Wilson loops, Wilson surfaces and S-duality

Antonio Sciarappa

KIAS

Based on arXiv:1804.09932 (with Joonho Kim, Seok Kim, Prarit Agarwal)
+ arXiv:1806.09636 (with Benjamin Assel)

Strings, Branes and Gauge Theories 2018 - APCTP



Overview

. . . . . A .
Goal: study Wilson loops 1n 5d supersymmetric gauge theories on Re X Sg

Set-up: Lagrangian theories engineered by (p,q) 5-brane webs 1n type I

e How to realize Wilson loops in the brane web picture?

e How to compute VEVs of Wilson loops 1n generic representations?

e What are their properties (S-duality, enhanced flavor symmetry)?

Focuson ./ = 1* SU(N) theories or #/ =1 SUN) + N fundamental



(p,q) S5-brane webs

5d /" =1 gauge theories: 1ll-defined in UV (dimensionful gauge coupling)
e (Can think of it to emerge in IR as a deformation of UV 5d SCFT

e UV 5d SCFT engineered via brane systems, such as (p,q) S-brane webs

0|1 (23[4]5|6|7[8]9
D5 | X |X|X|X|X
NS5 | X [ X | X | X|X X
B | X | X | X | X|X|6]6
F1 | X X
DI | X X

After deformation, 5d gauge theory realized on the D5 branes



Example - pure SU(2) :

6 D1
‘ 2a
o F1
teg =t + 2a
UV:5drank 1 E;, = SU(2) SCFT IR: 5d # = 1 pure SU(2) theory
o1 (23|45 |6 |7|8]9

DS | X | X | X | X | X

NSS | X | X | X | X | X X

Sy | X | X | X[ X | X |66
F1 X
D1 X X




Type IIB S-duality: equivalence between brane webs with (p,q) — (-q,p)

—
self-dual
SU(2) SUQ2)
/
—
N\

SUB3) Np=2 SU2) x SU(2)



Partition functions

Lagrangian theories: partition function Z., on RZ X S via localization
1,2

e Final result factorizes into perturbative + instanton part:

__ r7pertrzinst
Zsg= 2L 7L

e Instanton part: sum over all instanton number sectors (Q = e™")
inst __ k (k)
Zsi' = 2,0
k=0

. (k) S . oq e .
with Z°)  partition function auxiliary ADHM Quantum Mechanics

ADHM QM for

N =1 SUNN) :




ZX%HM evaluated via 1d localization as a Jeffrey-Kirwan residue integral:
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ZgZzSt : series expansion in Q, coefficients exact in o, = e, g, = e

919-(1 + q19,)

SUQ):  ZMt=1+0Q N
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Z, also computable via topological vertex (even non-Lagrangian cases);

same as before, but double series expansion in Qp = e 29, Qp = e~

2a

teg =t + 2a

B 1 +q9,
(I =g —qy)

SUQ):  Z.,=1 (Op + Op) + ...

S-duality manifest: symmetry under exchange Q. «— Qp (fiber/base)



Z., also knows about flavor symmetry UV SCFT (enhanced from IR one)

e Manifest IR flavor symmetry usually smaller than UV SCFT symmetry;

SU(2) + Ny fundamental example: IR SO(2Np) x U(1),,,, —> UV Ey 4

inst

® 7, can be decomposed into characters of UV SCFT symmetry,
when expanded 1n an opportune set of variables

e Pure SU(2) example: characters of E; (for O = A%y, Qg =A%)

[ +
SUQ):  Ze,=1- Nt EG) A2+ .

(I =gl —q)




Wilson loops

How to realize Wilson loops? Naively, semi-infinite F1 ending on D5
WZSU(Z) =a+a!l + 00

F1 . F1

SU2) .
WSV . + + (D1, F1)

a a”! 0(0)



Naive localization computation of Wilson loop VEV:

_ rgpert yyjinst inst _ Z kyx7(k)
WR Z5d WR ’ WR Q WR, ADHM
k=0

with ngk) DEHM observable VEV 1n auxiliary ADHM Quantum Mechanics

2ri | V€€ fund T CS
s=1

| k d,
W(k,) — [ ] 7(K) 7(k) 7(k) ChR

Chg equivariant Chern character of the universal bundle in rep. R

However, technical regularization problems for generic representation R :

poles at infinity, unclear extra corrections, ... =— unreliable approach



How can we alternatively approach the problem?

Proposal: add N’ D3 at finite distance to the (p,q) 5-brane web

o1 [2]3[a]|5|6|7][8]09
D5 | X|X|X|X][X
NS5 | X | X | X |X|[X X
S | X | X[ X[ X | X |66
F1 | X X
DI | X X
D3 | X X[ X|X

— insert loop operator Sf%}w for the 5d theory on D5



What kind of loop observable is 3(5]8” ?

e Not a Wilson loop, but preserves same supercharges

e Proper interpretation: coupling 5d theory to an 4/ = (0,4) SQM,

involving D3-D35 fermionic low-energy modes of mass M;
N/ .
S, = Jdthj‘?(iaﬁf — AL+ @) + M5 )y
j=1
e Also known as qq-character, fundamental (N’ = 1) or higher (N’ > 1)

e Remark: loop operator also for 4d /" = 2* U(N') theory on D3 (R’ X Sp)

(contains information on Wilson, ’t Hooft loops in 4d .4 = 2* theory?)



Why should we consider f‘fgé 3\4 ? (More on this later)

Claim: Wilson loops 1n tensor product of minuscule (antisymmetric) reps.

are contained as special sectors of the whole gg& loop observable

Very rough idea: fZ(Sg ) contains all possible ways of stretching F1’s

© D3 ?DS @ D3 3D3




Remark: by Hanany-Witten brane creation / annihilation effect

: i O 3

O

Wilson loops: diagrams with D3 in the interior and zero net number of F1



Advantage of f‘fgg )+ 10 issues with localization computation

Localization result once more factorized as

(N') __ zpert cp(N'), inst (N'), inst __ k—7(k)
gSQM Z gSQM ’ gSQM Z Q ZADHM’
k=0

with ZE%HM, partition function of modified ADHM Quantum Mechanics

ADHM’ QM for # = 1 SU(N) :

-
—_— —_— -



ZX%HM, evaluated via 1d localization as a Jeffrey-Kirwan residue integral:

(k) 1 T o, k) 7k (k) 7(K)
Zapuw = Ty 2t | Zvee Zpuna Zcs Lsom

No poles at infinity, regularization problems, ... = reliable computation;

Jeffrey-Kirwan selects more poles than usual ADHM ones (Young tableaux)

and for convenience we will consider the normalized observable

(N) y — (V)
(Z SQM> =7 SQM/ ZLsg

Disadvantage: often hard to extract Wilson loops



How to recover Wilson loops out of (gg{g ) )7

For N’ = 1, it was shown that (EgQ)M) is a Laurent polynomial in x = e

whose coefficients are Wilson loops 1n in rank-/ antisymmetric reps.

Example: # = 1 pure SU(2) theory (“classical” diagrams: no D1, F1)




Remark: different (p,q) 5-brane webs realizing the same 5d gauge theory

may have different line operators (CSZ%])W) , but still same Wilson loops

.................................................................................................................................................

= 1 pure SUQ) theory, 0= 265 (#48,) = K0 40) (W) +

SOM’" TN S A T

where usual extra factors from parallel NS5 are removed by normalization



Example: /' =1 SU(3) N, =2 theory

______________________________________
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..............................................................

(g(le)M) _ 2 (W b (W12 - xR



Example: # =1 SU(2) x SU(2) theory




What do we learn from the N’ = 1 case?

e By using Hanany-Witten moves, Wilson loops can be associated to

diagrams with D3 branes in the interior region and zero F1 net number

e These diagrams have specific charge under 4d U(1) gauge group on D3;

U(1) charge: (number D5 below D3) - (number D5 above D3)

This suggests to 1solate Wilson loops by selecting sectors of such charge

dx
SUQ2) : (Lo =x = (W) +x71 = §<W2> = — ﬂ%wg&ﬁ
SUQ3) Np=2: <3§2M> — 32 _ <W3)x1/2 + (W5) w12 _ -3

.................................................................................................................................................................




What about (ngg}w) for N’ > 1? Unclear...

e Expected to contain Wilson loops 1n tensor product of antisym. reps.,

at least from 5-brane web picture:

ﬁ)? o? ?O Q O

y y y y
° o e ° ¢ ¢

(Waga) In A =1 pure SU(2)




e However, from computations (3%3\4) is a rational function of xy, ..., Xy

rather than a Laurent polynomial; how to extract Wilson loops out of it?

Proposal: Wilson loops still 1solated by selecting sectors of specific charge

under the Cartan U(1)" c UN) of the 4d gauge group on D3 (separated)

Example: /=1 pure SU(2) , case N' =2

(OCZ%M) = XX, + xlxz_l + xl_lxz + xl_lxz_1 — (X +x, + xl_l + xz_l)(Wz)
(1 =g )1 =g + q,9,)x1x,
(X1 — 4192%2)(Xp — q1G2X1)

+ (Waga) — O
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) =§x1x2+x1x2_1+x1_1x2+x1_1x2_1§—§(x1+x2+x1_1+x2_1)(W2)

________________________________________________________________________

(2)
Z SOM

....................................................................................................................

+ (Waga) = O (1= g)0 = @)+ G13)x%
s (X1 — §1G>X%)(Xy — G1G>X7)

o o
o ° o ©
o o
o © o ©
o o
o o
o




Extra rational terms: possible breaking of D1 when D3 collinear

In some cases, related to monopole bubbling 4d ./ = 2* theory on D3:

da, d :
<J; i (Q(SZQ)M) —  SU(2) monopole bubbling
ar &

more general interpretation however still unclear



Remark: with some care, we can also 1solate other representations

Mo = L2 vs iy =22 (1-2)(1-2) o)

X1 X 2] x x X X
1 X2 1 X2 2 1

More generally, for SU(2) theories with N, fundamental:

A similar story 1s valid for higher rank theories and quiver theories



S-duality and enhanced flavor symmetry

How to test our prescription for extracting Wilson loops? S-duality

Main point: Wilson loops mapped to Wilson loops under S-duality

T S-duality
=

(better: mapped to some “instanton” loop, equivalent to a Wilson loop)



Remark: only tensor product Wilson loops have nice S-duality properties,

while other Wilson loops and the whole loop observable (f‘f%}w) do not:

_______________________________________________________________________________________________________________________________________________________________________________________________________________




Our Wilson loop prescription nicely reproduces brane picture expectation

e SU(2) + Npfundamental (expanded in “top. strings” variables Qr, Op):

O < W2®N’> — < W2®N’> O

* SU@B) Np=2 versus SUR)x SU2) :

<W3®n1®§®n2> N— <W(2®n1,2®n2)> 9

(actually covariant map: mapped up to a phase, unless at SCFT point)



Further test: tensor product Wilson loops exhibit enhanced flavor symmetry

e Pure SU(2) case - E; = SU(2) symmetry ( Q, = A%y, Qp = A%y~ '):

Ay (Wy) = 1+

%)

A+ x(g) A+ ()

A%y (Wagp) = 1427, (1)A?

* SUR) Np=4 case- E5 = SO(10) symmetry:

Ay/?(Wy) = 1+

7,'()

Ay (Wagp) = 142 25(3)

A? — (xfl(cm +)(§‘1(q_))

A+ ..

+ (O + gD + 1) 1(61+))(§‘1(q_)) A*+ .

1A = 1, @A + ...

Es— 3
)(E(y)A + ...




Wilson loops and Wilson surfaces

Consider A4 = 1* SU(N) ; S-dual: 6d Abelian theory (M-strings set-up)

—

S-duality

— (tensor branch)
on Rﬁl X T?

5d A = 1% SUN)

4 I
on R XSg



The theories have same partition function; what happens to Wilson loops?
¢ Wilson loops 1n 5d: codimension 4 defects (line operator)

e Natural analogue codimension 4 defect in 6d: Wilson surface

(Sg) ~ TrR[epr

(iB+ ®ds A dr) |
T2

(formally; to be better defined, for example via brane construction)
e S-duality maps 5d Wilson loops to 6d Wilson surfaces

» How to compute 6d Wilson surfaces? Construct 2d analogue of (Z{¥) )



Revisit first the Wilson loops / (SZ(S]BW) computation for 5d 4/ = 1* SU(N)

More natural brane set-up: D4-D4’ intersecting along SI%

background SpxRZ, xR _ xRZ , xR> _ xR
o112 3[4 ]|5|6]7|8]9
ND4 | X | X | X | X | X
N' D4 | X X | X | X | X
F1 X X
DO X

System completely symmetric under exchange ¢, «— —€,, €_ «—m

— ((ngg?w)) contains Wilson loops for both D4 and D4’ 5d theories

AN,
, oM
(LU Yy =

oM Lsg Lsy




e Example: N=2, N'=1 (for a1=a2‘1=a)

(L) = x = (WSVD) 4 27!

e Example: N=1, N'=2 (for x;, =x;' =x)

(L)) = a = (W72 + o™

e Example: N=2, N' =2, with (W)Y = ﬂg dxy dx, (LD )

22 X| X, SOM

(2) _ ax X1X2 G SUQR)\ / a7SU2) 1 1 arSUR2) T SUR)\
(LB = 28— (22 Jo ) o) 4 (322 4 (W

where tensor product Wilson loops have a common, s/ared part

~—

(Wans?) + (WHoD) " = (Wol®) + ((Wod D) = Q. exsm)) = ((Wyo?) = f(Q, €x,m)) + (W3o)



What is the analogue of (3%3\4) for the 6d Ay_; A = (2,0) theory?

Start from brane realization 6d A,_; /' = (2,0), add codim. 4 defect

4

2s — TN, applying TST on 5 circle)

(from previous set-up with R

O 123|456 T7T |89
NNSS [ X | X | X [ X]|X | X
ID6 | X | X | X | X | X | X X
D2 X | X X
N' D4 | X | X X | X | X
(V)

Proposal: brane set-up for (§%"’), containing 6d Wilson surfaces

2d

(27 = S5 Zsa



Localization computation result factorized as

(N) _ gpert (N’) str (N, str _ (k ,e 1)
§2d o 6d °S) ’ CS)2d Z H u+1 1 v

k120 =1

with E](\];",“’kN—l) elliptic genus of modified M-strings (N’ = N; + ... + Ny_;)

Str




(87 expected to contain 6d Wilson surfaces (S-dual to 5d Wilson loops);

explicit computations confirm this expectation, for N' =1 D4’:

e Example: N=2, N =1

A G (SD) = 60,Inx,) (WSLO)

dxl 1 <CS)(1)

(WZS Y2y obtained by removing 0,(In x,) or taking (WjU(2)> — ﬂE :
X, xi2 2



e Example: N=3, N =1

@
dx
SUQ3)\ — 1 (D

dx, 1
SUQ3)\ — 1 (D

(SOD) =

01(In x; /) (W3U)



The situation 1s still partially unclear for N' > 1 D4’:

e Example: N=2, N =2

o (05’(23)) = complicated

suey _ 4 4H b 2)

<W2®z ) = ﬂg X X (Z SQM>> SU@N M dx; dx, 1 1 J3e)
<W2®2 ) = x| X x11/2 x21/2< 2d

The two objects match, apart from the 1-string sector (wrong measure?)



Summary
Wilson loops for 5d " =1, 1* SU(N) theories on R7 X Sg:

¢ |n brane picture, properly defined via F1 ending on D3 at finite distance
e D3 branes create 1d defect along Sy in 5d theory (coupling to a SQM)

e Partition function (%) \ of coupled system contains information on
SOM P Yy

5d Wilson loops 1n tensor product of minuscule (antisym) representation
e Nice S-duality transformation properties, enhanced flavor symmetry

* In ./ = 1% case, map to Wilson surfaces in M-string set-up (“almost™)



Thanks!



