

• Identify ion beam fragments over broad range of p_T

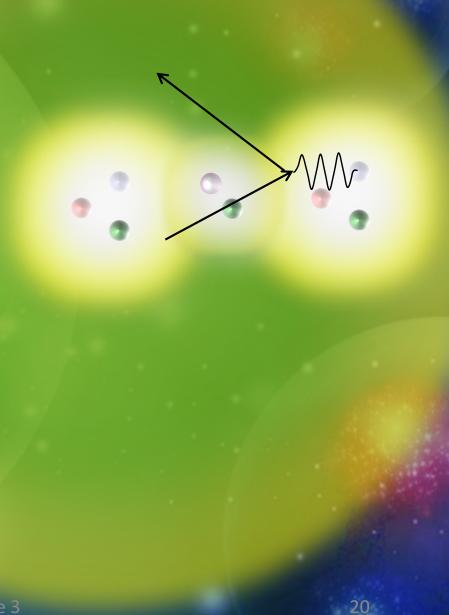
C. Hyde — Lecture 3

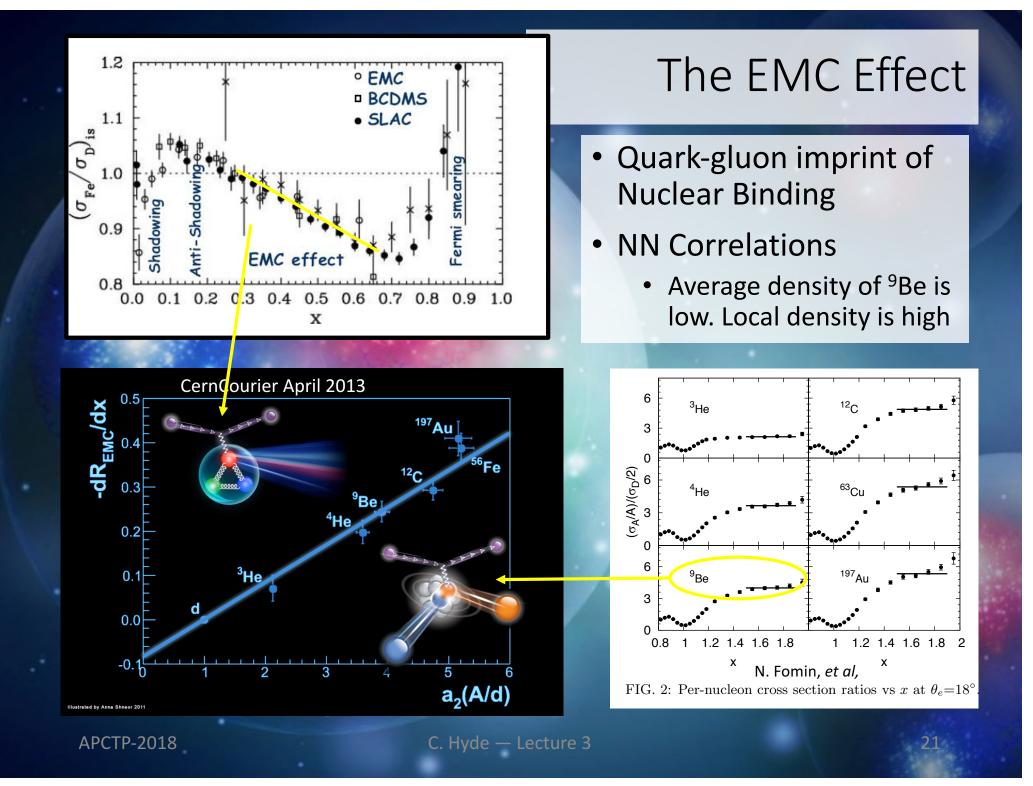
DIS and Many Body Nuclear Dynamics

- DIS at different x, Q² ranges probes particular configurations in the nucleus
- Forward tagging of spectator/recoil nucleons... to observe the dynamics of the active configurations.
- Illustrative Examples:

• x>1	Forbidden on free nucleon.
	Coherent NN, NNN interaction with large
	momentum sharing \rightarrow 6-quark bag states?
• 0.2< x < 0.7	Nuclear Binding, Short Range Correlations
• x ≈ 0.1	Anti-shadowing (enhancement): Hard Core of
	NN Force
• x < 0.1	Coherent Diffraction -> Shadowing: Coherence
	length ~ typical NN separation
• x <<< 0.1, $Q^2 \ge 1 \text{ GeV}^2$ Coherence -> Saturation Transition	

APCTP-2018


C. Hyde — Lecture 3

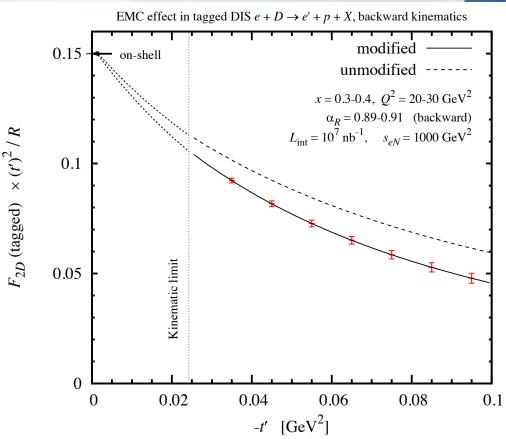

Nuclear Dynamics Probed by DIS: I

- Kinematic bound: $x_{B_i} < A$
- $x_{Bj} > 1$
 - Parton momentum fraction generated by interaction of at least two nucleons
 - [Color Octet]² states ?
- $x_{Bj} > 2$
 - Probe three body forces.

Nuclear Dynamics Probed by DIS: II

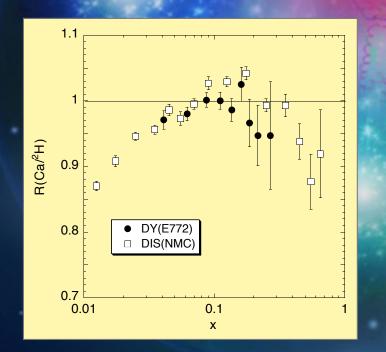
- 0.2< x_{Bj} < 0.8 EMC Effect
- Quark-Gluon structure of nuclear binding at scale $1/(2x_BM) \le 0.5$ fm
 - Incoherent over quarks in different nucleons or exchanged mesons
 - e.g. QMC model, NNinteractions generate strong σfield, which modifies average qstructure of nucleon

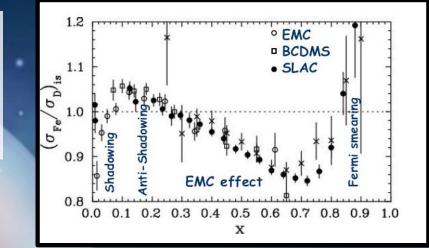
Nuclear Final State at EIC


- Naive spectator $p_i^{\mu} = \begin{bmatrix} \alpha_i \\ A \end{pmatrix} P_A^+, \mathbf{p}_{i,T}, p_i^$ kinematics: $\sum_{i=1}^{A} \alpha_i = A$ $\sum_{i=1}^{A} \mathbf{p}_{i,T} = 0$
- Fermi gas: $|\alpha_i 1| \approx p_F / M \approx 0.25$ $\mathbf{p}_{i,T} \leq p_F$
- In a heavy nucleus of momentum
 Z •(100 GeV/c), spectator neutrons, protons have laboratory momenta p ~ (100 GeV/c)Z/A
 (p_{||}, p_T) ≈ [α_i(40 GeV/c), p_{i,T}]

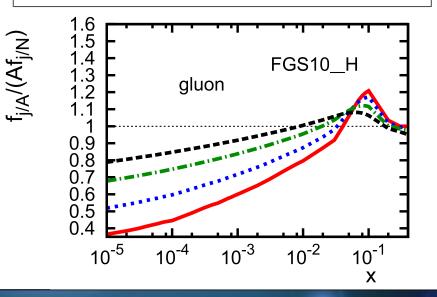
Forward Tagging!

DIS on the Deuteron: Spectator Tagging


- $\alpha_p \approx 1 = A \cdot (\text{spectator lightcone momentum fraction}),$ $\mathbf{p}_{p,T} \approx 0$
 - Spectator proton at ≈0° and ≈50 GeV/c
 - On-shell extrapolation of DIS on neutron
- Calibrate with ZDC tagging of spectator neutron
 - DIS on nearly on-shell proton
- EMC effect from highly off-shell nucleons
 - /1-α_P/> 0.2
 - EMC effect in Deuterium!

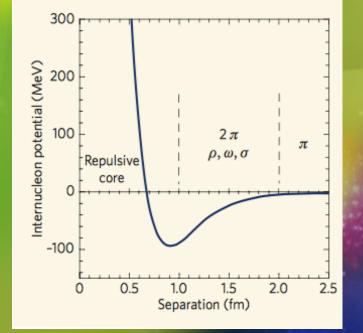


EMC Effect*: x=0.1 Anti-Shadowing

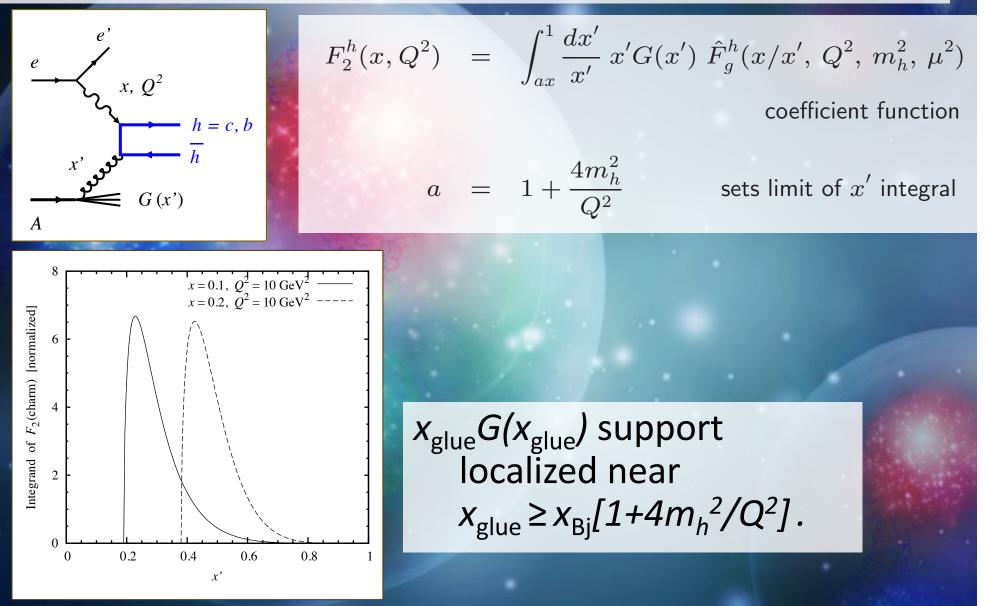

 Anti-shadowing is not anti-quarks! FermiLab Drell-Yan E722

• Anti-shadowing is glue

L. Frankfurt et al. / Physics Reports 512 (2012) 255-393


C.Hyde, Next Gen. Nucl. Phys

10–13 Feb 2016


24

Nuclear Dynamics Probed by DIS: III

- $x_{Bj} \approx 0.1$: "Anti-Shadowing"
 - $q(x) + \overline{q}(x)$ enhanced (DIS)
 - No $\overline{q}(x)$ enhancement in Drell-Yan $(p + p \rightarrow \mu^+ + \mu^- + X).$
 - Short distance NN-interaction from q-q-g exchange?
 - Look for predicted gluon antishadowing (enhancement in nuclei)
 - JLab LDRD program on open-charm in nuclear DIS
 - $\gamma^* + g \rightarrow c + \bar{c}$
 - Resolve separated vertex of D-meson decays to tag charm quark events

Tagging Photon-Gluon Fusion *via* Open Charm Production

C.Hyde, Next Gen. Nucl. Phys.

10–13 Feb 2016