Wilson loops, Wilson surfaces and S-duality

Antonio Sciarappa

KIAS

Based on arXiv:1804.09932 (with Joonho Kim, Seok Kim, Prarit Agarwal)

+ arXiv:1806.09636 (with Benjamin Assel)

Overview

Goal: study Wilson loops in 5d supersymmetric gauge theories on $\mathbb{R}^4_{\epsilon_{1,2}} \times S^1_R$

Set-up: Lagrangian theories engineered by (p,q) 5-brane webs in type IIB

- How to realize Wilson loops in the brane web picture?
- How to compute VEVs of Wilson loops in generic representations?
- What are their properties (S-duality, enhanced flavor symmetry)?

Focus on $\mathcal{N} = 1^* SU(N)$ theories or $\mathcal{N} = 1 SU(N) + N_F$ fundamental

(p,q) 5-brane webs

5d $\mathcal{N} = 1$ gauge theories: ill-defined in UV (dimensionful gauge coupling)

• Can think of it to emerge in IR as a deformation of UV 5d SCFT

• UV 5d SCFT engineered via brane systems, such as (p,q) 5-brane webs

	0	1	2	3	4	5	6	7	8	9
D5	X	X	X	X	X	X				
NS5	X	X	X	X	X		X			
$5_{(p,q)}$	X	X	X	X	X	θ	θ			
F1	X						X			
D1	X					X				

After deformation, 5d gauge theory realized on the D5 branes

Example - pure SU(2):

UV: 5d rank 1 $E_1 = SU(2)$ SCFT

IR: 5d $\mathcal{N} = 1$ pure SU(2) theory

	0	1	2	3	4	5	6	7	8	9
D5	X	X	X	X	X	X				
NS5	X	X	X	X	X		X			
$5_{(p,q)}$	X	X	X	X	X	θ	θ			
F1	X						X			
D1	X					X				

Type IIB S-duality: equivalence between brane webs with $(p,q) \longrightarrow (-q,p)$

Partition functions

Lagrangian theories: partition function Z_{5d} on $\mathbb{R}^4_{\epsilon_{1,2}} \times S^1_R$ via localization

• Final result factorizes into perturbative + instanton part:

$$Z_{5d} = Z_{5d}^{pert} Z_{5d}^{inst}$$

• Instanton part: sum over all instanton number sectors ($Q = e^{-t}$)

$$Z_{5d}^{inst} = \sum_{k \ge 0} Q^k Z_{ADHM}^{(k)}$$

with $Z_{ADHM}^{(k)}$ partition function auxiliary ADHM Quantum Mechanics

ADHM QM for N = 1 SU(N):

 $Z_{ADHM}^{(k)}$ evaluated via 1d localization as a Jeffrey-Kirwan residue integral:

$$Z_{ADHM}^{(k)} = \frac{1}{k!} \oint \left[\prod_{s=1}^{k} \frac{d\phi_s}{2\pi i} \right] Z_{vec}^{(k)} Z_{fund}^{(k)} Z_{CS}^{(k)}$$

$$Z_{vec}^{(k)} = \prod_{s \neq t}^{k} \frac{\sinh(\phi_s - \phi_t) \sinh(\phi_s - \phi_t + 2\epsilon_+)}{\sinh(\phi_s - \phi_t + \epsilon_1) \sinh(\phi_s - \phi_t + \epsilon_2)} \prod_{s=1}^{k} \prod_{r=1}^{N} \frac{1}{4 \sinh(\pm \phi_s \mp a_r + \epsilon_+)},$$

$$Z_{fund}^{(k)} = \prod_{s=1}^{k} \prod_{b=1}^{N_F} 2 \sinh(\phi_s - m_b), \qquad Z_{CS}^{(k)} = \prod_{s=1}^{k} e^{-\kappa \phi_s}$$

 Z_{5d}^{inst} : series expansion in Q, coefficients <u>exact</u> in $\alpha_r = e^{a_r}$, $q_i = e^{\epsilon_i}$

$$SU(2): Z_{5d}^{inst} = 1 + Q \frac{q_1 q_2 (1 + q_1 q_2)}{(1 - q_1)(1 - q_2)(1 - \alpha^2 q_1 q_2)(1 - \alpha^{-2} q_1 q_2)} + \dots$$

 Z_{5d} also computable via topological vertex (even non-Lagrangian cases); same as before, but double series expansion in $Q_F = e^{-2a}$, $Q_R = e^{-t_{eff}}$

$$SU(2): Z_{5d} = 1 - \frac{1 + q_1 q_2}{(1 - q_1)(1 - q_2)} (Q_F + Q_B) + \dots$$

S-duality manifest: symmetry under exchange $Q_F \longleftrightarrow Q_B$ (fiber/base)

 Z_{5d} also knows about flavor symmetry UV SCFT (enhanced from IR one)

- Manifest IR flavor symmetry usually smaller than UV SCFT symmetry; $SU(2) + N_F$ fundamental example: IR $SO(2N_F) \times U(1)_{inst} \longrightarrow \text{UV } E_{N_F+1}$
- Z_{5d} can be decomposed into characters of UV SCFT symmetry, when expanded in an opportune set of variables

• Pure SU(2) example: characters of E_1 (for $Q_F = A^2y$, $Q_B = A^2y^{-1}$)

$$SU(2): Z_{5d} = 1 - \frac{1 + q_1 q_2}{(1 - q_1)(1 - q_2)} \chi^{E_1}(y) A^2 + \dots$$

Wilson loops

How to realize Wilson loops? Naively, semi-infinite F1 ending on D5

$$W_2^{SU(2)} = \alpha + \alpha^{-1} + O(Q)$$

Naive localization computation of Wilson loop VEV:

$$W_{\mathbf{R}} = Z_{5d}^{pert} W_{\mathbf{R}}^{inst}, \qquad W_{\mathbf{R}}^{inst} = \sum_{k \geq 0} Q^k W_{\mathbf{R}, ADHM}^{(k)}$$

with $W_{\mathbf{R},ADHM}^{(k)}$ observable VEV in auxiliary ADHM Quantum Mechanics

$$W_{\mathbf{R},ADHM}^{(k)} = \frac{1}{k!} \oint \left[\prod_{s=1}^{k} \frac{d\phi_s}{2\pi i} \right] Z_{vec}^{(k)} Z_{fund}^{(k)} Z_{CS}^{(k)} Ch_{\mathbf{R}}$$

 $Ch_{\mathbf{R}}$ equivariant Chern character of the universal bundle in rep. \mathbf{R}

However, technical regularization problems for generic representation \mathbf{R} : poles at infinity, unclear extra corrections, ... \implies unreliable approach

How can we alternatively approach the problem?

Proposal: add N' D3 at finite distance to the (p,q) 5-brane web

	0	1	2	3	4	5	6	7	8	9
D5	X	X	X	X	X	X				
NS5	X	X	X	X	X		X			
$5_{(p,q)}$	X	X	X	X	X	θ	θ			
F1	X						X			
D1	X					X				
D3	X							X	X	X

D3 intersect the various 5-branes only along S_R^1 (0-th direction)

 \implies insert loop operator $\mathcal{L}_{SQM}^{(N')}$ for the 5d theory on D5

What kind of loop observable is $\mathcal{L}_{SQM}^{(N')}$?

- Not a Wilson loop, but preserves same supercharges
- Proper interpretation: coupling 5d theory to an $\mathcal{N} = (0,4)$ SQM, involving D3-D5 fermionic low-energy modes of mass M_i

$$S_{\chi} = \int dt \sum_{j=1}^{N'} \overline{\chi}_{j}^{a} (i\partial_{t}\delta_{a}^{b} - A_{a}^{b} + \varphi_{a}^{b} + M_{j}\delta_{a}^{b}) \chi_{b}^{j}$$

- Also known as qq-character, fundamental (N' = 1) or higher (N' > 1)
- Remark: loop operator also for 4d $\mathcal{N}=2^*$ U(N') theory on D3 $(\mathbb{R}^3_{-\epsilon_+} \times S^1_R)$ (contains information on Wilson, 't Hooft loops in 4d $\mathcal{N}=2^*$ theory?)

Why should we consider $\mathcal{L}_{SOM}^{(N')}$? (More on this later)

Claim: Wilson loops in tensor product of minuscule (antisymmetric) reps. are contained as special sectors of the whole $\mathcal{L}_{SQM}^{(N')}$ loop observable

Very rough idea: $\mathcal{L}_{SQM}^{(N')}$ contains all possible ways of stretching F1's

Remark: by Hanany-Witten brane creation / annihilation effect

Wilson loops: diagrams with D3 in the interior and zero net number of F1

Advantage of $\mathcal{L}_{SQM}^{(N')}$: no issues with localization computation

Localization result once more factorized as

$$\mathcal{L}_{SQM}^{(N')} = Z_{5d}^{pert} \mathcal{L}_{SQM}^{(N'), inst}, \qquad \mathcal{L}_{SQM}^{(N'), inst} = \sum_{k \geqslant 0} Q^k Z_{ADHM'}^{(k)}$$

with $Z_{ADHM'}^{(k)}$ partition function of modified ADHM Quantum Mechanics

ADHM' QM for $\mathcal{N} = 1$ SU(N):

 $Z_{ADHM'}^{(k)}$ evaluated via 1d localization as a Jeffrey-Kirwan residue integral:

$$Z_{ADHM'}^{(k)} = \frac{1}{k!} \oint \left[\prod_{s=1}^{k} \frac{d\phi_s}{2\pi i} \right] Z_{vec}^{(k)} Z_{fund}^{(k)} Z_{CS}^{(k)} Z_{SQM}^{(k)}$$

$$Z_{SQM}^{(k)} = \prod_{r=1}^{N} \prod_{l=1}^{N'} 2 \sinh(M_l - a_r) \prod_{s=1}^{k} \prod_{l=1}^{N'} \frac{\sinh(\pm \phi_s \mp M_l + \epsilon_-)}{\sinh(\pm \phi_s \mp M_l + \epsilon_+)}$$

No poles at infinity, regularization problems, ... \Rightarrow reliable computation; Jeffrey-Kirwan selects more poles than usual ADHM ones (Young tableaux) and for convenience we will consider the normalized observable

$$\langle \mathcal{L}_{SQM}^{(N')} \rangle = \mathcal{L}_{SQM}^{(N')} / Z_{5d}$$

Disadvantage: often hard to extract Wilson loops

How to recover Wilson loops out of $\langle \mathcal{Z}_{SOM}^{(N')} \rangle$?

For N' = 1, it was shown that $\langle \mathcal{L}_{SQM}^{(1)} \rangle$ is a Laurent polynomial in $x = e^M$ whose coefficients are Wilson loops in in rank-l antisymmetric reps.

Example: $\mathcal{N} = 1$ pure SU(2) theory ("classical" diagrams: no D1, F1)

$$\langle \mathcal{L}_{SQM}^{(1)} \rangle = x - \langle W_2 \rangle + x^{-1}$$

Remark: different (p,q) 5-brane webs realizing the same 5d gauge theory may have different line operators $\langle \mathcal{L}_{SOM}^{(N')} \rangle$, but still same Wilson loops

$$\mathcal{N} = 1$$
 pure $SU(2)$ theory, $\theta = 0$:

$$\mathcal{N}=1$$
 pure $SU(2)$ theory, $\theta=0$: $\langle \mathcal{L}_{SQM}^{(1)} \rangle = x - \langle W_2 \rangle + x^{-1}$

$$\mathcal{N} = 1$$
 pure $SU(2)$ theory, $\theta = 2\pi$:

$$\langle \mathcal{L}_{SQM}^{(1)} \rangle = \left[x(1+Q) - \langle W_2 \rangle + x^{-1} \right]$$

where usual extra factors from parallel NS5 are removed by normalization

Example: $\mathcal{N} = 1$ SU(3) $N_F = 2$ theory

Example: $\mathcal{N} = 1$ $SU(2) \times SU(2)$ theory

$$\langle \mathcal{L}_{SQM}^{(1,0)} \rangle = \begin{bmatrix} x \\ - \langle W_{(2,1)} \rangle \end{bmatrix} + \begin{bmatrix} x^{-1} \\ \end{bmatrix}$$

$$\langle \mathcal{L}_{SQM}^{(0,1)} \rangle = x - \langle W_{(\mathbf{1},\mathbf{2})} \rangle + x^{-1}$$

What do we learn from the N' = 1 case?

- By using Hanany-Witten moves, Wilson loops can be associated to diagrams with D3 branes in the interior region and zero F1 net number
- These diagrams have specific charge under 4d U(1) gauge group on D3;
 U(1) charge: (number D5 below D3) (number D5 above D3)

This suggests to isolate Wilson loops by selecting sectors of such charge

$$SU(2):$$
 $\langle \mathcal{L}_{SQM}^{(1)} \rangle = x - \langle W_2 \rangle + x^{-1} \implies \langle W_2 \rangle = - \oint \frac{dx}{x} \langle \mathcal{L}_{SQM}^{(1)} \rangle$

$$SU(3) N_F = 2 : \langle \mathcal{L}_{SQM}^{(1)} \rangle = x^{3/2} - \langle W_3 \rangle x^{1/2} + \langle W_{\overline{3}} \rangle x^{-1/2} - x^{-3/2}$$

$$\Longrightarrow \langle W_{3} \rangle = - \oint \frac{dx}{x} \frac{1}{x^{1/2}} \langle \mathscr{L}_{SQM}^{(1)} \rangle, \qquad \langle W_{\overline{3}} \rangle = \oint \frac{dx}{x} \frac{1}{x^{-1/2}} \langle \mathscr{L}_{SQM}^{(1)} \rangle$$

What about $\langle \mathcal{L}_{SQM}^{(N')} \rangle$ for N' > 1? Unclear...

• Expected to contain Wilson loops in tensor product of antisym. reps., at least from 5-brane web picture:

 $\langle W_{2\otimes 2} \rangle$ in $\mathcal{N} = 1$ pure SU(2)

• However, from computations $\langle \mathcal{L}_{SOM}^{(N')} \rangle$ is a rational function of $x_1, ..., x_{N'}$ rather than a Laurent polynomial; how to extract Wilson loops out of it?

Proposal: Wilson loops still isolated by selecting sectors of specific charge under the Cartan $U(1)^{N'} \subset U(N')$ of the 4d gauge group on D3 (separated)

Example: $\mathcal{N} = 1$ pure SU(2), case N' = 2

$$\langle \mathcal{L}_{SQM}^{(2)} \rangle = x_1 x_2 + x_1 x_2^{-1} + x_1^{-1} x_2 + x_1^{-1} x_2^{-1} - (x_1 + x_2 + x_1^{-1} + x_2^{-1}) \langle W_2 \rangle$$

$$+ \langle W_{2 \otimes 2} \rangle - Q \frac{(1 - q_1)(1 - q_2)(1 + q_1 q_2) x_1 x_2}{(x_1 - q_1 q_2 x_2)(x_2 - q_1 q_2 x_1)}$$

with (as natural generalization of
$$N' = 1$$
) $\langle W_{2\otimes 2} \rangle = \oint \frac{dx_1}{x_1} \frac{dx_2}{x_2} \langle \mathcal{L}_{SQM}^{(2)} \rangle$

$$\langle \mathcal{L}_{SQM}^{(2)} \rangle = x_1 x_2 + x_1 x_2^{-1} + x_1^{-1} x_2 + x_1^{-1} x_2^{-1} - (x_1 + x_2 + x_1^{-1} + x_2^{-1}) \langle W_2 \rangle$$

$$+\langle W_{2\otimes 2}\rangle - Q\frac{(1-q_1)(1-q_2)(1+q_1q_2)x_1x_2}{(x_1-q_1q_2x_2)(x_2-q_1q_2x_1)}$$

Extra rational terms: possible breaking of D1 when D3 collinear

In some cases, related to monopole bubbling 4d $\mathcal{N}=2^*$ theory on D3:

$$\oint \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \langle \mathcal{L}_{SQM}^{(2)} \rangle \qquad \Longrightarrow \qquad SU(2) \text{ monopole bubbling}$$

more general interpretation however still unclear

Remark: with some care, we can also isolate other representations

$$\langle W_{\mathbf{2}\otimes\mathbf{2}}\rangle = \oint \frac{dx_1}{x_1} \frac{dx_2}{x_2} \langle \mathcal{L}_{SQM}^{(2)}\rangle \qquad \text{vs.} \qquad \langle W_{\mathbf{3}}\rangle = \frac{1}{2} \oint \frac{dx_1}{x_1} \frac{dx_2}{x_2} \left(1 - \frac{x_1}{x_2}\right) \left(1 - \frac{x_2}{x_1}\right) \langle \mathcal{L}_{SQM}^{(2)}\rangle$$

More generally, for SU(2) theories with N_F fundamental:

$$\langle W_{\mathbf{2}^{\otimes N'}} \rangle = (-1)^{N'} \oint \prod_{i=1}^{N'} \frac{dx_i}{x_i} \langle \mathcal{L}_{SQM}^{(N')} \rangle$$

A similar story is valid for higher rank theories and quiver theories

S-duality and enhanced flavor symmetry

How to **test** our prescription for extracting Wilson loops? S-duality

Main point: Wilson loops mapped to Wilson loops under S-duality

(better: mapped to some "instanton" loop, equivalent to a Wilson loop)

Remark: only tensor product Wilson loops have nice S-duality properties, while other Wilson loops and the whole loop observable $\langle \mathscr{L}_{SQM}^{(N')} \rangle$ do not:

$$\langle \mathcal{L}_{SQM}^{(1)} \rangle = x - \langle W_2 \rangle + x^{-1}$$

Our Wilson loop prescription nicely reproduces brane picture expectation

• $SU(2) + N_F$ fundamental (expanded in "top. strings" variables Q_F , Q_B):

• SU(3) $N_F = 2$ versus $SU(2) \times SU(2)$:

(actually covariant map: mapped up to a phase, unless at SCFT point)

Further **test**: tensor product Wilson loops exhibit enhanced flavor symmetry

• Pure SU(2) case - $E_1 = SU(2)$ symmetry ($Q_F = A^2y$, $Q_B = A^2y^{-1}$):

$$A y^{1/2} \langle W_2 \rangle = 1 + \chi_2^{E_1}(y) A^2 + \chi_3^{A_1}(q_+) A^4 + \chi_5^{A_1}(q_+) \chi_2^{E_1}(y) A^6 + \dots$$

$$A^{2}y\langle W_{\mathbf{2}\otimes\mathbf{2}}\rangle = 1 + 2\chi_{\mathbf{2}}^{E_{1}}(y)A^{2} + \left(\chi_{\mathbf{3}}^{E_{1}}(y) + \chi_{\mathbf{3}}^{A_{1}}(q_{+}) + \chi_{\mathbf{2}}^{A_{1}}(q_{+})\chi_{\mathbf{2}}^{A_{1}}(q_{-})\right)A^{4} + \dots$$

• SU(2) $N_F = 4$ case - $E_5 = SO(10)$ symmetry:

$$A y_1^{1/2} \langle W_2 \rangle = 1 + \chi_{10}^{E_5}(\overrightarrow{y}) A^2 - \chi_2^{A_1}(q_+) \chi_{\overline{16}}^{E_5}(\overrightarrow{y}) A^3 + \dots$$

$$A^{2}y_{1}\langle W_{2\otimes 2}\rangle = 1 + 2\chi_{10}^{E_{5}}(\overrightarrow{y})A^{2} - \left(\chi_{2}^{A_{1}}(q_{+}) + \chi_{2}^{A_{1}}(q_{-})\right)\chi_{\overline{16}}^{E_{5}}(\overrightarrow{y})A^{3} + \dots$$

Wilson loops and Wilson surfaces

Consider $\mathcal{N} = 1^* SU(N)$; S-dual: 6d Abelian theory (M-strings set-up)

5d
$$\mathcal{N} = 1^* SU(N)$$

on $\mathbb{R}^4_{\epsilon_{1,2}} \times S^1_R$ \iff

6d
$$A_{N-1}$$
 $\mathcal{N} = (2,0)$
(tensor branch)
on $\mathbb{R}^4_{\epsilon_{1,2}} \times T^2$

The theories have same partition function; what happens to Wilson loops?

- Wilson loops in 5d: codimension 4 defects (line operator)
- Natural analogue codimension 4 defect in 6d: Wilson surface

$$\langle S_{\mathbf{R}} \rangle \sim Tr_{\mathbf{R}} \left[\exp \int_{T^2} \left(iB + \Phi \, ds \wedge d\tau \right) \right]$$

(formally; to be better defined, for example via brane construction)

- S-duality maps 5d Wilson loops to 6d Wilson surfaces
- How to compute 6d Wilson surfaces? Construct 2d analogue of $\langle \mathcal{L}_{SQM}^{(N')} \rangle$

Revisit first the Wilson loops / $\langle \mathcal{L}_{SQM}^{(N')} \rangle$ computation for 5d $\mathcal{N}=1^*$ SU(N)

More natural brane set-up: D4-D4' intersecting along S_R^1

background
$$S_R^1 \times \mathbb{R}^2_{\epsilon_+ + \epsilon_-} \times \mathbb{R}^2_{\epsilon_+ - \epsilon_-} \times \mathbb{R}^2_{-\epsilon_+ + m} \times \mathbb{R}^2_{-\epsilon_+ - m} \times \mathbb{R}$$

	0	1	2	3	4	5	6	7	8	9
N D4	X	X	X	X	X					
N' D4'	X					X	X	X	X	
F1	X									X
D0	X									

System completely symmetric under exchange $\epsilon_+ \longleftrightarrow -\epsilon_+, \ \epsilon_- \longleftrightarrow m$

 $\Longrightarrow \langle\langle \mathscr{L}_{SQM}^{(N')} \rangle\rangle$ contains Wilson loops for both D4 and D4' 5d theories

$$\langle\langle \mathscr{L}_{SQM}^{(N')} \rangle\rangle = \frac{\mathscr{L}_{SQM}^{(N')}}{Z_{5d} Z_{5d'}}$$

• Example: N = 2, N' = 1 (for $\alpha_1 = \alpha_2^{-1} = \alpha$)

$$\langle\langle \mathscr{L}_{SQM}^{(1)} \rangle\rangle = x - \langle W_{\mathbf{2}}^{SU(2)} \rangle + x^{-1}$$

• Example: N = 1, N' = 2 (for $x_1 = x_2^{-1} = x$)

$$\langle\langle \mathscr{L}_{SQM}^{(2)} \rangle\rangle = \alpha - \langle \widetilde{W}_{\mathbf{2}}^{SU(2)} \rangle + \alpha^{-1}$$

• Example: N = 2, N' = 2, with $\langle W_{2 \otimes 2}^{SU(2)} \rangle = \oint \frac{dx_1}{x_1} \frac{dx_2}{x_2} \langle \langle \mathcal{L}_{SQM}^{(2)} \rangle \rangle$

$$\langle\langle\mathscr{L}_{SQM}^{(2)}\rangle\rangle = \frac{x_1x_2}{\alpha_1\alpha_2} + \frac{\alpha_1\alpha_2}{x_1x_2} - \left(\sqrt{\frac{x_1x_2}{\alpha_1\alpha_2}} + \sqrt{\frac{\alpha_1\alpha_2}{x_1x_2}}\right)\langle W_{\mathbf{2}}^{SU(2)}\rangle\langle \widetilde{W}_{\mathbf{2}}^{SU(2)}\rangle + "\langle W_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle "$$

where tensor product Wilson loops have a common, *shared* part

$$"\langle W_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle" = \langle W_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \left(\langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle - f(Q,\epsilon_{\pm},m)\right) \\ = \left(\langle W_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle - f(Q,\epsilon_{\pm},m)\right) + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle \\ = \left(\langle W_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle - f(Q,\epsilon_{\pm},m)\right) + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle \\ = \langle W_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle \\ = \langle W_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle \\ = \langle W_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle \\ = \langle W_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle \\ = \langle W_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle \\ = \langle W_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle \\ = \langle W_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle + \langle \widetilde{W}_{\mathbf{2}\otimes\mathbf{2}}^{$$

What is the analogue of $\langle \mathcal{L}_{SQM}^{(N')} \rangle$ for the 6d A_{N-1} $\mathcal{N}=(2,0)$ theory?

Start from brane realization 6d A_{N-1} $\mathcal{N}=(2,0)$, add codim. 4 defect (from previous set-up with $\mathbb{R}^4_{5678} \longrightarrow TN$, applying TST on 5 circle)

	0	1	2	3	4	5	6	7	8	9
N NS5	X	X	X	X	X	X				
1 D6	X	X	X	X	X	X				X
D2	X	X								$\mid X \mid$
N' D4'	X	X					X	X	X	

Proposal: brane set-up for $\langle \mathcal{S}_{2d}^{(N')} \rangle$, containing 6d Wilson surfaces

$$\langle \mathcal{S}_{2d}^{(N')} \rangle = \mathcal{S}_{2d}^{(N')} / Z_{6d}$$

Localization computation result factorized as

$$\mathcal{S}_{2d}^{(N')} = Z_{6d}^{pert} \, \mathcal{S}_{2d}^{(N'), \, str} \,, \qquad \mathcal{S}_{2d}^{(N'), \, str} = \sum_{k_1, \dots, k_{N-1} \geqslant 0} \prod_{i=1}^{N-1} \alpha_{i, i+1}^{-k_i} \, \mathbb{E}_{M_{str}'}^{(k_1, \dots, k_{N-1})}$$

with $\mathbb{E}_{M_{str'}}^{(k_1,\ldots,k_{N-1})}$ elliptic genus of modified M-strings $(N'=N_1'+\ldots+N_{N-1}')$

 $\langle \mathcal{S}_{2d}^{(N')} \rangle$ expected to contain 6d Wilson surfaces (S-dual to 5d Wilson loops); explicit computations confirm this expectation, for N' = 1 D4':

• Example: N = 2, N' = 1

$$\langle W_{\mathbf{2}}^{SU(2)} \rangle = -\oint \frac{dx_1}{x_1} \left\langle \left\langle \mathcal{L}_{SQM}^{(1)} \right\rangle \right\rangle$$

$$\langle \mathcal{S}_{2d}^{(1)} \rangle = \theta_1(\ln x_1) \langle W_{\mathbf{2}}^{SU(2)} \rangle$$

 $\langle W_{\mathbf{2}}^{SU(2)} \rangle$ obtained by removing $\theta_1(\ln x_1)$ or taking $\langle W_{\mathbf{2}}^{SU(2)} \rangle = \oint \frac{dx_1}{x_1} \frac{1}{x_1^{1/2}} \langle \mathcal{S}_{2d}^{(1)} \rangle$

• Example: N = 3, N' = 1

$$\langle W_{\mathbf{3}}^{SU(3)} \rangle = - \oint \frac{dx_1}{x_1} \, \frac{1}{x_1^{1/2}} \, \langle \langle \mathcal{L}_{SQM}^{(1)} \rangle \rangle$$

$$\langle W_{\overline{\mathbf{3}}}^{SU(3)} \rangle = \oint \frac{dx_1}{x_1} \frac{1}{x_1^{-1/2}} \langle \langle \mathcal{L}_{SQM}^{(1)} \rangle \rangle$$

$$\langle \mathcal{S}_{2d}^{(1,0)} \rangle = \theta_1(\ln x_1) \langle W_3^{SU(3)} \rangle$$

$$\langle \mathcal{S}_{2d}^{(0,1)} \rangle \, = \, \theta_1(\ln x_1/\mu) \, \langle W_{\overline{\mathbf{3}}}^{SU(3)} \rangle$$

The situation is still partially unclear for N' > 1 D4':

• Example: N = 2, N' = 2

$$\langle W_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle = \oint \frac{dx_1}{x_1} \frac{dx_2}{x_2} \langle \langle \mathcal{L}_{SQM}^{(2)} \rangle \rangle$$

$$\langle \mathcal{S}_{2d}^{(2)} \rangle$$
 = complicated

$$\langle W_{\mathbf{2}\otimes\mathbf{2}}^{SU(2)}\rangle \stackrel{???}{=} \oint \frac{dx_1}{x_1} \frac{dx_2}{x_2} \frac{1}{x_1^{1/2}} \frac{1}{x_2^{1/2}} \langle \mathcal{S}_{2d}^{(2)}\rangle$$

The two objects match, apart from the 1-string sector (wrong measure?)

Summary

Wilson loops for 5d $\mathcal{N} = 1$, 1* SU(N) theories on $\mathbb{R}^4_{\epsilon_{1,2}} \times S^1_R$:

- In brane picture, properly defined via F1 ending on D3 at finite distance
- D3 branes create 1d defect along S_R^1 in 5d theory (coupling to a SQM)
- Partition function $\langle \mathcal{L}_{SQM}^{(N')} \rangle$ of coupled system contains information on 5d Wilson loops in tensor product of minuscule (antisym) representation
- Nice S-duality transformation properties, enhanced flavor symmetry
- In $\mathcal{N} = 1^*$ case, map to Wilson surfaces in M-string set-up ("almost")

Thanks!