Nuclear Dynamics Probed by DIS: IV

- *x_{Bj}* < 0.05: "Shadowing"
- Coherent diffractive scattering from ≥ 2 nucleons
 - Interference is destructive by virtue of NN antisymmetry
 - NN pair must be in-line
 - Transverse resolution 1/Q² post-selects nuclear state
 - Shadowing is a ~100% effect on the ~10% of DIS events that are diffractive
 - Nuclear gluon suppression observed in LHC ultraperipheral collisions
 - Photon cloud of forward moving Pb nucleus collides with gluons in backward moving Pb nucleus.

DIS V. Nuclear Initial and Final States in Diffractive DIS: Double spectator tagging

 Incoherent Diffraction: A clean probe of multinucleon dynamics.

 $1/[Q^2]^{1/2}$

- Only low-energy NN, NNN... Final state Interactions
- Event-by-event initial & final state:
 - Elliptical source ≥ 2 nucleons

 $1/(2x_BM)$

Destructive Interference: active/spectator in NN pair

DVES on Deuteron (V = Vector meson...)

- Coherent d(e,e'd V)
 - Tensor polarized beam: Observe quark-gluon structure of tensor interaction.
- Incoherent d(e,e'pnV)
 - Miller, Sievert, Rajugopalan, <u>www.arXiv.org/1512.03111</u>
 - Low mass NN final state ≈ independent nucleons
 - High mass NN final state → probe quark-gluon distribution of interacting NN pair

MDBaker, ECA, Lee, Zhang eRD17

Geometry tagging (w/o shadowing)

DIS VI. $x_{Bj} \ll 0.1$

- DIS probes fluctuations with coherence length λ much greater than nucleon or even nuclear size.
- Precursor to saturation
- Low energy probes cannot distinguish these from vacuum fluctuations

Animations at

www.physics.adelaide.edu.au/theory/staff/ leinweber/VisualQCD/Nobel/index.html

 $\lambda \approx 1/(2Mx_{Bi})$

Conclusion

- A High Luminosity Polarized Electron Ion Collider is an unprecedented tool to quantitatively explore the quark-gluon dynamics of
 - the Origin of the Mass of mesons and baryons
 - The Creation of Mass as a quark or gluon propagates through cold QCD matter
 - Vacuum
 - Nucleus
 - Nuclear Binding
 - NN Force
 - NNN Force
- These are exciting, challenging questions.
 - We can make progress
 - These emergent phenomena will resonate with the larger scientific community

Backup Slides

EMC Effect': Anti-Shadowing

 Anti-shadowing is not anti-quarks! FermiLab Drell-Yan E722

• Anti-shadowing is glue

L. Frankfurt et al. / Physics Reports 512 (2012) 255–393

Spectator Tagging

On-Shell Extrapolation

• Spectator Tagging in Impulse Approximation: $p_n^2 = (P_D - p_R)^2 = t = M_n^2 + t'$ $-t' > M_D B + B^2/2 = 4.1 \cdot 10^{-3} \text{ GeV}^2$

Example on-shell extrapolation

 $k_e \otimes P_D = 5 \otimes 100 \, (\text{GeV/c})^2$ $\int \mathcal{L} dt = 1 \, / \, \text{fb}$

 $x_{\rm Bj} \in [0.025, 0.032], \ Q^2 \in [10, 20] \ {
m GeV}^2$

 $0.98 \le \alpha < 1 \qquad 1.0 < \alpha \le 1.02$

Neutron F₂ from on-shell Extrapolation

• A sample bin in Q^2

- Error bars are statistical
- Error band is systematic error from assumed 10% uncertainty in incident beam emittance
- Radiative effects not yet included.
- QCD Evolution not yet included.

x-dependence at fixed Q^2

Q^2 -dependence at fixed x

APCTP-2018

C. Hyde — Lecture 3