
Why	a	high	energy	EIC	to	investigate	
low	energy	nuclear	binding?
II. High	energy	probe	travels	through	nucleus	at	

speed	of	light,	interacting	at	equal	light-cone	
time	x+
• Hard	scattering	scale	results	in	perturbative	dynamics:

• LargeQ2,	and/or	large	pT
• Direct	probe	of	quark-gluon	structure	of	nuclear	dynamics

• Reconstruction	of	full	nuclear	final	state	constrains	the	
initial	state	via	principle	of	“Quantum	Post-Selection”
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The	Tools	of	Deep	
Inelastic	
Scattering

• ,-(.
/)

0
= 2

(334567/9
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…

• Basic	Variables:	Q2,	xBj
• aS(Q2)/π	<0.5	for	Q2	>	1	GeV2

• Transverse	spatial	resolution
db ~	ℏ𝑐/[Q2]1/2
• Longitudinal	coherence	length	
of	virtual	photon	l ≈	1/(2MxBj)
• x	<	0.1		⬌ l ≥	1	fm
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Fig. 1. (Color online.) αs,g1 (Q )/π obtained from JLab (triangles and open stars) and
world (open square) data on the Bjorken sum. Also shown are αs,τ (Q )/π from
OPAL data, the GLS sum result from the CCFR Collaboration (stars) and αs,g1 (Q )/π
from the Bjorken (band) and GDH (dashed line) sum rules.

in a Q 2-range from 0.06 to 2.92 GeV2 [14]. Here, Q 2 is the square
of the four-momentum transfered from the electron to the tar-
get. Apart from the extended Q 2-coverage, one notable difference
between these data and those of Ref. [6] is that the neutron infor-
mation originates from the longitudinally polarized deuteron target
of CLAS while the previous data [15] resulted from the longitudi-
nally and transversally polarized 3He target of JLab’s Hall A [12].
The effective coupling αs,g1 is defined by the Bjorken sum rule ex-
pressed at first order in pQCD and at leading twist. This leads to
the relation:

αs,g1 = π

(
1 − 6Γ

p−n
1

g A

)
, (1)

where g A is the nucleon axial charge. We used Eq. (1) to ex-
tract αs,g1/π . The results are shown in Fig. 1. The inner error
bars represent the statistical uncertainties whereas the outer ones
are the quadratic sum of the statistical and systematic uncertain-
ties. Also plotted in the figure are the first data on αs,g1 from [5]
and from the world data of the Bjorken sum evaluated at ⟨Q 2⟩ =
5 GeV2 [16], αs,F3 from the Gross–Llewellyn Smith (GLS) sum
rule [17] measured by the CCFR Collaboration [18], and αs,τ [19].
See [5] for details. The behavior of αs,g1 is given near Q 2 = 0 by
the generalized GDH sum rule and at large Q 2, where higher twist
effects are negligible, by the Bjorken sum rule generalized to ac-
count for pQCD radiative corrections. These predictions are shown
by the dashed line and the band, respectively, but they were not
used in our analysis. The width of the band is due to the uncer-
tainty on ΛQCD.

The values for αs,g1 from the new data are in good agreement
with the previous JLab data. While the previous data were sug-
gestive, the freezing of αs,g1 at low Q 2 is now unambiguous and
in good agreement with the GDH sum prediction. At larger Q 2,
the new data agree with the world data and the results from the
Bjorken sum rule at leading twist.

We fit the data using a functional form that resembles the
pQCD evolution equation for αs , with an additional term mg(Q )

that prevents α f it
s,g1 from diverging when Q 2 → Λ2 and another

term n(Q ) that forces α f it
s,g1 to π when Q 2 → 0. Note that the lat-

Fig. 2. (Color online.) The effective coupling constant αs,g1 extracted from JLab
data, from sum rules, and from the phenomenological model of Burkert and Ioffe
[20]. The black curve is the result of the fit discussed in the text. The calcula-
tions on αs are: top left panel: Schwinger–Dyson calculations Cornwall [21]; top
right panel: Schwinger–Dyson calculations from Bloch et al. [24] and αs used in the
quark model of Godfrey–Isgur [27]; bottom left: Schwinger–Dyson calculations from
Maris–Tandy [25], Fischer et al. [23] and Bhagwat et al. [26]; bottom right: Lattice
QCD results from Furui and Nakajima [28].

ter constraint is a consequence of both the generalized GDH and
Bjorken sum rules [5]. Our fit form is:

α f it
s,g1 = γn(Q )

log(
Q 2+m2

g (Q )

Λ2 )
, (2)

where γ = 4/β0 = 12/(33 − 8), n(Q ) = π(1 + [γ /(log(m2/Λ2)(1 +
Q /Λ) − γ ) + (bQ )c]−1) and mg(Q ) = (m/(1 + (aQ )d)). The fit
is constrained by the data, the GDH and Bjorken sum rules at
intermediate, low and large Q 2 respectively. The values of the
parameters minimizing the χ2 are: Λ = 0.349 ± 0.009 GeV, a =
3.008 ± 0.081 GeV−1, b = 1.425 ± 0.032 GeV−1, c = 0.908 ± 0.025,
m = 1.204 ± 0.018 GeV, d = 0.840 ± 0.051 for a minimal reduced
χ2 of 0.84. The inclusion of the systematic uncertainties in the fit
explains why the reduced χ2 is smaller than 1. The term mg(Q )
has been interpreted within some of the Schwinger–Dyson calcu-
lations as an effective gluon mass [21]. Eqs. (2) and (1) can also be
used to parameterize the generalized Bjorken and GDH sums.

The fit result is shown in Fig. 2. We also include some of
the theoretical calculations (Lattice results and curves labeled
Cornwall, Bloch et al. and Fischer et al.) and phenomenological
model predictions (Godfrey–Isgur, Bhagwat et al. and Maris–Tandy)
on αs . Finally, we show the αs,g1 formed using a phenomenolog-
ical model of polarized lepton scattering off polarized nucleons
(Burkert–Ioffe). These calculations are discussed in [5]. The mag-
nitude of the Godfrey–Isgur and Cornwall results agrees with the
estimate of the average value of αs using magnetic and color-
magnetic spin–spin interactions [22]. We emphasize that the rela-
tion between these results is not fully known and that they should
be considered as indications of the behavior of αs rather than strict
predictions.

The data show that αs,g1 loses its Q 2-dependence both at large
and small Q 2. The Q 2-scaling at large Q 2 is long known and
is the manifestation of the asymptotic freedom of QCD [29]. The
absence of Q 2-dependence at low Q 2 has been conjectured and
observed by many calculations but this is the first experimental
evidence. This lack of scale dependence (conformal behavior) at



Final	States:
DIS	&	Diffractive	DIS
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Proton	Remnant:	
• Di-quark/	tetra-quark	color	triplet
• Color	octet

Rapidity	Gap:	Dh ≥	2

• ~10%	of	HERA	DIS	events



Correlations	between	Current	&	Target	
fragments	

• Chiral	Symmetry	Breaking:
Parton-parton	correlations	at	
pT ~Lc ~	1	GeV.

• Coincident	hadrons	in	target	and	current	
fragments,	with	correlated	&	spin-
dependent	pT.

• Multiparton interactions	in	LHC	pp	collisions	
do	not	scale	as	average	density
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FIG. 14. Transverse momentum distributions of flavor–singlet
unpolarized valence and sea quarks at x = 0.1. Panel (a)

shows fu+d−ū−d̄
1 and f ū+d̄

1 as functions of p2T on a logarithmic

scale; panel (b) shows the radial distribution 2πpT f
u+d−ū−d̄
1

and 2πpT f
ū+d̄
1 on a linear scale, such that the area un-

der the curves corresponds to the integral over pT . Dashed
lines: Valence quark distribution fu+d−ū−d̄

1 (see Fig. 6). Solid

lines: Sea quark distribution f ū+d̄
1 (PV regularization). [Self–

consistent soliton profile Eq. (A4) with M = 0.35GeV,MN =
3.26M .]

I. Sea vs. valence quark distribution

Using the numerical approximation of Sec. VH we now
want to compare our results for the sea quark transverse
momentum distribution with those of the valence quarks
calculated in Sec. IV. Figure 14 summarizes the numer-
ical results for the valence distribution fu+d−ū−d̄

1 (x, pT )

and the sea quark distribution f ū+d̄
1 (x, pT ) at a represen-

tative value of x = 0.1. Panel (a) shows the distributions

themselves on a logarithmic scale; panel (b) the radial
distributions on a linear scale, such that the area un-
der the curves corresponds directly to their integral over
pT . Similar results are obtained at other values of x:
the shape of the individual pT distribution changes little
with x (cf. Fig. 4 for the valence distribution); only their
normalization changes in proportion to the total valence
and sea quark density.

The numerical estimates clearly show very different
shapes of the valence and sea quark transverse momen-
tum distributions, especially at large values of pT , as
first observed in the calculation of Ref. [40]. Based on
our theoretical analysis we can now explain this strik-
ing behavior as the effect of dynamical chiral symmetry
breaking in the QCD vacuum on the intrinsic transverse
momentum distribution of the sea quarks. Even with the
strong modification of the would–be 1/p2T tail by the UV
cutoff, the sea quark transverse momentum distribution
in the chiral quark–soliton model is qualitatively differ-
ent from that of the valence quarks. While the precise
numerical values depend on the model implementation
(see e.g. Fig. 11), the fact as such is rooted in the basic
structure of the effective dynamics chiral and should be
model–independent.

When interpreting the results of Figure 14 one should
keep in mind that the accuracy of the approximation
Eq. (5.66) used in our numerical estimate of f ū+d̄

1 (x, pT )
is not sufficient to predict the values at p2T <∼ 2M2

with meaningful relative accuracy (cf. the discussion in
Sec. VH). In this sense the plot of the radial distribu-
tion, in which the low–pT region is suppressed, conveys a
more realistic picture. This uncertainty, however, in no
way influences our conclusions regarding the qualitatively
different behavior of valence and sea quark distributions
at large pT .

The qualitative difference between the pT distribution
of valence and sea quarks is the most important practical
result of our study. Its numerous implications for deep–
inelastic processes are explored in Sec. VIII.

J. Polarized sea quark distribution

To complete our study of the sea quark transverse
momentum distribution we want to investigate also the
flavor–nonsinglet polarized sea quark distribution. The
gradient expansion of this distribution can be carried out
in complete analogy to the flavor–singlet unpolarized case
starting from Eq. (3.38), cf. Secs. VA and VB; we do not
present the intermediate steps here. The result can again
be represented as a convolution integral over the momen-
tum of the classical chiral field, analogous to Eq. (5.16),

gū−d̄
1,grad(x, pT ) =

∫
dy

y

∫
d2kT gcl(y,kT )

× gqq̄(x, y;pT ,kT ). (5.67)

P.	Schweitzer,	Ch.	Weiss,	
M.	Strikman,
JHEP 1301	(2013)	163	

1	GeV2

• Identify	ion	beam	fragments	
over	broad	range	of	pT



DIS	and	
Many	Body	Nuclear	Dynamics

• DIS	at	different	x,	Q2 ranges	probes	particular	configurations	in	
the	nucleus
• Forward	tagging	of	spectator/recoil	nucleons...	to	observe	the	
dynamics	of	the	active	configurations.
• Illustrative	Examples:

• x>1 Forbidden	on	free	nucleon.		
Coherent	NN,	NNN	interaction		with	large
momentum	sharing		è6-quark	bag	states?

• 0.2<	x	<	0.7 Nuclear	Binding,	Short	Range	Correlations	
• x	≈	0.1 Anti-shadowing	(enhancement):		Hard	Core	of

NN	Force	
• x	<	0.1 Coherent	Diffraction	è Shadowing:	Coherence

length	~	typical	NN	separation
• x	⋘ 0.1,		Q2	≥	1	GeV2		 Coherence	➙Saturation	Transition
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Nuclear	Dynamics	Probed	by		DIS:	I

• Kinematic	bound: xBj <	A
• xBj >	1
• Parton	momentum	fraction	
generated	by	interaction	of	at	least	
two	nucleons
• [Color	Octet]2 states	?	

• xBj >	2
• Probe	three	body	forces.
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• 0.2<	xBj < 0.8
EMC	Effect
• Quark-Gluon	structure	of	
nuclear	binding	at	scale	
1/(2xBM) ≤	0.5	fm
• Incoherent	over	quarks	in	
different	nucleons	or	
exchanged	mesons	
• e.g.	QMC	model,	NN-
interactions	generate	strong	σ-
field,	which	modifies	average	q-
structure	of	nucleon	
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Nuclear	Dynamics	Probed	by		DIS:		II



The	EMC	Effect
• Quark-gluon	imprint	of	
Nuclear	Binding
• NN	Correlations

• Average	density	of	9Be	is	
low.	Local	density	is	high
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nents are related to two-nucleon short range correlations
(2N-SRCs), where two nucleons have a large relative mo-
mentum but a small total momentum due to their hard
two-body interaction, then they should yield the same
high-momentum tail whether in a heavy nucleus or a
deuteron.
The first detailed study of SRCs combined data in-

terpolated to fixed kinematics from different experi-
ments at SLAC [29]. A plateau was seen in the ra-
tio (σA/A)/(σD/2) that was roughly A independent for
A ≥ 12, but smaller for 3He and 4He. Measurements
from Hall B at JLab showed similar plateaus [30, 31] in
A/3He ratios for Q2 ≥ 1.4 GeV2. A previous JLab Hall
C experiment at 4 GeV [11, 32] measured scattering from
nuclei and deuterium at larger Q2 values than SLAC or
CLAS, but had limited statistics for deuterium. While
these measurements provided significant evidence for the
presence of SRCs, precise A/D ratios for several nuclei,
covering the desired range in x and Q2, are limited.
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FIG. 2: Per-nucleon cross section ratios vs x at θe=18◦.

Figure 2 shows the cross section ratios from E02-019
for the θe = 18◦ data. For x > 1.5, the data show the ex-
pected plateau, although the point at x = 1.95 is always
high because one is approaching the kinematic threshold
for scattering from the deuteron at x = MD/Mp ≈ 2.
This rise was not observed in previous measurements;
the SLAC data did not have sufficient statistics to see
the rise, while the CLAS measurements took ratios of
heavy nuclei to 3He, where the cross section does not go
to zero for x → 2. Table I gives the ratio in the plateau
region for a range of nuclei at all Q2 values where there
were sufficient large-x data. We apply a cut in x to iso-
late the plateau region, although the onset of scaling in
x varies somewhat with Q2. The start of the plateau is
independent of Q2 when taken as a function of α2n,

α2n = 2−
ν − q + 2MN

2MN

(
1 +

√
1−M2

N/W 2
2n

)
, (3)

(W 2
2n = 4M2

N + 4MNν − Q2) which corresponds to the
light-cone momentum fraction of the struck nucleon as-
suming that the photon is absorbed by a single nucleon
from a pair of nucleons with zero net momentum [29].
We take the ratio for xmin < x < 1.9, such that xmin
corresponds to a fixed value of α2n.

TABLE I: r(A,D) = (2/A)σA/σD in the 2N correlation region
(xmin < x < 1.9). We take a conservative value of xmin = 1.5
at 18◦, corresponding to α2n = 1.275, and use this to set
xmin at 22 and 26◦. The last column is the ratio at 18◦

after subtracting the inelastic contribution as estimated by a
simple convolution model (and applying a 100% systematic
uncertainty on the correction).

A θe=18◦ θe=22◦ θe=26◦ Inel. sub.
3He 2.14±0.04 2.28±0.06 2.33±0.10 2.13±0.04
4He 3.66±0.07 3.94±0.09 3.89±0.13 3.60±0.10

Be 4.00±0.08 4.21±0.09 4.28±0.14 3.91±0.12

C 4.88±0.10 5.28±0.12 5.14±0.17 4.75±0.16

Cu 5.37±0.11 5.79±0.13 5.71±0.19 5.21±0.20

Au 5.34±0.11 5.70±0.14 5.76±0.20 5.16±0.22

⟨Q2⟩ 2.7 GeV2 3.8 GeV2 4.8 GeV2

xmin 1.5 1.45 1.4

There are small inelastic contributions at the higherQ2

values, even for x > 1.5. A simple convolution model [7]
predicts an inelastic contribution of 1–3% at 18◦ and 5–
10% at 26◦. This may explain the small systematic Q2

dependence in the extracted ratios seen in Tab. I. Further
results on the role of SRCs will be based on the 18◦ data,
with the inelastic contributions subtracted (including a
100% model dependence uncertainty), to minimize the
size and uncertainty of the inelastic correction.
Calculations of inclusive FSIs generally show them to

decrease rapidly with increasing Q2. However, the effects
can still be important at highQ2 for x > 1. While at least
one calculation suggests that the FSI is A dependent [33],
most indicate that the FSI contributions which do not
decrease rapidly with Q2 are limited to FSI between the
nucleons in the initial-state SRC [3, 5, 29, 34–36]. In this
case, the FSI corrections are identical for 2N-SRCs in the
deuteron or heavy nuclei, and cancel when taking the ra-
tios. Our y-scaling analysis of the deuteron cross sections
(Fig 1) suggests that the FSIs are relatively small for the
deuteron, and the ratios shown in Tab. I have only a small
Q2 dependence, consistent with the estimated inelastic
contributions, supporting the standard assumption that
any FSIs in the plateau region largely cancel in taking
the target ratios.
In the absence of large FSI effects, the cross section ra-

tio σA/σD yields the strength of the high momentum tail
of the momentum distribution in nucleus A relative to a
deuteron. If the high-momentum contribution comes en-
tirely from quasielastic scattering from a nucleon in an n–
p SRC at rest, then this ratio represents the contribution

N.	Fomin,	et	al,	

CernCourier April	2013



Nuclear	Final	State	at	EIC

• Naive	spectator	
kinematics:

• Fermi	gas:		|ai–1| ⪝ pF /M ≈ 0.25           pi,T ≤  pF

• In	a	heavy	nucleus	of	momentum		
Z	•(100	GeV/c),	spectator	neutrons,	protons	have	
laboratory	momenta	p	~	(100	GeV/c)Z/A
(p||,	pT)	≈	[ai(40	GeV/c),  pi,T ]
• Forward Tagging!
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DIS	on	the	Deuteron:	Spectator	Tagging

• ap ≈	1		=	A•(spectator	lightcone momentum	fraction),	
pp,T ≈	0	
• Spectator	proton	at	≈0° and		≈50	GeV/c
• On-shell	extrapolation	of	DIS	on	neutron

• Calibrate	with	ZDC	tagging
of	spectator	neutron	
• DIS	on	nearly	on-shell	proton

• EMC	effect	from	highly
off-shell	nucleons
• |1–aP| >	0.2	
• EMC	effect	in	Deuterium!
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• Tagged DIS at non-zero off-shellness
t−M2

N ∼ 0.1GeV2

pR < 200MeV in rest frame:
Deuteron wave function known

αR < 1: Spectator backward
in rest frame, FSI minimal

Modification of free neutron structure?

Possible to discriminate!

• Uncertainty estimates

Systematics under control;
momentum resolution/smearing
not critical at pRT ∼ 100MeV

Statistics–dominated measurement,
possible with 1034 luminosity



EMC	Effect*:	x=0.1	
Anti-Shadowing
• Anti-shadowing	is	
not	anti-quarks!
FermiLab Drell-Yan	
E722

0.7

0.8

0.9

1
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DY(E772)
DIS(NMC)

R
(C
a/
2 H
)

x

Anti-shadowing	is	glue

C.Hyde,		Next	Gen.	Nucl.	Phys. 2410–13	Feb	2016
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Fig. 34. Prediction for nuclear PDFs and structure functions for 208Pb. The ratios Rj (ū and c quarks and gluons) and RF2 as functions of Bjorken x at Q 2 = 4,
10, 100 and 10, 000 GeV2. The four upper panels correspond to FGS10_H; the four lower panels correspond to FGS10_L.

The numerical value of the exponent � = 0.25 in Eq. (126) can be understood as follows. The x dependence of nuclear
shadowing at small x is primarily driven by the xP dependence of the Pomeron flux fP/p(xP) / 1/x(2↵P�1)

P / 1/x1.22P . There-
fore, in the very small x limit, one expects from Eq. (64) that, approximately,

�F2A(x,Q 2)/A /

✓
1
x

◆0.22

,

�xgA(x,Q 2)/A /

✓
1
x

◆0.22

, (127)

which is consistent with our numerical result in Eq. (126).
When we present our predictions for nuclear shadowing in the form of the ratios of the nuclear to nucleon PDFs, it is

somewhat difficult to see the leading twist nature of the predicted nuclear shadowing because of the rapid Q 2 dependence
of the free nucleon structure functions and PDFs. In order to see the leading twist nuclear shadowing more explicitly, one
should examine the absolute values of the shadowing corrections.

Fig. 38 presents |�F2A(x,Q 2)/A| and |�xgA(x,Q 2)/A| as functions of Q 2 at fixed x = 10�4 (first and third rows) and
x = 10�3 (second and fourth rows) for 40Ca (four upper panels) and 208Pb (four lower panels). The solid curves correspond
to FGS10_H; the dotted curves correspond to FGS10_L. Also, for comparison, presented by the dot-dashed curves, we give
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Fig. 34. Prediction for nuclear PDFs and structure functions for 208Pb. The ratios Rj (ū and c quarks and gluons) and RF2 as functions of Bjorken x at Q 2 = 4,
10, 100 and 10, 000 GeV2. The four upper panels correspond to FGS10_H; the four lower panels correspond to FGS10_L.

The numerical value of the exponent � = 0.25 in Eq. (126) can be understood as follows. The x dependence of nuclear
shadowing at small x is primarily driven by the xP dependence of the Pomeron flux fP/p(xP) / 1/x(2↵P�1)

P / 1/x1.22P . There-
fore, in the very small x limit, one expects from Eq. (64) that, approximately,
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which is consistent with our numerical result in Eq. (126).
When we present our predictions for nuclear shadowing in the form of the ratios of the nuclear to nucleon PDFs, it is

somewhat difficult to see the leading twist nature of the predicted nuclear shadowing because of the rapid Q 2 dependence
of the free nucleon structure functions and PDFs. In order to see the leading twist nuclear shadowing more explicitly, one
should examine the absolute values of the shadowing corrections.

Fig. 38 presents |�F2A(x,Q 2)/A| and |�xgA(x,Q 2)/A| as functions of Q 2 at fixed x = 10�4 (first and third rows) and
x = 10�3 (second and fourth rows) for 40Ca (four upper panels) and 208Pb (four lower panels). The solid curves correspond
to FGS10_H; the dotted curves correspond to FGS10_L. Also, for comparison, presented by the dot-dashed curves, we give
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Fig. 34. Prediction for nuclear PDFs and structure functions for 208Pb. The ratios Rj (ū and c quarks and gluons) and RF2 as functions of Bjorken x at Q 2 = 4,
10, 100 and 10, 000 GeV2. The four upper panels correspond to FGS10_H; the four lower panels correspond to FGS10_L.

The numerical value of the exponent � = 0.25 in Eq. (126) can be understood as follows. The x dependence of nuclear
shadowing at small x is primarily driven by the xP dependence of the Pomeron flux fP/p(xP) / 1/x(2↵P�1)

P / 1/x1.22P . There-
fore, in the very small x limit, one expects from Eq. (64) that, approximately,
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which is consistent with our numerical result in Eq. (126).
When we present our predictions for nuclear shadowing in the form of the ratios of the nuclear to nucleon PDFs, it is

somewhat difficult to see the leading twist nature of the predicted nuclear shadowing because of the rapid Q 2 dependence
of the free nucleon structure functions and PDFs. In order to see the leading twist nuclear shadowing more explicitly, one
should examine the absolute values of the shadowing corrections.

Fig. 38 presents |�F2A(x,Q 2)/A| and |�xgA(x,Q 2)/A| as functions of Q 2 at fixed x = 10�4 (first and third rows) and
x = 10�3 (second and fourth rows) for 40Ca (four upper panels) and 208Pb (four lower panels). The solid curves correspond
to FGS10_H; the dotted curves correspond to FGS10_L. Also, for comparison, presented by the dot-dashed curves, we give



• xBj ≈	0.1:		“Anti-Shadowing”
• 𝑞(𝑥) + 𝑞%(𝑥)	 enhanced	(DIS)
• No	𝑞%(𝑥) enhancement	in	Drell-Yan	
(𝑝 + 𝑝 → 𝜇L + 𝜇4 + 𝑋).
• Short	distance	NN-interaction	from	
q-q-g exchange?
• Look	for	predicted	gluon	anti-
shadowing	(enhancement	in	nuclei)
• JLab	LDRD	program	on	open-charm	in	
nuclear	DIS
• 𝛾∗ + 𝑔	 → 𝑐 + 𝑐̅

• Resolve	separated	vertex	of	D-meson	
decays	to	tag	charm	quark	events	
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Tagging	Photon-Gluon	Fusion	via	Open	Charm	
Production	

xglueG(xglue)	support	
localized	near
xglue ≥ xBj[1+4mh

2/Q2] .
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