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Plan of talk

e Review of 5d N=1| SUSY CFTs.
e Geometric construction of 5d SCFTs.

e Rank 2 classification of 5d SCFTs.
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Higher dimensional QFTs

Interacting conformal field theories (CFTs) in higher dimensions (d=5,6)

have been constructed in string theory. [Witten 95], [Strominger 95], [Seiberg 96], ...

They are all SUSY theories preserving 8 or |6 supersymmetries.

e Classification of 6d SCFTs
All N=(2,0) (or 16 SUSYs) CFTs can be constructed in Type |IB string

theory on ADE singularities. [Witten 95]

Most N=(1,0) CFTs can be engineered using F-theory on elliptic CY3.

[Heckman, Morrison,Vafa |3], [Heckman, Morrison, Rudelius,Vafa 15],
[Bhardwaj, Morrison, Tachikawa, Tomasiello 18],...

We are now interested in classification of 5d SCFTs.
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5d Supersymmetric CFTs

Basic properties of 5d SCFTs
 N=I SUSY (8 supersymmetries)

* Superconformal algebra £
SO(1,4) Lorentz symmetry + SU(2)r symmetry

* No marginal deformation.

* Relevant (mass) deformations associated to global symmetries.

Some 5d SCFTs admit gauge theory descriptions at low energy upon mass

deformations m ~ 1/g¢° of global instanton symmetry.

1 1%
5£ — 4—92FMVF’M

In this case, SCFT arises in UV fixed point when g — oo of this low

energy effective gauge theory. [Seiberg 96], [Intriligator, Morrison, Seiberg 97]
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e Large class of 5d SCFTs can be engineered by

. [Aharony, Hanany 97], [Aharony, Hanany, Kol 97],
(p,q) 5-brane webs in Type |IB [DeWolfe, Igbal, Hanany, Katz 991, ...

[Morrison, Seiberg 96], [Douglas, Katz,Vafa 96],
M-theory on nhon-compact CY3 [Katz, Klemm,Vafa 96], [Intriligator, Morrison, Seiberg 97], ...

- Their low energy (gauge theory) descriptions exhibit interesting strong
coupling phenomena such as dualities and symmetry enhancements.

e 5d Kaluza-Klein (KK) theories

Some special cases lead to 5d theories showing emergent spacetime (or
Kaluza-Klein circle) symmetry and they are promoted to 6d SCFTs on a circle.

So their UV completions are not 5d SCFTs.

ex) N = 2 gauge theories —— 6d (2,0) ADE CFTs on a circle
[Seiberg 96], [Douglas 10], [Lambert, Papageorgakis 10], ...
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Effective Prepotential on Coulomb branch

Coulomb branch moduli space of 5d SCFTs is parametrized by vacuum
expectation values of the real scalar fields ¢; in vector multiplet (or

dynamical Kahler parameters of CY3).

Low energy physics on Coulomb branch is characterized by

I”

“prepotential” (or triple intersections of CY3).

ecroot f wery

1 o - 1
F = z—gghijWW + %dijk¢z¢]¢k T 15 ( Z e - o]° - Z Z w - ¢5+me>

go : gauge coupling, my : masses, h;; = Tr(T;T}), dijr = TrT; 1T}y, K : CS —level for SU(N > 2)

[Witten 96], [Seiberg 96], [Intriligator, Morrison, Seiberg 97]

e Effective coupling : 7;j = 0;0; F
 Metric on Coulomb branch : ds* = 7;,;d¢'d¢’

* Tension of magnetic monopole string : T, ~ ¢p; = ;. F
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Classification of 5d gauge theories

5d gauge theories having UV fixed points were classified using the condition

that metric on Coulomb branch is non-negative everywhere.

° eigen(Tij (¢)) >0 with ¢ €C [Seiberg 96], [Intriligator, Morrison, Seiberg 97]

where C is Coulomb branch where all perturbative states have m?* > 0

This old condition has been generalized such as

4 )
5d gauge theory has an interacting CFT fixed point when

eigen(ﬂ;j (¢)) >0 with QO € Cphys [Jefferson, H-C. Kim, Vafa, Zafrir 7]

g Here, Cpnys C C is subset of Coulomb branch where all states have m* > 0. y

Since 5d gauge theories involve non-perturbative instanton states, it would be very

difficult to perform full classification using this generalized criterion.
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Classification of 5d gauge theories with single gauge node

4 )
5d gauge theory has an interacting CFT fixed point when
eigen(Tij (¢)) >0 with O € Cphys [Jefferson, H-C. Kim, Vafa, Zafrir 17]
_ Here, Cpnys C C is subset of Coulomb branch where all states have m? > 0. y

Instead, we consider relaxed condition as
eigen(7;;(¢)) >0 with ¢eC

where C is subset of Coulomb branch with non-negative masses (or tensions) of

all perturbative states and monopole strings, i.e. m>.; >0, T' > 0.

Using this condition,“possibly”’ non-trivial gauge theories with single gauge node

are classified in [Jefferson, H-C. Kim, Vafa, Zafrir 17] .




8/21

Ngym | Ny || Nps | Ny
. 1 3 3 0
Ex : All rank 2 theories T T 1 o > | 4
0 10 0 1 5
0 9 %_ 0 10
0 6 4 \ . o) . :

= (b) Marginal Sp(2) gauge theories with

0 3 2 Nag anti-svmmetric, Np fundamental hy-

0 0 9 permultiplets. The theory with Nag — 3

(a) Marginal S0 (3) theories with (S level can have £ = 0, .

k, Ngy:, symmetric and Ny fundamental

hypermulsiplets. Np

f

(¢) A marginal G gauge Lheory with Np
fundamental matters.

* These are 5d KK theories whose UV completions (if exist) are 6d SCFTs on a circle.

* Their descendants by integrating out matter hypers give rise to 5d SCFTs.

* New predictions : ex) SU(3).—¢ 78, Go w/ Np =5, -

Q) Do they all really have UV CFT fixed points!?



Geometric construction of 5d CFTs




9/21

M-theory on Calabi-Yau threefold

| |d M-theory compactified on a ‘contractible’ Calabi-Yau threefold Xg will
engineer a 5d SCFT.

[Morrison, Sieberg 96], [Douglas, Katz, Rafa 96], [Intriligator, Morrison, Seiberg 97]

* Contractible CY3 :Surfaces S; c X can contract to a singular point.

Ex : del Pezzo surfaces dP,, in CY3

F\

dP, = P? dP, — SU(2)g—r

* |n fact, 'contractible CY3’ can be generalized to ‘shrinkable CY3’.

* Shrinkable CY3 : S; C X can contract to a point or non-compact 2-cycles.
[Jefferson, Katz, H-C. Kim,Vafa 2018]

Ex :
Fo — SU(2)g=0 F,, : Hirzubruch surface
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Gluing surfaces in Calabi-Yau threefold

Generic shrinkable CY3 can be constructed by gluing rank | surfaces.

Ex) Gluing two surfaces [y and [F5 yields a rank 2 surface S,,; = Fo U F5 .

Ko

~ -

Stot = o U o

FQ / ____________________ NN E,
F,, : Hirzubruch surface

*  We glue base class Hj in Fyand section Es in[Fy.

* Final CY3 embedding Stot = Fo U F3 is a smooth CY3 corresponding to
SU(3) gauge theory with CS-level k = 1.
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Construction algorithm of ‘Shrinkable CY3’s

All shrinkable CY3 are constructed by a gluing rank | surfaces S, = U;S..

|. Building blocks S;
a. Hirzebruch surfaces and their blowups BI,(F,,). p : # of blowups

b. del Pezzo surfaces dP, .

2. Two surfaces S; and S; are glued along curve C; = .51 N 52

a. C, is a smooth irreducible rational curve.

b. (Cyl1)* + (Cyl2)? = —2.

3. All 2-cycles have non-negative volumes (when all masses are turned off).

VOZ(C):—CJZO, CCStot J:ZQ%S@ @; > 0
4. At least one 4-cycle has positive volume.

* Dimension (or rank) of Coulomb branch = number of compact surfaces
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Deformation Equivalence of CY3’s

Different geometries can give the same SCFT (up to decoupled free sector)
when all Kahler parameters are turned off.

* We claim that geometries are ‘Deformation Equivalent’ having the same CFT
fixed point if they are related by

|. Flop: Vol(C)=—-Vol(C")
2 _ 2

2. Hanany-Witten (HW) transition :a complex structure deformation

e S
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Deformation Equivalence of CY3’s

3. Complex structure deformation by tuning mass parameters.

(0,1)  (0,1) (0,2)
RN

4. Genus reduction: FJ — Bly,F, with g self-gluings

N\ N
C/' d/:
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Rank | classification

All rank | SCFTs are engineered by CY3s of del Pezzo surfaces dF,,<7and a

Hirzebruch surface IFO y [Morrison, Seiberg 96], [Douglas, Katz,Vafa 96],

[Intriligator, Morrison, Seiberg 97]

e Classification : S G M
P? - 0

Fy SU(2)s—0 1

dPl — Fl SU(Q)@ZW 1

dPn>1 SU(Z),Nf =n—1 n

e Brane constructions

o R
\\ R IR N

IP)Q IEPO dPl dPQ dP3

Note that all rank | SCFTs can be obtained from d Py corresponding to 6d E-string
theory on a circle by mass deformations.



Rank 2 classification

We claim that

All rank 2 shrinkable CY3 can be realized as S = S; U S5
for which S1 = Bl,F,, and Sy =dP, or Fy .

|. Bl,IF,,, is a blowup of [f,,, at P generic points.

2. Two surfaces are glued along rational curves C; ¢ Sy, Cy C S5

3. Gluing curves satisfy C? 4 02 = —2
4.01 — E, 012 = —m.

Ex) 1. SU(3), 2. SU(3) + 2F

RN

FsUdP, Cy=H, H> =1 BlsFo Uy, Co = H, H* =0

15/21



Full Classification of rank 2 shrinkable CY3 /2]

(BIsF; U dPg)* .
SU(3)0+510F,Sp(62)+10F [jefferson, Katz, H-C. Klm,Vafa 201 8]

[SU(2)+4F] x [SU(2) +4F]

- >B14]F1 U dP(6) (BlgF; UF,)*
3)1+9F, 5p(2)+9F SU(3)_s +9F, Sp(2)+1AS+8F . +
[SU(2)+3F] x [SU(2) +4F] : With O7
B14F1 U dP5 BlgFl U dP6 BlgFg U dPl | (SU(3)0+1Sym+1F)* |
SU(3)o+8F SU(3)1+8F, Sp(2)+8F SU(3)_2+8F, Sp(2)+1AS+7F
[SU(2)+3F] x [SU(2)+3F] [SU(2)+2F] x [SU(2)+4F]
! — v v | SU(3)1+1Sym |
BlsF, U dP; BLF; UdPg BI;F, UF,
BlgFs U IP’? SU(3), +7F SU(3)s +7F, Sp(2)+7F SU(3)_3 +7F, Sp(2)+1AS+6F
[SU(2)+2F] x [SU(2)+3F] [SU(2)+1F] x [SU(2)+4F] [SU(2)+5F] x SU(2)x
|
, | ~ / . . \ (F2 UdP7)*
BI;F; U dP, Bl3F; UdP, BL,F; UdPs BLF; UdPg F, UdP; SU(3)4+6F
[SU(2)+4F]xSU(2)o SU(3)o+6F SU(3), +6F SU(3)2+6F, Sp(2)+6F SU(3)3+6F Sp(2)+2AS+4F
[SU(2)42F] x [SU(2)+2F] | | [SU(2)+1F] x [SU(2)+3F] | | SU(2), x[SU(2)+4F] | | Sp(2)+1AS+5F G2 +6F
BLF, UdP, BLF, UdP, BL,F, UdP; Fy 0 dPg F, U dP, I3 U dPe
[SU(2)+3F]xSU(2)o SU(3)y +5F SU(3); +5F SU(3); +5F SU(3); +5F SU(3)y +5F
[SU(2)+1F]x [SU(2)+2F] | | SU(2). x[SU(2)+3F] Sp(2)+5F Sp(2)+1AS+4F SP(Q)G”*’;E“F
— I ~~ T ~ /N~ | _—"
Bl3lF; UdPs BLLF; UdP3 Bl1F; UdPy F{ UdP5 Fy U dPs5 F3 UdPs5 F,UdPs
[SU(2)+2F]| x SU(2)o SU(3)o+4F SU(3)1+4F SU(3);+4F | | SU(3)3+4F SU(3)4+4F SU(3)5+4F
[SU(2)+1F]x [SU(2)+1F] | | SU(2), x [SU(z)Jy Sp(2)+4F | | Sp(2)+1AS+3F Sp(2)G +211}§+2F
/ l / / 2o+
BlgFl U dP2 Bl F; UdPs F,UdPy Fg U dP, Fs UdPy FyUdPy FsUdPy (F(S U dP4)*
[SU(2)+1F]x SU(2), SU(3)1+3F SU(3)3 +3F )z +3F | | SU(3)z +3F SU(3)s +3F SU(3) 1 +3F Sp(2)013AS
SU(2)x x[SU(2)+1F] Sp(2)+3F | [ Sp(2)+1AS+2F | | 5,(2)1 2AS+1F
/ \ \ / \ / \ Gy+3F
dP, U dP, BLF, XX 4P, BLF, 5 P, F, UdP; Fg U dPs F3 UdP3 F,UdPs Fs UdPs Fg 3#2617)(2 dP3 Fe Ejg dP;
SU(2)oxSU(2)o | [ SU(2),%xSU ), SU(3)o+2F SU(3),+2F 3)2+2F | [ SU(3)3+2F SU( )4+2F SU 3)5+2F SU(3)6+2F (201 2AS
SU(2)w x SU(2) 2)+2F +1AS+1F Sp(2),+2AS oo
/ / / / — /
[Fl Z—XO—XQ dP2 F, )L(Jl dP, IFQ U dPQF F3 U dPs IF4 U dP, ]F5 U dP21F 32 Zﬁl dP2 F7; UdP, Fg Ej dp,
SU(3);+1F 3+1 5—‘,—1F 7—‘,—1F 9+ SU( )11+1F SU(S)L;-‘FIF (2 1AS
> Sp( )+1F Go+1F P(2)o+
/ \ / / / Sp(2), +1AS 2 /
|
Fy UF, Fs UdP, IF4 UFq FsUdP, Fe UF, F,UdP, Fs UF, Fe UdPy (Flo U Fo)*
SU@3)1 SU(3)2 SU@3)s SU(3)4 SU3)s SUB)s SU(3)7 Sp(2)o SU(3)9
Sp(2)7r G2
—

Fo UP”
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e All rank | & 2 5d SCFTs arise from mass deformations of 6d SCFTs on a
circle!

* Our geometric construction involves all known rank 2 5d SCFTs except one

theory, SU(3)1 + 1Sym which is realized with frozen singularity O7.

* All rank 2 SCFTs admit brane construction in Type IIB.
[Bergman, Zafrir |15], [Hayashi, S.S. Kim, K. Lee, Yagi |5, 18]
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Geometry and gauge theory : rank 2 with M=

Gauge theory analysis predicts | SU(3),,0 < [x] <9
Sp(Z),H =0,7 [Jefferson, H-C. Kim,Vafa, Zafrir 2015]
G
Geometric classification : [S,us,  C G SiUS | G G
IF()UFQ Fl SU(3)1 IF()UIFg Fl + 3H1 SU(3)7> G2
F,UF, F +H, SU(3)s F,UF, E SU(3)o
FoUFs Fy+2H, | SU(3)5, Sp(2e—o | F1UF; | 2F, + H, | SU(3)s

(a) Endpoint geometries with M = 1. Here Cy = FEs.

S1US, ' G Endpoint
F,UF, F SU(2)xSU(2) P2UF;
F,UF; H, SU(3), P? U,
F,UFs | F\+ H, SU(3)4 P?2 UFg
F; UFg 2H, Sp(2)6—r P? UFg
F,UFy | Fi +4H, SU(3)q 6d?

(b) Other geometries of Fy, UF,, with M=1.

Note that no shrinkable geometry for SU(3)s gauge theory!
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Dualities from geometry

Geometric duality can lead to dualities between gauge theories.

* Fiber class W; in each surface S; € S = U;.5; can form a Cartan matrix 4;;(G)
of Lie group G. Namely,

— Wz Sj — A"L] (G) [Intriligator, Morrison, Seiberg 97]

* Choice of fiber classes is not unique.

* Different choices correspond to different gauge theory descriptions.

e Ex: / Since F12 — H12 — (0, we have two choices :

I.W1:F1, W2:F2 — SU(3)5

/ \8 2. Wi =Hy, Wo=F, — Sp(2)g=r

Fo UlFg, C1 = Hy+ 2 Thus, F7 <+ Hj leads to SU(3)5 «» Sp(2) duality.
; CQ = Fy C Fg
[Gaiotto, H-C. Kim 2015]
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New dualities from geometry

« SU(3)7 <+ G5 duality from Fy U Fyg
* Gluing curves are C; = Hy + 3F; C Fy, Cy = E5 C Fg.

* Two fiber class choices: 1. W; = Fy, Wy = F, — SU(3)7
2. W1:H1, W2:F2 — GQ

o SU(3)g+2F < Gy +2F « Sp(2)g—r + 2AS duality from dP; U Fg
* dP3 has three exceptional curves X, X5, X3 with self-intersection *-1’.
* Gluing curves are C; =3l — X7 — 2X,, (5 = Ey C Fg.

* Three fiber class choices: 1. W, =1—- Xy, Wo =F, — Sp(2), Ny =2
2. lel—XQ, Wy = Fo %SU(S)@*,NJCZQ
S.lel—Xg, Wy = Fy %GQ,NJCZQ



Summary and future directions

* We proposed a systematic way to construct shrinkable Calabi-Yau
threefolds which give 5d SCFTs.

* We gave full classification of rank 2 shrinkable CY3.

* Geometric constructions confirm gauge theory predictions and also
provide new dualities.

Future directions

* Gauge theory classification including non-perturbative analysis.

e Full classification of 5d SCFTs and shrinkable Calabi-Yau threefolds.



Thank you very much !




