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Also, from Eq. (3.59), we obtain the following condition  
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Therefore, we can find the total number of allowed states for a given principal quantum number 
n as 
 

              (3.65) )12( 2
1

0

n
n

=+∑
−

=l

l

 
where we count the 2 +1 degeneracy for a given l  because the m values are allowed by l
 
               (3.66) ll +≤≤− m
 
for a given .  However, we didn’t count the spin degeneracy in Eq. (3.65).  If we include the 
spin degree of freedom, then we obtain 2n

l
2 states for a particular principal quantum number n. 

 
 
 
 
3.3 H-atom Spectra 
 
 
In the last section, we obtained the energy eigenvalues of an electron in a hydrogen atom without 
any corrections to the Coulomb potential.  In reality, there are small corrections to the energy 
eigenvalue that we obtained in the last section.  As we will see, these are small corrections 
because they are suppressed by α2 or even higher orders of α.  The main correction is called the 
fine structure which includes both the relativistic correction and the spin-orbit coupling.  Even 
smaller correction is called the hyperfine structure due to the spin-spin interaction between the 
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the spin-orbit correction is finally estimated as 
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3. The Combination of Relativistic and Spin-Orbit Correction
 
The interesting point of Eqs. (3.74) and (3.87) is that the relativistic correction and the spin-orbit 
coupling are separately dependent on the orbital angular momentum quantum number l , 
however, the combination of the two does not depend on ; l
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This fact leads to an important discovery of the Lamb shift which depends on the orbital angular 
momentum .  Without this nice cancellation between the relativistic correction and the spin-
orbit coupling, it would have been very difficult to pin down the Lamb shift.  Finally, we 
summarize the H-atom spectra including these corrections in Table 3.1. 
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electron and the proton.  While the hyperfine structure appears at the same order of α as the fine 
structure, it is suppressed by the factor m/M compare to the fine structure, where m is the 
electron mass and M is the proton mass.  There is also a well-known correction called the Lamb 
shift30 which is suppressed by the factor α compare to the fine structure.  The Lamb shift, 
however, is an important evidence for the existence of the negative energy electron sea or Dirac 
sea in the quantum electrodynamic vacuum.  In this section, we will focus on the largest 
correction, i.e. the fine structure. 
 
1. Relativistic Correction
 
One part of the fine structure comes from the relativistic correction to the kinetic energy.  As we 
learned in the special relativity, the kinetic energy is given by (see Eq. (2.11) in Section 2.2) 
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where one should note that   Thus, the main relativistic 
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One can easily estimate this correction by realizing 
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Then, the relativistic correction is given by 
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2. Spin-Orbit Coupling
 

Another part of the fine structure is due to the interaction of electron spin with the magnetic field 

generated by the proton current in the electron rest frame.  The potential energy due to this 

interaction is given by 
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μr  is the magnetic moment of the electron and where  is the magnetic field generated by the 

proton current in the electron rest frame.  Since the g-factor of the electron is 2, the magnetic 
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Therefore, the actual rate of electron spin change is obtained from Eqs. (3.79), (3.80) and (3.83) 
as 
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which is now consistent with the experimental result.  The expectation value of Eq. (3.85) is 
given by 
 

 44

.
1

2
4
3

)1()1(

2

2/)(
2

2

3

2

22

2

3

222

22

2

322

2

r

jj

cm
e

r
sLJ

cm
e

r
sL

cm
eH so

⎭
⎬
⎫

⎩
⎨
⎧ −+−+

⋅=

−−
=

⋅
=Δ

llh

rrr

rr

          (3.86) 

 
Since one can obtain 

,
)1(

2
1

11

33
3

anr +⎟
⎠
⎞

⎜
⎝
⎛ +

=
lll

    

the spin-orbit correction is finally estimated as 

( )
.

1
2
1

4

4
3

)1()1(

3

24

+⎟
⎠
⎞

⎜
⎝
⎛ +

⎭
⎬
⎫

⎩
⎨
⎧ −+−+

=Δ
lll

ll

n

jj
mcEso α         (3.87)    

 
3. The Combination of Relativistic and Spin-Orbit Correction
 
The interesting point of Eqs. (3.74) and (3.87) is that the relativistic correction and the spin-orbit 
coupling are separately dependent on the orbital angular momentum quantum number l , 
however, the combination of the two does not depend on ; l
 

.
2
3

2
1

2
4

1
4

24

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
+

−=

Δ+Δ=Δ

j

n
n

mc

EEE sorelfs

α
          (3.88)    

 
This fact leads to an important discovery of the Lamb shift which depends on the orbital angular 
momentum .  Without this nice cancellation between the relativistic correction and the spin-
orbit coupling, it would have been very difficult to pin down the Lamb shift.  Finally, we 
summarize the H-atom spectra including these corrections in Table 3.1. 
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Table 3.1: H-atom Spectra (nLj) 
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Chapter 3  Quantum Mechanics 

Pedestrian Approach to Particle Physics 65 

Thus, in H-atom, the fine structure and the hyperfine structure are clearly 
distinguished by the large difference in their magnitudes.  However, in the 
positronium system, the proton is replaced by the positron so that the factor 

of 
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m
M

 is exactly 1.  Thus, there is no distinction between the fine structure 

and the hyperfine structure in the positronium system.  As we discussed in 
the previous section, 2/12/1 2 and 2 PS  are degenerate in the hydrogen atom 
spectra.  Now, in the positronium system, the hyperfine structure is at the 
same order as the fine structure and the degeneracy of 2/12/1 2 and 2 PS  
states is already broken in the level of fine and hyperfine combined structure.  
Therefore, the Lamb shift which breaks the degeneracy of 2/12/1 2 and 2 PS  
states is less interesting in the positronium system.  However, the 
quarkonium system is very much analogous to the positronium system since 
the quarkonium and positronium are bound-states of quark-antiquark 

)( QQ and electron-positron ),( +−ee  respectively.  This leads to a further 
study of the positronium spectra.  There are two important aspects of 
positronium spectra distinguished from the hydrogen spectra.  The first one 

is the reduced mass effect, i.e. ,
2
mmred =  which changes the energy level 
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The second one is the electron-positron annihilation effect which modifies 
the interaction Hamiltonian. In some cases, the positronium decays into two 
or three photons depending on the positronium state.  The energy level 
correction due to the annihilation effect occurs at the same order as the fine 
structure, i.e. 
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In order for the positronium to actually decay into photons, the orbital 
angular momentum of the positronium must be .0=ℓ   If its spin state is 
s=0, then the positronium decays into γ2  and if its spin state is s=1, then it 
decays into γ3  to satisfy the charge conjugation symmetry.  The charge 

conjugation is given by s+−= ℓ)1(c  for the positronium and the photon has 
c=-1.  Since the production of one more photon involves one more fine-
structure constant α, it is not difficult to expect that the decay to three 
photons is suppressed compare to that to two photons.  In fact, the estimates 
for γ2  and γ3  decays are given by 
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and 
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In order for the positronium to actually decay into photons, the orbital 
angular momentum of the positronium must be .0=ℓ   If its spin state is 
s=0, then the positronium decays into γ2  and if its spin state is s=1, then it 
decays into γ3  to satisfy the charge conjugation symmetry.  The charge 

conjugation is given by s+−= ℓ)1(c  for the positronium and the photon has 
c=-1.  Since the production of one more photon involves one more fine-
structure constant α, it is not difficult to expect that the decay to three 
photons is suppressed compare to that to two photons.  In fact, the estimates 
for γ2  and γ3  decays are given by 
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With this knowledge on the positronium spectra, we now discuss the spectra 
of quarkonium composed of rather heavy quark     

€ 

(Q) and antiquark )(Q such 

as the charmonium )( cc and the bottomonium ).( bb   The reason for the 
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heavy quarkonium is because the non-relativistic approximation works well 
in the heavy systems.  The spectra of the charmonium are compared with 
those of positronium in Fig. 3.1.  
 

 
 

Fig. 3.1 :  Spectrum of energy levels in positronium and charmonium. Adopted from D. 
Griffiths Figure 5.7, where the figure caption states the following: Note that the scale is 
greater by a factor of 100 million for charmonium. In positronium the various 
combinations of angular momentum cause only minuscule shifts in energy (shown by 
expanding the vertical scale), but in charmonium the shifts are much larger. All energies 
are given with reference to the 1

31 S state. At 6.8 electron volts positronium dissociates. 
At 633 MeV above the energy of the ψ  charmonium becomes quasi-bound, because it 
can decay into 0D and 0D mesons. (From “Quarkonium,” by E. Bloom and G. 
Feldman. Copyright ⓒ  May 1982 by Scientific American, Inc. All rights reserved.) 
 
 As shown in Fig. 3.1, the scale of the energy level in the charmonium is 
greater by an order of 108, i.e. MeVE quarkonium 100~)(Δ  while 

eVE mpositroniu ~)(Δ .  The reason for this difference is because the central 

potential is quite different in the two cases.  For the quarkonium, the central 
potential confines the individual quark/antiquark so that the potential rises as 
the radial distance grows, even though the interaction at short distances is the  
Coulomb interaction just like the positronium case.  Thus, one can set 
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One can easily estimate this correction by realizing 
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Then, the relativistic correction is given by 
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where the fine-structure constant α in the positronium case is replaced by the 
strong interaction coupling constant αs with the color factor -4/3 for the 
Coulomb part and the confining potential is parameterized by a linear 
potential with the slope given by Fo.  Note that Fo has the unit of force 
because the force is a gradient of the potential energy.  Consistency with the 
charmonium energy levels indicate that Fo is about 16 tons.  With the 
confining force of 16 tons, one needs the energy 900 MeV to displace a 
quark or an antiquark by 1 fm. 
 
One may try to solve the dingeroSchr !!  equation with the central potential 
given by Eq. (3.100).  Then the angular part of the wavefunction is again 
given by the spherical harmonics while the radial part of the wavefunction 
satisfies a double differential equation.  Even though the Coulomb potential 
problem can be solved analytically, the analytic solution for the potential 
given by Eq. (3.100) is not yet known.  The value of Fo was obtained by the 
numerical solution and the consistency with the experimental data of 
charmonium and bottomonium energy levels was excellent.  Once the central 
potential problem is solved then the corrections such as fine and hyperfine 
structure become an important issue.  In this section, let us concentrate on 
the splitting of the energy level for n=1 state, i.e. 1

3
0

1 1 and 1 SS .  This 
splitting comes mainly from the spin-spin interaction between quark and 
antiquark.  This nature is quite well understood not only in the quarkonium 
cases but also in the light meson cases.  Let’s discuss here the interesting 
spin-spin coupling in the light meson cases.  The spin singlet )( 0

1S  and 

triplet )( 1
3S states are called the pseudoscalar and vector mesons.  As one 

can see in the particle data book, there is an interesting mass difference 
between the pseudoscalar meson octet and the vector meson octet.  A good 
example is the mass difference between π and ρ mesons.  The pion mass is 
much smaller than the mass of ρ-mesons.  Such difference can be understood 
by the spin-spin interaction.  Empirically, one can set the mass formula 
including the spin-spin interaction as 
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where M is the meson mass, m1 and m2 are the masses of quark and antiquark 
and 21  and ss !!

 are the spins of quark and antiquark, respectively.  Even 
though the strength of the spin-spin coupling is parameterized by the factor 

A in Eq. (3.101), the appropriate factors of 
21

1 and 1
mm

 from the magnetic 

moments of quark and antiquark are naturally given.  While this formula has 
only one parameter A in the sense that the constituent masses of u, d and s 
are rather well known at least approximately, it remarkably describes a 
number of meson masses in the pseudoscalar and vector mesons very close 
to the experimental values.  In Table 3.2, the results are summarized with the 
input of ,/310 2cMeVmm du ==  2/483 cMeVms =  and 
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The ground state baryon masses are also in an excellent agreement with 
experimental data by considering the spin-spin interactions among three 
quarks. 
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The ground state baryon masses are also in an excellent agreement with 
experimental data by considering the spin-spin interactions among three 
quarks. 
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potential problem is solved then the corrections such as fine and hyperfine 
structure become an important issue.  In this section, let us concentrate on 
the splitting of the energy level for n=1 state, i.e. 1
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splitting comes mainly from the spin-spin interaction between quark and 
antiquark.  This nature is quite well understood not only in the quarkonium 
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spin-spin coupling in the light meson cases.  The spin singlet )( 0

1S  and 
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3S states are called the pseudoscalar and vector mesons.  As one 

can see in the particle data book, there is an interesting mass difference 
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Table 3.2: Meson Spectra (in the unit of MeV/c2) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.5 Baryon Wavefunctions 
 
 
In this section, we discuss the construction of the baryon wavefunction.  The 
baryon is made of three quarks and the Pauli’s exclusion principle must hold.  
Let us first introduce two different tensor products to construct a multiquark 
wavefunction.  They are the inner product and the outer product.  The inner 
product does not change the number of particles but enlarges the quantum 
space.  For example, the quantum space of spin and that of isospin can make 
a inner product to yield the enlarged quantum space of spin-isospin.  On the 
other hand, the outer product does not change the quantum space but 
increases the number of particles.  For example, in the spin quantum space, 
the outer product of two spin-1/2 particles yields the spin singlet and triplet 
states as we learned in previous sections. 
 
 In order to construct a multiquark wavefunction, we first use outer 
product to set the multiquark repesenations in a particular quantum space.  
Once we obtain the representations in each quantum space, we then use inner 
product to find the wavefunction in the total quantum space.  Let’s give an 

 (3.101) Eq.  Experiment 

π  140 138 

K  484 496 

η  559 549 

ρ  780 776 

ω  780 783 

*K  896 892 

φ  1032 1020 
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The ground state baryon masses are also in an excellent agreement with 
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TABLE IV. Decay constants in the singlet-octet basis and the
mixing angle in the quark-flavor basis.

Reference f8/fπ θ8 f1/fπ θ1 α

This work 1.30 −27.3◦ 1.16 −8.6◦ 36.3◦

[42] 1.26 −21.2◦ 1.17 −9.2◦ 39.3◦

[44] 1.28 −20.5◦ 1.25 −4◦ −
[49] 1.51 −23.8◦ 1.29 −2.4◦ 40.7◦

[50] 1.27 −19.5◦ 1.17 −5.5◦ 42.1◦

predictions of heavy-light and heavy quarkonia systems such
as (ηc,J/ψ,Bc,ηb,ϒ) compared to the CJ model adopting the
contact hyperfine interaction. Although the experimental data
for B∗

c is not yet available, our predictions of B∗
c , i.e., 6330+3

−5
MeV, are quite comparable with the lattice prediction 6331(9)
MeV [47] as well as other quark model predictions such as
6340 MeV [32] and 6345.8 MeV [48].

In Table III, we list our predictions for the decay constants
of light mesons (π,K,ρ,K∗) obtained by using the mixed wave
function ( of 1S and 2S HO states and compare them with
the results from the CJ model [16] and the experimental data
[45]. As one can see, our updated model calculation including
the hyperfine interaction in the variation procedure clearly
improves the results over the CJ model.

For the decay constant of the φ meson, our prediction
for the ideal mixing angle (αω−φ

ideal = 90◦) is given by fφ =
f V

ss̄ = 245.1 MeV. However, we obtain fφ = f V
ss̄ = 226 MeV

using our predicted mixing angle αω−φ = 84.8◦. Comparing
to the experimental value f

exp
φ = 233 MeV [45] (extracted

from the partial width of φ → e+e− decay), our prediction
for fφ prefers a rather small ω − φ mixing angle such as
αω−φ ≃ 87.5◦ than the ideal mixing.

For the decay constants of η and η′, our predictions of the
decay constants fq and fs are given by fq = 130 MeV and
fs = 184.8 MeV so that fq/fπ = 1 and fs/fπ = 1.42, where
the SU(3) breaking effect is manifest in the ratio fq/fs ̸= 1.
Using Eq. (14), we obtain f8/fπ = 1.30 and f1/fπ = 1.16
with θ8 = −27.3◦ and θ1 = −8.6◦, respectively. In Table IV,
we compare our results for the decay constants in the singlet-
octet basis and the mixing angle in the quark-flavor basis with
other theoretical predictions [42,44,49,50]. As one can see,
our results are consistent with other theoretical model results.

CJ Model Exp. This work CJ Model Exp. This work
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FIG. 2. (Color online) Fit of the ground state meson masses
[MeV] with the parameters given in Tables II and I compared with
the fit from our previous calculations using the CJ model [15] as
well as the experimental values. The (π,ρ) masses are our input
data. The (η,η′,ω,φ) masses are also used as input to find the
(η − η′) and (ω − φ) mixing angles. The theoretical error bars for
(cc̄,bc̄,bb̄) sectors are due to the usage of λ = (2+1

−1,2.3+1
−1,3

+2
−2) values,

respectively.

Since the experimental values are very well known for light
mesons, this improvement is very encouraging.

In Table V, we list our predictions for the charmed meson
decay constants (fD,fD∗ ,fDs

,fD∗
s
,fηc

,fJ/,) together with the
CJ model [23], lattice QCD [51–54], QCD sum rules [55],
relativistic Bethe-Salpeter (BS) model [56], relativized quark
model [57], and other relativistic quark model (RQM) [58] pre-
dictions as well as the available experimental data [45,59]. We
extract the experimental value (fJ/,)exp = (407 ± 5) MeV
from the data -exp(J/, → e+e−) = (5.55 ± 0.14) keV [45]

TABLE V. Charmed meson decay constants (in units of MeV) obtained from our updated LFQM. The theoretical error bars for fηc (J/ψ)

come from the variation of the smearing parameters σ , i.e., fηc(J/ψ)(2σ+σ
−σ ).

Model fD fD∗ fDs fD∗
s

fηc fJ/ψ

This work 208 230 231 260 353+22
−17 361−6

+7
CJ [23] 197 239 232 273 326 360
Lattice [51] 211 ± 3 ± 17 245 ± 20+3

−2 231 ± 12+8
−1 272 ± 16+3

−20 – –
QCD [52,53] 208 ± 7 [52] – 250 ± 7 [52] – 387 ± 7 [53] 418 ± 9 [53]
Sum rules [55] 201+12

−23 242+20
−12 238+13

−23 293+19
−14 – –

BS [56] 230 ± 25 340 ± 23 248 ± 27 375 ± 24 292 ± 25 459 ± 28
QM [57] 240 ± 20 – 290 ± 20 – – –
RQM [58] 234 310 268 315 – –
Exp 206.7 ± 8.9 [45] – 257.5 ± 6.1 [45] – 335 ± 75 [59] 407 ± 5 [45]
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I. INTRODUCTION

Effective degrees of freedom to describe a strongly inter-
acting system of hadrons have been one of the key issues
in understanding the nonperturbative nature of QCD in the
low energy regime. Within an impressive array of effective
theories available nowadays, the constituent quark model
has been quite useful in providing a good physical picture
of hadrons just like the atomic model for the system of
atoms. Absorbing the complicated effect of quark, antiquark,
and gluon interactions into the effective constituent degrees
of freedom, one may make the problem more tractable yet
still keep some key features of the underlying QCD to
provide useful predictions [1]. The effective potentials used
in constituent quark models are typically described by the flux
tube configurations generated by the gluon fields as well as
the effective “one-gluon-exchange” calculation in QCD [2,3].
In the QCD-motivated effective Hamiltonian, a proper way
of dealing with the relativistic effects in the hadron system
is quite essential due to the nature of strong interactions. In
particular, proper care and handling of relativistic effects has
been emphasized in describing the hadrons made of u, d, and
s quarks and antiquarks.

As a proper way of handling relativistic effects, the
light-front quark model (LFQM) [4–8] appears to be one
of the most efficient and effective tools in hadron physics
as it takes advantage of the distinguished features of the
light-front dynamics (LFD) [9,10]. In particular, the LFD
carries the maximum number (seven) of the kinetic (or
interaction independent) generators and thus the less effort in
dynamics is necessary in order to get the QCD solutions that
reflect the full Poincaré symmetries. Moreover, the rational
energy-momentum dispersion relation of LFD, namely p− =
(p2

⊥ + m2)/p+, yields the sign correlation between the light-
front (LF) energy p−(= p0 − p3) and the LF longitudinal
momentum p+(= p0 + p3) and leads to the suppression of
quantum fluctuations of the vacuum, sweeping the complicated

vacuum fluctuations into the zero modes in the limit ofp+ → 0
[11–13]. This simplification is a remarkable advantage in LFD
and facilitates the partonic interpretation of the amplitudes.
Based on the advantages of the LFD, the LFQM has been
developed [14] and subsequently applied for various meson
phenomenologies such as the mass spectra of both heavy and
light mesons [15], the decay constants, distribution amplitudes,
form factors, and generalized parton distributions [10,14–23].

Despite these successes in reproducing the general features
of the data, however, it has proved very difficult to obtain
direct connection between the LFQM and QCD. Typically,
rigorous derivations of the connection between the effective
constituent degrees of freedom and the fundamental QCD
quark, antiquark, and gluon degrees of freedom have been
explored by solving momentum-dependent mass gap equations
as discussed in many-body Hamiltonian approach [24], Dyson-
Schwinger approach [25], etc. Although one has not yet
explored solving the momentum-dependent mass gap equation
in LFD, there has been some attempt to derive an effective LF
Hamiltonian starting from QCD using the discrete light-cone
quantization (DLCQ) and solve the corresponding equation
of motion approximately for the quark and antiquark bound
states to provide semianalytical expressions for the masses
of pseudoscalar and vector mesons [26]. The attempt to
link between QCD and LFQM is also supported by our
recent analyses of quark-antiquark distribution amplitudes
for pseudoscalar and vector mesons in LFQM [27], where
we presented a self-consistent covariant description of twist
2 and twist 3 quark-antiquark distribution amplitudes for
pseudoscalar and vector mesons in LFQM to discuss the
link between the chiral symmetry of QCD and the LFQM.
Our results for the pseudoscalar and vector mesons [27]
effectively indicated that the constituent quark and antiquark
in the LFQM could be considered as the dressed constituents
including the zero-mode quantum fluctuations from the QCD
vacuum. Moreover, the light-front holography based on the
five-dimensional anti–de Sitter (AdS) space-time and the
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(a)

(b)

FIG. 5: (Color online) (a) The the normalized p ! g⇤g transition
form factor Fpg (Q2)/Fpg (0), and (b) |Q2Fpg (Q2)| for both timelike
(q2 = �Q2 > 0) and spacelike (q2 = �Q2 < 0) momentum transfer
regions. The data are taken from [6, 7, 13, 18, 19] and [13].

ration [13]. The slope parameter can be defined from the vec-
tor meson dominance (VMD) model in which the normalized
TFF is typically parametrized as [85]

FP(mll) =
1

1� m2
ll

L2
P

' 1+aP
m2

ll

m2
P
, (27)

where mll =
p

q2 is the dilepton invariant mass and aP =
(mP/LP)2 reflects the form-factor slope at q2 = 0. Our result
for the slope parameter ap for the p0 TFF is obtained as

ap = 0.0355, (28)

which shows a good agreement with the current world av-
erage ap = 0.032± 0.004 [85] obtained from timelike mea-
surements [89–91] and the extrapolation of spacelike data [6]
using a VMD model, as well as the two recent experi-
mental data extracted from the p0 ! e+e�g Dalitz decay,
ap = 0.030 ± 0.010 from A2 Collaboration [13] and ap =
0.0368± 0.0057 from NA62 Collaboration [10]. Our result
should also be compared with other theoretical predictions:
ap = 0.0288(42) from a Lattice QCD with two flavors of
quarks [5]; ap = 0.0324(12)stat(19)syst from the method of
Padé approximants [92]; ap = 0.032(1) from a Regge analy-
sis [93]; ap = 0.036 from the ChPT [94]; ap = 0.029(5) from
a study of the Dalitz decay of p0 [95]; ap ⇡ 0.031 [96] and
ap ⇡ 0.035 [97] from a hard-wall holographic model of QCD;
and ap = 0.024(5) [98] from a soft-wall holographic model
of QCD. For the analysis of timelike form factor near reso-
nance region in Fig. 5 (a), the maximum value of Fpg(q2) oc-
curs at q2 ' 4m2

Q due to the virtual photon wave function term
1/(M2

0 �q2) in Eq. (20). Since the peak position of the time-
like TFF in our LFQM depends on the value of the constituent
quark mass, the r-pole type resonance may be obtained by
simply taking mu(d) = Mr/2.

Fig. 5 (b) shows |Q2|Fpg(Q2) for the extensive range
(�50  Q2  50 GeV2) of both time- and space-like mo-
mentum transfer regions compared with the spacelike exper-
imental data [7, 18, 19]. We note that our LFQM result for
|Q2|Fpg(Q2) for the spacelike region 10  Q2  45 GeV2 is
in good agreement with the data from Belle [19] showing the
asymptotic behavior but disagree with the BaBar data [18]
showing the rapid growth for this Q2 regime. In our LFQM
calculation for the perturbative region, we find slightly differ-
ent values for the timelike and spacelike TFFs, e.g. we find the
absolute values of |Q2Fpg(Q2)|' 0.194 GeV in the spacelike
region and |q2Fpg(q2)|' 0.186 GeV in the timelike region at
|Q2|= 112 GeV2, respectively. Although there may be some
contributions from the higher-twist and higher Fock-state as
discussed in [32], however, we infer from the results shown
in Fig. 5 that the higher Fock-state contribution may not be
large, especially, for high Q2 regime.

In Fig. 6, we show the normalized h ! g⇤g TFF
|Fhg(Q2)/Fhg(0)| (see Fig. 6 (a)) and |Q2Fhg(Q2)| (see Fig. 6
(b)) for both time- and space-like momentum transfer region.
The corresponding figures for h 0 TFFs are shown in Fig. 7.
Since the patterns for the real and imaginary parts of the h and
h 0 TFFs are similar to those of p0 TFF, we only show the total
results for the h and h 0 TFFs but varying the mixing angles.
Since they are rather sensitive to the h �h 0 mixing angles, we
display the results with the variation of the mixing angles as
a sensitivity check. The dot-dashed, solid, and dashed lines
for |Fhg(q2)/Fhg(0)| in Fig. 6 and |Fh 0g(q2)/Fh 0g(0)| in Fig. 7
are obtained from the mixing angles with fh�h 0 = 32�, 37�
and 42�, respectively. The experimental data for spacelike re-
gion are taken from [6, 7, 20]. The small timelike data in
Figs. 6 (a) and 7 (a) are taken from the measurements of the
h (0  q2  M2

h GeV2) and h 0 (0  q2  M2
h 0 GeV2) Dalitz

decays; h ! ` ¯̀g(`= e,µ) [9, 11, 12] and h 0 ! e+e�g [14].
For the small and medium momentum transfer in both time-
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FIG. 5: (Color online) (a) The the normalized p ! g⇤g transition
form factor Fpg (Q2)/Fpg (0), and (b) |Q2Fpg (Q2)| for both timelike
(q2 = �Q2 > 0) and spacelike (q2 = �Q2 < 0) momentum transfer
regions. The data are taken from [6, 7, 13, 18, 19] and [13].
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|Q2|= 112 GeV2, respectively. Although there may be some
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discussed in [32], however, we infer from the results shown
in Fig. 5 that the higher Fock-state contribution may not be
large, especially, for high Q2 regime.
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(b)) for both time- and space-like momentum transfer region.
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results for the h and h 0 TFFs but varying the mixing angles.
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•  Vacuum fluctuations are suppressed in LFD and clean 
hadron phenomenology is possible. 
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•  Vacuum fluctuations are suppressed in LFD and clean 
hadron phenomenology is possible. 
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Dirac’s Proposition 

1949 

DIS, PDFs, DVCS, GPDs, etc. 

Traditional approach 
evolved from NR dynamics 

Innovative approach 
for relativistic dynamics  

Close contact with  
Euclidean space Strictly in Minkowski space 

T-dept QFT, LQCD, IMF, etc. 

Can they be linked? 



Interpolation between Instant and Front Forms 

K. Hornbostel, PRD45, 3781 (1992) – RQFT 
C.Ji and S.Rey, PRD53,5815(1996) – Chiral Anomaly 
C.Ji and C. Mitchell, PRD64,085013 (2001) – Poincare Algebra 
C.Ji and A. Suzuki, PRD87,065015 (2013) – Scattering Amps 
C.Ji, Z. Li and A. Suzuki, PRD91, 065020 (2015) – EM Gauges  
Z.Li, M. An and C.Ji, PRD92, 105014 (2015) – Spinors 
C.Ji, Z.Li, B.Ma and A.Suzuki, arXiv:1805.06599 – QED 
 



Feynman Diagram: Invariant under all Poincaré generators  

Individual Time-Ordered Diagrams: Invariant under stability group  
                         Kinematic vs. Dynamic Generators 

=
1

q2 −m2 =
1

s−m2



1
E1 +E2 −Eq

−
1

Eq+E3 +E4

= −
1

Eq+E1 +E2
→ 0

S.Weinberg, PR158,1638(1967) 
“Dynamics at Infinite Momentum” 

Note however this is still in the instant form.  



€ 

0 < δ < π /4
p ˆ + = p0 cosδ − p3 sinδ
p ˆ − = p0 sinδ + p3 cosδ

€ 

δ = 0
p0 = p0

−p3 = p3

€ 

δ = π /4
p+ = p−

p− = p+



Σ(a)+Σ(b)=1/(s-m2) ; s=2 GeV2, m=1GeV 

€ 

Pz = −
s(1−C)
2C

; C = cos(2δ)J-shape peak & valley : 

As C ! 0, P+ = P0+Pz !0 leads to LF Zero-modes.  
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Symmetry Breaking 
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φ→ "φ = φ +ν

L→ "L = L −m2ν φ −
1
2
m2ν 2

P+̂ → "P+̂ = P+̂ +
m3( )

1/2
ν

C1/4 (a0 + a0
+ ) C = cos2δ, where 



Nontrivial Vacuum State 

|Ω >= exp −(C1/2m)ν
2
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+#$ &' | 0 >
Condensa:on	of	Zero-Modes	
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Translation in scalar field: 
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Vacuum Energy   
P+̂ |Ω >= EΩ |Ω >

P+̂ |Ω >→
mν
C1/2 a0

+a0 +
m3( )

1/2
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Independent of interpolation angle! 



Recovery of Trivial Vacuum in LFD? 

|Ω >→| 0 > as C→ 0

<Ω |φ(x) |Ω >= −νHowever, 

are	s:ll	independent	of	interpola:on	angle!	

|Ω >= exp −(C1/2m)ν
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EΩ and 



What is going on? 

<Ω |φ(x) |Ω >

=< 0 | exp (C1/2m)1/2ν (a0
+ − a0 )#$ %&

a0 + a0
+
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(
)
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+
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+ − a0 )#$ %& | 0 >

= −ν

Complication is transferred from vacuum to operator. 



Fermion Propagator 

1
/q−m

=
u(q, s)u(q, s)
s∑
q2 −m2 +

γ +

2q+
S.-J.Chang and T.-M.Yan, 
PRD7,1147(1973) 

Constrained	Degrees	of	Freedom	of	Fermion	in	Light-Front	Dynamics	



P.Srivastava and S. Brodsky, PRD64,045006(2001) 

IFD 
LFD 

C.Ji, Z. Li, and A. T. Suzuki, PRD91, 065020(2015) 
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Scattering Angle Dependence of the 
Annihilation Amplitudes:Total Probability 
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Scattering Angle Dependence of the 
Annihilation Amplitudes: Chirality 
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When me=0, chirality is conserved. 



Scattering Angle Dependence of the 
Annihilation Amplitudes: Chirality 
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When me ≠0, no such property. 



Outlook 
•  “A method is more important than a discovery, since 

the right method will lead to new and even more 
important discoveries.” - Lev Landau  

•  LFQM saves a lot of dynamical effort in the hadron 
spectroscopy and structure study. 

•  Correspondence between IFD and LFD may shed 
more light on bridging the LFQM and the QCD. 


