AdS_6/CFT_5 in Type IIB Part I: Warped AdS_6 solutions and 5-brane webs

> Christoph Uhlemann UCLA

Strings, Branes and Gauge Theories APCTP, July 2018

arXiv: 1606.01254, 1611.09411, 1703.08186, 1705.01561, 1706.00433, 1802.07274, 1805.11914, 1806.07898, 1806.08374

with E. D'Hoker, M. Gutperle, A. Karch, C. Marasinou, A. Trivella, O. Varela, O. Bergman, D. Rodríguez-Gómez, M. Fluder

Introduction

Introduction

Theories in $d > 4$ crucial part in general understanding of QFT. Often reduce to interesting $d \leq 4$ theories \rightarrow new theories and dualities, geometric realizations of known dualities.

Defining interacting QFTs in $d > 4$ challenging. In particular, $\frac{1}{2}$ Yang-Mills theories non-renormalizable ($\sim \sqrt{-g}R$ in $d=4$).

Evidence from Strings, Branes and Gauge theories suggests many interacting $d > 4$ QFTs exist, challenging perturbative arguments.

Introduction

Suitable superconformal algebras in $d \leq 6$; maximal ones with $16_O + 16_S = 32$ supercharges

- unique superconf. algebra $F(4)$, 16 supercharges – strongly-coupled UV fixed points for large classes of gauge theories w/ $\rm 8_Q$ supercharges [Seiberg '96;...]
- no standard Lagrangian, existence from Coulomb branch analysis and string theory

Asymptotically safe gauge theories, exceptional global symmetries, dualities, parents to isolated $4d$ theories, relations to $6d, \ldots$

$5-brane$ webs in Type IIB [Aharony, Hanany, Kol '97]

5-brane web: planar arrangement of (p, q) 5-branes at angles fixed by (p, q) , junctions w/ conserved charges

$5-brane$ webs in Type IIB [Aharony, Hanany, Kol '97]

5-brane web: planar arrangement of (p, q) 5-branes at angles fixed by (p, q) , junctions w/ conserved charges

Large classes of 5d SCFTs, with and without gauge theory deformations, quivers, flavors, Chern-Simons terms,. . .

5-brane webs in Type IIB [Aharony, Hanany, Kol '97]

 $SU(3)$, $CS = 0$

 E_0 , no global symmetry

 $SU(2)\times SU(2)\times SU(2)$ quiver

 $SU(2) + 1$ flavor

 $5-brane$ webs in Type IIB [Aharony, Hanany, Kol '97]

General picture: any planar 5-brane junction realizes a 5d SCFT on the intersection point

Characterized entirely by external 5-brane charges. No standard Lagrangian. May or may not have gauge theory deformations.

Supergravity duals?

AdS/CFT to access superconformal fixed points? Harder than in $d \neq 5$, no maximally supersymmetric solutions.

Supergravity duals?

 $1.1.1$

AdS/CFT to access superconformal fixed points? Harder than in $d \neq 5$, no maximally supersymmetric solutions.

One well known AdS_6 solution from type I' construction:

D4•
\n
$$
\begin{bmatrix}\n\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
08 + N_f \text{ D8}\n\end{bmatrix}
$$
\n
$$
\bullet \text{D4}
$$
\n
$$
\begin{array}{c}\nN \text{ D4 probing } O8 + N_f \text{ D8: } \text{USp}(N) \\
\text{with antisymmetric and } N_f \text{ flavors} \\
\end{array}
$$

 \rightarrow warped $\mathsf{AdS}_6\times \mathrm{S}^4$ in massive IIA [Brandhuber, Oz]

Locally unique [Passias], orbifolds dual to quiver gauge theories [Rodriguez-Gomez, Bergman], T-duals in IIB [Cvetic et al.; Lozano et al.]

Holographic duals for 5d SCFTs

Holographic duals for SCFTs realized by 5-brane webs in Type IIB? Not a standard near-horizon limit – fully localized intersections.

Type IIB BPS equations studied by [Apruzzi,Fazzi,Passias,Rosa,Tomasiello; H.Kim,N.Kim,Suh;H.Kim,N.Kim] . No explicit solutions.

Holographic duals for 5d SCFTs

Holographic duals for SCFTs realized by 5-brane webs in Type IIB? Not a standard near-horizon limit – fully localized intersections.

Type IIB BPS equations studied by [Apruzzi,Fazzi,Passias,Rosa,Tomasiello; H.Kim,N.Kim,Suh;H.Kim,N.Kim] . No explicit solutions.

Part I: Warped AdS_6 solutions in Type IIB (today) Part II: AdS_6/CFT_5 – Tests and applications (next week)

Holographic duals for 5d SCFTs

Warped AdS_6 solutions in Type IIB

- $-$ Ansatz and general local $AdS_6\times S^2\times \Sigma$ solution
- Global solutions on the disc and 5-brane webs
- Solutions with more general Σ ?
- Solutions with $SL(2,\mathbb{R})$ monodromy \rightarrow 7-branes

 AdS_6 solutions in Type IIB – ansatz and local solution –

 $AdS_6 + 16$ susies \rightarrow F(4) \supset bosonic SO(2,5) \oplus SO(3)

$$
\begin{array}{ccc}\n\text{AdS}_6 + 16 \text{ suse} & \rightarrow & \text{F(4)} & \supset \text{ bosonic SO(2,5)} \oplus \text{SO(3)} \\
\text{AdS}_6 & \text{S}^2\n\end{array}
$$

 $AdS_6 + 16$ susies \rightarrow F(4) \supset bosonic SO(2,5) \oplus SO(3)

General ansatz: AdS_6 and S^2 warped over Riemann surface Σ

 $S²$

$$
\mathcal{M} = (\text{AdS}_6 \times \text{S}^2) \times_{\text{w}} \Sigma
$$

 $AdS₆$

 $AdS_6 + 16$ susies \rightarrow F(4) \supset bosonic SO(2,5) \oplus SO(3)

 $AdS₆$ $S²$

General ansatz: AdS_6 and S^2 warped over Riemann surface Σ

$$
\mathcal{M} = (\text{AdS}_6 \times \text{S}^2) \times_{\text{w}} \Sigma
$$

$$
\psi_M=\lambda=0
$$

 $AdS_6 + 16$ susies \rightarrow F(4) \supset bosonic SO(2,5) \oplus SO(3)

General ansatz: AdS_6 and S^2 warped over Riemann surface Σ

 S^2

$$
\mathcal{M} = (\text{AdS}_6 \times \text{S}^2) \times_{\text{w}} \Sigma
$$

$$
\psi_M = \lambda = 0
$$

 $AdS₆$

Remaining bosonic fields: $C_{(4)} = 0$ $C_{(2)} \propto \text{vol}_{S^2}$ $\tau = \chi + ie^{-2\phi}$

With complex coordinate w on Σ

$$
ds^{2} = f_{6}(w, \bar{w})^{2} ds^{2}_{AdS_{6}} + f_{2}(w, \bar{w})^{2} ds^{2}_{S^{2}} + 4\rho(w, \bar{w})^{2} |dw|^{2}
$$

$$
C_{(2)} = C(w, \bar{w}) \text{ vol}_{S^{2}} \qquad B(w, \bar{w}) = \frac{1 + i\tau(w, \bar{w})}{1 - i\tau(w, \bar{w})}
$$

With complex coordinate w on Σ

$$
ds^{2} = f_{6}(w, \bar{w})^{2} ds_{\text{AdS}_{6}}^{2} + f_{2}(w, \bar{w})^{2} ds_{\text{S}2}^{2} + 4\rho(w, \bar{w})^{2} |dw|^{2}
$$

$$
C_{(2)} = C(w, \bar{w}) \text{ vol}_{\text{S}2} \qquad B(w, \bar{w}) = \frac{1 + i\tau(w, \bar{w})}{1 - i\tau(w, \bar{w})}
$$

Preserve 16 supersymmetries \rightarrow BPS eq.

$$
\delta \psi_M = D_M \epsilon - \frac{1}{96} \left(\Gamma_M (\Gamma \cdot G) + 2(\Gamma \cdot G) \Gamma_M \right) \mathcal{B}^{-1} \epsilon^* \stackrel{!}{=} 0
$$

$$
\delta \lambda = i(\Gamma \cdot P) \mathcal{B}^{-1} \epsilon^* - \frac{i}{24} (\Gamma \cdot G) \epsilon \stackrel{!}{=} 0
$$

With complex coordinate w on Σ

$$
ds^{2} = f_{6}(w, \bar{w})^{2} ds_{\text{AdS}_{6}}^{2} + f_{2}(w, \bar{w})^{2} ds_{\text{S}2}^{2} + 4\rho(w, \bar{w})^{2} |dw|^{2}
$$

$$
C_{(2)} = C(w, \bar{w}) \text{ vol}_{\text{S}2} \qquad B(w, \bar{w}) = \frac{1 + i\tau(w, \bar{w})}{1 - i\tau(w, \bar{w})}
$$

Preserve 16 supersymmetries \rightarrow BPS eq.

$$
\delta \psi_M = D_M \epsilon - \frac{1}{96} \left(\Gamma_M (\Gamma \cdot G) + 2(\Gamma \cdot G) \Gamma_M \right) \mathcal{B}^{-1} \epsilon^* \stackrel{!}{=} 0
$$

$$
\delta \lambda = i (\Gamma \cdot P) \mathcal{B}^{-1} \epsilon^* - \frac{i}{24} (\Gamma \cdot G) \epsilon \stackrel{!}{=} 0
$$

Decomposing Killing spinors, reducing BPS eq. on $AdS₆$ and $S²$ \rightarrow coupled PDEs on Σ for supergravity fields & Killing spinors

FF^{b>}

- Ad $\mathsf{S}_6{\times}\mathsf{S}^2$ gravitino eq. \rightarrow radii in terms of Killing spinors
- dilatino eq. \rightarrow 3-form in terms of B, Killing spinors
- Killing spinors in terms of ρ^2 , B , holomorphic $\partial_w {\cal A}_{\pm}$
- decouple and integrate remaining equations for ρ^2 , B

 $\ldots \rightarrow$ general local solution to BPS eq., parametrized by two locally holomorphic functions on Σ.

 $\ldots \rightarrow$ general local solution to BPS eq., parametrized by two locally holomorphic functions on Σ.

Arbitrary locally holomorphic

 $\mathcal{A}_+ : \Sigma \to \mathbb{C}$

yield metric functions f_6^2 , f_2^2 , ρ^2 , axion-dilaton B , two-form field C and Killing spinors solving BPS eq.

 $SU(1, 1) \otimes \mathbb{C}$ transf. of \mathcal{A}_+ induce $SL(2, \mathbb{R})$ on supergravity fields

Explicit solution for supergravity fields:

$$
f_6^2 = \sqrt{6\mathcal{G}} \left[\frac{1+R}{1-R} \right]^{1/2}
$$

\n
$$
f_2^2 = \frac{1}{9} \sqrt{6\mathcal{G}} \left[\frac{1-R}{1+R} \right]^{3/2}
$$

\n
$$
\rho^2 = \frac{\kappa^2}{\sqrt{6\mathcal{G}}} \left[\frac{1+R}{1-R} \right]^{1/2}
$$

\n
$$
B = \frac{\partial_w \mathcal{A}_+}{R \partial_{\bar{w}} \bar{\mathcal{A}}_+ \partial_{\bar{w}} \mathcal{G} - R \partial_{\bar{w}} \bar{\mathcal{A}}_- \partial_{\bar{w}} \mathcal{G}}{R \partial_{\bar{w}} \bar{\mathcal{A}}_+ \partial_{\bar{w}} \mathcal{G} - \partial_{\bar{w}} \mathcal{A}_- \partial_{\bar{w}} \mathcal{G}}
$$

$$
\mathcal{C} = \frac{4i}{9} \left[\frac{(1+R^2)\partial_w \mathcal{G} \partial_{\bar{w}} \bar{\mathcal{A}}_- - 2R \partial_{\bar{w}} \mathcal{G} \partial_w \mathcal{A}_+}{(1+R)^2 \kappa^2} - \bar{\mathcal{A}}_- - 2\mathcal{A}_+ \right]
$$

with composite quantities

$$
\kappa^2 = -|\partial_w \mathcal{A}_+|^2 + |\partial_w \mathcal{A}_-|^2 \qquad \partial_w \mathcal{B} = \mathcal{A}_+ \partial_w \mathcal{A}_- - \mathcal{A}_- \partial_w \mathcal{A}_+
$$

$$
\mathcal{G} = |\mathcal{A}_+|^2 - |\mathcal{A}_-|^2 + \mathcal{B} + \bar{\mathcal{B}} \qquad R + \frac{1}{R} = 2 + 6 \frac{\kappa^2 \mathcal{G}}{|\partial_w \mathcal{G}|^2}
$$

Explicit solution for supergravity fields:

$$
f_6^2 = \sqrt{6\mathcal{G}} \left[\frac{1+R}{1-R} \right]^{1/2}
$$

\n
$$
f_2^2 = \frac{1}{9} \sqrt{6\mathcal{G}} \left[\frac{1-R}{1+R} \right]^{3/2}
$$

\n
$$
\rho^2 = \frac{\kappa^2}{\sqrt{6\mathcal{G}}} \left[\frac{1+R}{1-R} \right]^{1/2}
$$

\n
$$
B = \frac{\partial_w \mathcal{A}_+}{R \partial_{\bar{w}} \bar{\mathcal{A}}_+ \partial_{\bar{w}} \mathcal{G} - R \partial_{\bar{w}} \bar{\mathcal{A}}_- \partial_{\bar{w}} \mathcal{G}}{\partial_{\bar{w}} \bar{\mathcal{A}}_+ \partial_{\bar{w}} \mathcal{G} - \partial_{\bar{w}} \mathcal{A}_- \partial_{\bar{w}} \mathcal{G}}
$$

$$
\mathcal{C} = \frac{4i}{9} \left[\frac{(1+R^2)\partial_w \mathcal{G} \partial_{\bar{w}} \bar{\mathcal{A}}_- - 2R \partial_{\bar{w}} \mathcal{G} \partial_w \mathcal{A}_+}{(1+R)^2 \kappa^2} - \bar{\mathcal{A}}_- - 2\mathcal{A}_+ \right]
$$

with composite quantities

$$
\begin{aligned}\n\overline{}_{\kappa^2} &= -|\partial_w \mathcal{A}_+|^2 + |\partial_w \mathcal{A}_-|^2 \\
\downarrow \mathcal{G} &= |\mathcal{A}_+|^2 - |\mathcal{A}_-|^2 + \mathcal{B}_+ \mathcal{B}_-\n\end{aligned}\n\quad\n\begin{aligned}\n\partial_w \mathcal{B} &= \mathcal{A}_+ \partial_w \mathcal{A}_- - \mathcal{A}_- \partial_w \mathcal{A}_+ \\
\downarrow \overline{R} &= 2 + 6 \frac{\kappa^2 \mathcal{G}}{|\partial_w \mathcal{G}|^2}\n\end{aligned}
$$

General type IIB supergravity solution with 16 supersymmetries on Ad $\mathsf{S}_6{\times}\mathsf{S}^2$ warped over Σ , in terms of locally holomorphic \mathcal{A}_\pm on $\Sigma.$

Solves IIB supergravity equations of motion for arbitrary A_+ \checkmark [arXiv:1712.04463 Corbino, D'Hoker, CFU]

Generic A_+ do not lead to physically regular solutions. \times

General type IIB supergravity solution with 16 supersymmetries on Ad $\mathsf{S}_6{\times}\mathsf{S}^2$ warped over Σ , in terms of locally holomorphic \mathcal{A}_\pm on $\Sigma.$

Solves IIB supergravity equations of motion for arbitrary A_+ \checkmark [arXiv:1712.04463 Corbino, D'Hoker, CFU]

Generic A_+ do not lead to physically regular solutions. \times

 \rightarrow narrow down to globally regular solutions

 AdS_6 solutions in Type IIB – global solutions –

Regularity conditions

Imposing physical regularity conditions imposes constraints. Real geometry with consistent spacetime signature, $\text{Im}(\tau) > 0$:

$$
\kappa^2|_{\text{int}(\Sigma)} > 0 \qquad \qquad \mathcal{G}|_{\text{int}(\Sigma)} > 0
$$

 $\rightarrow \Sigma$ must have a boundary $(\partial_w\partial_{\bar{w}}\mathcal{G}=-\kappa^2$ by construction)

Regularity conditions

Imposing physical regularity conditions imposes constraints. Real geometry with consistent spacetime signature, $\text{Im}(\tau) > 0$:

$$
\kappa^2|_{\text{int}(\Sigma)} > 0 \qquad \qquad \mathcal{G}|_{\text{int}(\Sigma)} > 0
$$

 $\rightarrow \Sigma$ must have a boundary $(\partial_w\partial_{\bar{w}}\mathcal{G}=-\kappa^2$ by construction)

For 10d geometry w/o boundary, collapse S^2 on $\partial \Sigma$ (AdS₆ finite):

$$
\kappa^2\big|_{\partial\Sigma} = 0 \qquad \qquad \mathcal{G}\big|_{\partial\Sigma} = 0
$$

Not all independent, $\mathcal{G}|_{\text{int}(\Sigma)} > 0$ implied by the other conditions.

Fix topology of Σ , 1) construct locally holomorphic \mathcal{A}_+ producing regular κ^2 , 2) implement additional constraints for regular ${\cal G}.$

Fix topology of Σ , 1) construct locally holomorphic \mathcal{A}_+ producing regular κ^2 , 2) implement additional constraints for regular ${\cal G}.$

1a) $\Phi \equiv -\ln |\partial_w A_+/\partial_w A_-|$ from 2d electrostatics:

Fix topology of Σ , 1) construct locally holomorphic \mathcal{A}_+ producing regular κ^2 , 2) implement additional constraints for regular ${\cal G}.$

1a) $\Phi \equiv -\ln |\partial_w A_+/\partial_w A_-|$ from 2d electrostatics: positive charges s_n inside Σ + negative mirror charges

Fix topology of Σ , 1) construct locally holomorphic \mathcal{A}_+ producing regular κ^2 , 2) implement additional constraints for regular ${\cal G}.$

1a) $\Phi \equiv -\ln |\partial_w A_+/\partial_w A_-|$ from 2d electrostatics: positive charges s_n inside Σ + negative mirror charges

1b) From Φ to $(\partial_w) \mathcal{A}_\pm$: poles r_ℓ on $\partial \Sigma$, integ. constants \mathcal{A}^0_\pm
Solving the regularity conditions

Fix topology of Σ , 1) construct locally holomorphic \mathcal{A}_+ producing regular κ^2 , 2) implement additional constraints for regular ${\cal G}.$

- 1a) $\Phi \equiv -\ln |\partial_w A_+/\partial_w A_-|$ from 2d electrostatics: positive charges s_n inside Σ + negative mirror charges
- 1b) From Φ to $(\partial_w) \mathcal{A}_\pm$: poles r_ℓ on $\partial \Sigma$, integ. constants \mathcal{A}^0_\pm
- $2)$ ${\cal G}|_{\partial \Sigma} = 0$: constraints on $\{s_n, r_\ell, {\cal A}^0_\pm\}$

Regular solutions on the disc

 $\Sigma =$ disc/upper half plane: L poles $\sim L - 2$ "charges" $\Longrightarrow L \geq 3$

$$
\mathcal{A}_{\pm} = \mathcal{A}_{\pm}^{0} + \sum_{\ell=1}^{L} Z_{\pm}^{\ell} \ln(w - r_{\ell})
$$

$$
Z_{+}^{\ell} = \sigma \prod_{n=1}^{L-2} (r_{\ell} - s_n) \prod_{k \neq \ell}^{L} \frac{1}{r_{\ell} - r_k}
$$

$$
\mathcal{A}_{-}(w) = -\overline{\mathcal{A}_{+}(\bar{w})} \quad \sum_{\ell} Z_{+}^{\ell} = 0
$$

Regular solutions on the disc

 Σ =disc/upper half plane: L poles $\sim L - 2$ "charges" $\Longrightarrow L > 3$

 $\mathcal{G}|_{\partial\Sigma}=0\sim$ one local condition per pole $\rightarrow 2L-2$ free parameters

$$
\mathcal{A}_+^0 Z_-^k - \mathcal{A}_-^0 Z_+^k + \sum_{\ell \neq k} Z^{[\ell, k]} \ln |p_\ell - p_k| = 0
$$

Regular solutions on the disc

 Σ =disc/upper half plane: L poles $\sim L - 2$ "charges" $\Longrightarrow L > 3$

 $G|_{\partial \Sigma} = 0 \sim$ one local condition per pole $\rightarrow 2L-2$ free parameters

Solutions regular everywhere, except for possibly the poles. . .

string frame metric, $r \ll 1$: $\widetilde{ds}^2 \approx \frac{2}{3}$ 3 $|Z_{+}^{m} - Z_{-}^{m}|$ $\int_3 |\ln r| ds_{\text{AdS}_6}^2 +$ $\frac{dr^2}{dr^2}$ $\frac{u}{r^2} + d\theta^2 + \sin^2 \theta \, ds_{\mathbf{S}^2}^2$ 1 Σ

string frame metric, $r \ll 1$: $\widetilde{ds}^2 \approx \frac{2}{3}$ 3 $|Z_{+}^{m} - Z_{-}^{m}|$ $\Big[3\,|\ln r|ds_{\text{AdS}_6}^2 +$ $\frac{dr^2}{dr^2}$ $\frac{u}{r^2} + d\theta^2 + \sin^2 \theta \, ds_{\text{S2}}^2$ 1 Σ $\rightarrow \mathbb{R}^{1,5}$ $\qquad \qquad$ S^3

$$
\sum_{r_m}^{\infty} \frac{\sum_{r_m}}{\sum_{r_m}}
$$
\nstring frame: $\tilde{ds}^2 \approx \frac{2}{3} |Z_+^m - Z_-^m| \left[ds_{\mathbb{R}^{1,5}}^2 + \frac{dr^2}{r^2} + ds_{\mathbb{S}^3}^2 \right]$ \n
$$
dC_{(2)} \approx \frac{8}{3} Z_+^m \text{vol}_{\mathbb{S}^3} \qquad e^{-2\phi} \approx \frac{\sqrt{3} \kappa_m^2}{4 \operatorname{Re}(Z_+^m)^2} \frac{r}{\sqrt{|\ln r|}} \qquad \chi \approx \frac{\operatorname{Im}(Z_+^m)}{\operatorname{Re}(Z_+^m)}
$$

 $\sqrt{|\ln r|}$

$$
\sum_{r_m}^{\mathcal{V}} \theta
$$
\n
$$
\sum_{r_m}^{\mathcal{V}} \left(\theta - \frac{1}{2} \right)
$$
\n
$$
\sum_{r_m}^{\mathcal{V}} \left(\frac{1}{2} \sum_{r_m}^{\mathcal{V}} \left| \frac{1}{2} \sum_{r_m}^{\mathcal{V}} \right| \left[\frac{1}{2} \sum_{r_m}^{\mathcal{V}} \left| \frac{1}{2} \sum_{r_m}^{\mathcal{V}} \right| + \frac{1}{2} \sum_{r_m}^{\mathcal{V}} \frac{1}{2}
$$

Entire near-pole solution matches (p, q) 5-branes of $[Lu, Roy 98]$

$$
q+ip\ \ \, \longleftrightarrow\ \ \, Z^m_+
$$

Solutions regular with isolated poles corresponding to 5-branes √

 $AdS₆$ solutions in Type IIB – connection to 5-brane webs –

- external 5-branes explicitly (p, q) charge conserved
- parametrized by choice of residues mod charge cons.
- $AdS_6 + 16$ susies $= F(4)$
- need $L \geq 3$, p and q charge

Supergravity solutions for fully localized 5-brane intersections

"Large N "

Classical supergravity: $Z^\ell_+ \sim q_\ell + i p_\ell \in \mathbb{C}$. Limit of string theory with large 5-brane charges \rightarrow effectively continuous.

Large numbers of like-charged coincident 5-branes at each pole

In particular: generally large D5 and NS5 brane charges.

SCFT/gauge theory connections

 \leftrightarrow 4-pole solution with $\ Z_+^1=-Z_+^3\sim iN$, $\ Z_+^2=-Z_+^4\sim M$

large D5 and large NS5 charge \leftrightarrow large number of nodes in quiver deformation and (at least some) large-rank gauge groups

SCFT/gauge theory connections

5d T_N theories: junction of N D5, N NS5 and N $(1, 1)$ 5-branes

[Benini,Benvenuti,Tachikawa '09]

– Reduce on
$$
S^1
$$
 to 4d $T[A_{N-1}]$

- IR gauge theory [Bergman, Zafrir '14] $N-SU(N-1)-\cdots-SU(2)-2$

 \leftrightarrow 3-pole solution with $\ Z_+^1\sim iN$, $\ Z_+^2\sim N$, $\ Z_+^3\sim (1+i)N$

SCFT/gauge theory connections

5d T_N theories: junction of N D5, N NS5 and N $(1, 1)$ 5-branes

[Benini,Benvenuti,Tachikawa '09]

- $-$ Reduce on S^1 to 4d $T[A_{N-1}]$
- $-$ IR gauge theory [Bergman, Zafrir '14] $N-SU(N-1)-\cdots-SU(2)-2$

 \leftrightarrow 3-pole solution with $\ Z_+^1\sim iN$, $\ Z_+^2\sim N$, $\ Z_+^3\sim (1+i)N$

Potential subtlety: s-rule constraints from 5-branes on 7-branes

Supergravity sol. \sim unconstrained junctions (details next week).

Global solutions on the disc

Physically regular solutions for $\Sigma =$ disc, $L > 3$ poles on $\partial \Sigma$, $2L - 2$ real parameters = residues at poles with zero sum.

Poles required by regularity, correspond to (p, q) 5-branes with $q+ip\sim Z_+^\ell$. Natural identification with 5-brane junctions.

Recipe for Σ w/ arbitrary numbers of handles and boundaries.

 AdS_6 solutions in Type IIB – More general Riemann surfaces? –

Construction of regular κ^2 works for general Riemann surfaces. Boundary condition $\mathcal{G}_{\partial\Sigma}=0$ not automatic.

Two natural options: (i) add handles (ii) add further boundaries

Technically more challenging. Charge distribution on doubled surface $+$ Green's function $\rightarrow \kappa^2$, Green's functions not as simple.

Next-to-simplest option: annulus, no handles, two boundaries

Doubled surface=torus \rightarrow quasi-periodic Jacobi ϑ -functions in Green's function

 $L \geq 2$ poles, N "charges"

Next-to-simplest option: annulus, no handles, two boundaries

Doubled surface=torus \rightarrow quasi-periodic Jacobi ϑ -functions in Green's function

 $L \geq 2$ poles, N "charges"

$$
\mathcal{A}_{+}(w|\tau) = \mathcal{A}_{+}^{0} + \alpha_{+}w + \sum_{\ell=1}^{L} Z_{+}^{\ell} \ln \vartheta_{1}(w - r_{\ell}|\tau)
$$

$$
Z_{+}^{\ell} = \sigma \frac{\prod_{n=1}^{N} \vartheta_{1}(r_{\ell} - s_{n}|\tau)}{\prod_{n \neq \ell} \vartheta_{1}(r_{\ell} - p_{n}|\tau)} \exp \left\{-\frac{2\pi i}{\tau} r_{\ell} \Lambda_{+} - \frac{\pi i}{\tau} \sum_{n=1}^{N} (r_{n}^{2} + r_{n})\right\}
$$

Main challenge: $G = 0$ on two boundaries \Rightarrow non-local condition.

Necessary for $\mathcal{G}|_{\partial\Sigma}=0$: $\mathcal G$ constant along regular boundary segments, no monodromy around poles \sim local conditions.

This is sufficient for a single boundary component:

$$
\mathcal{G}=|\mathcal{A}_+|^2-|\mathcal{A}_-|^2+\mathcal{B}+\bar{\mathcal{B}}\qquad \quad \partial \mathcal{B}=\mathcal{A}_+\partial \mathcal{A}_--\mathcal{A}_-\partial \mathcal{A}_+
$$

B defined up to integration constant \rightarrow use it to set $\mathcal{G}=0$.

Annulus needs extra constraint, connecting both boundaries. Found no solutions for $L = 2, 3, 4, 5$

 AdS_6 solutions in type IIB – solutions with monodromy –

5-brane webs with 7-branes [DeWolfe, Hanany, Iqbal, Katz '99]

Supergravity fields single-valued in solutions so far. Could allow for $SL(2, \mathbb{R})$ monodromy, induced by simple action on $\mathcal{A}_+ \Rightarrow$ 7-branes

5-brane webs with 7-branes [DeWolfe, Hanany, Iqbal, Katz '99]

Supergravity fields single-valued in solutions so far. Could allow for $SL(2, \mathbb{R})$ monodromy, induced by simple action on $\mathcal{A}_+ \Rightarrow$ 7-branes

5-brane webs with 7-branes [DeWolfe,Hanany,Iqbal,Katz '99]

Supergravity fields single-valued in solutions so far. Could allow for $SL(2,\mathbb{R})$ monodromy, induced by simple action on $\mathcal{A}_+ \Rightarrow$ 7-branes

(i) terminate external (p, q) 5-branes on $[p, q]$ 7-branes

5-brane webs with 7-branes [DeWolfe,Hanany,Iqbal,Katz '99]

Supergravity fields single-valued in solutions so far. Could allow for $SL(2,\mathbb{R})$ monodromy, induced by simple action on $\mathcal{A}_+ \Rightarrow$ 7-branes

(i) terminate external (p, q) 5-branes on $[p, q]$ 7-branes (ii) add 7-branes into faces of web

5-brane webs with 7-branes [DeWolfe,Hanany,Iqbal,Katz '99]

Supergravity fields single-valued in solutions so far. Could allow for $SL(2,\mathbb{R})$ monodromy, induced by simple action on $\mathcal{A}_+ \Rightarrow$ 7-branes

(i) terminate external (p, q) 5-branes on $[p, q]$ 7-branes (ii) add 7-branes into faces of web

In conformal and "near-horizon" limit, (ii) should be represented in corresponding supergravity solution.

Construction from disc solutions without monodromy:

Construction from disc solutions without monodromy:

Construction from disc solutions without monodromy:

– pick parabolic $SL(2,\mathbb{R})$ matrix

$$
M_{[p,q]} = \begin{pmatrix} 1 - pq & p^2 \\ -q^2 & 1 + pq \end{pmatrix}
$$

 $-$ add punctures w_i , "charge" $\,n_i$, orientation of branch cut γ_i

Construction from disc solutions without monodromy:

– pick parabolic $SL(2,\mathbb{R})$ matrix

$$
M_{[p,q]} = \begin{pmatrix} 1 - pq & p^2 \\ -q^2 & 1 + pq \end{pmatrix}
$$

 $-$ add punctures w_i , "charge" $\,n_i$, orientation of branch cut γ_i

Encode branch cut structure in $f=\sum_{i=1}^N\delta_i$ I $\frac{i=1}{i}$ n_i^2 $\frac{n_i^2}{4\pi}\ln\bigg(\gamma_i\,\frac{w-w_i}{w-\bar w_i}$ $w - \bar{w}_i$.

Differentials $\partial \mathcal{A}_{\pm} = \partial \mathcal{A}_{\pm}^s + \eta_{\pm} f (\eta_{-} \partial \mathcal{A}_{+}^s - \eta_{+} \partial \mathcal{A}_{-}^s)$, $\eta_{\pm} = p \mp iq$.

Differentials ∂A_+ realize commuting $SL(2,\mathbb{R})$ monodromies $M_{[n_ip,n_iq]}$ around w_i ; sum of residues not necessarily zero.

Locally holomorphic functions A_+ involve "polylogarithm integrals" Regular κ^2 by construction, ${\cal G}|_{\partial \Sigma} = 0$ still one condition per pole.

Demanding monodromies to lift to $SL(2,\mathbb{R})$ transformations on \mathcal{A}_+ yields further constraints, forcing punctures onto curves in Σ .

Differentials ∂A_+ realize commuting $SL(2,\mathbb{R})$ monodromies $M_{[n_ip,n_iq]}$ around w_i ; sum of residues not necessarily zero.

Locally holomorphic functions A_+ involve "polylogarithm integrals" Regular κ^2 by construction, ${\cal G}|_{\partial \Sigma} = 0$ still one condition per pole.

Demanding monodromies to lift to $SL(2,\mathbb{R})$ transformations on \mathcal{A}_+ yields further constraints, forcing punctures onto curves in Σ .

 \rightarrow regular solutions for disc with punctures and commuting parabolic $SL(2,\mathbb{R})$ monodromies
At punctures, solution as expected for 7-brane wrapping $\mathsf{AdS}_6{\times}\mathsf{S}^2.$ Infinitesimal monodromy: recover probe D7 (DBI, κ symmetry) \checkmark

Additional parameters due to punctures:

charge \checkmark branch cut orientation \checkmark position in Σ ??

At punctures, solution as expected for 7-brane wrapping $\mathsf{AdS}_6{\times}\mathsf{S}^2.$ Infinitesimal monodromy: recover probe D7 (DBI, κ symmetry) \checkmark

Additional parameters due to punctures:

charge \checkmark branch cut orientation \checkmark position in Σ ??

Internal structure of brane web encoded in Σ ?

At punctures, solution as expected for 7-brane wrapping $\mathsf{AdS}_6{\times}\mathsf{S}^2.$ Infinitesimal monodromy: recover probe D7 (DBI, κ symmetry) \checkmark

Additional parameters due to punctures:

charge \checkmark branch cut orientation \checkmark position in Σ ??

Internal structure of brane web encoded in Σ ?

Dense grid at large N. Position in $\Sigma \leftrightarrow$ choice of face. Continuous parameter, remains meaningful in conformal limit.

Hanany/Witten: pull 7-branes out of web \rightarrow 5-brane creation

s-rule: max one D5 between NS5 and D7 [Benini,Benvenuti,Tachikawa]

In general not the same as (unconstrained) 5-brane junction.

Hanany/Witten: pull 7-branes out of web \rightarrow 5-brane creation

s-rule: max one D5 between NS5 and D7 [Benini,Benvenuti,Tachikawa]

In general not the same as (unconstrained) 5-brane junction.

Exception: 7-branes "trapped" by only one NS5 brane

Same as unconstrained 5-brane junction with additional D5s

Supergravity picure: family of 3-pole solutions

- two NS5 poles one D5 pole with *fixed* residues
- one D7 puncture, on "equator" charge depends on location

Supergravity picure: family of 3-pole solutions

- two NS5 poles one D5 pole with *fixed* residues
- one D7 puncture, on "equator" charge depends on location

In general, on-shell action (=free energy) different from 4-pole solution w/o monodromy.

As $D7 \to \partial \Sigma$ w/ fixed 5-brane charges, puncture turns into pole.

Consistent with 5-brane webs just shown. Confirmation: next week.

Summary & Outlook

Supergravity solutions for fully localized 5-brane junctions in type IIB. Holographic duals for the corresponding 5d SCFTs.

Solutions regular everywhere except for isolated physically meaningful singularities.

Extension to solutions with parabolic $SL(2,\mathbb{R})$ monodromy, for 5-brane junctions with (mutually local) 7-branes.

Outlook

Establish AdS_6/CFT_5 dualities rigorously: confront holography with QFT results ("stringy" operators, $F(\mathrm{S}^5) \rightarrow$ next week).

AdS/CFT with warped products: spectra, correlation functions, defects, Wilson lines, truncation to 6d $F(4)$ gauged sugra...

Solutions with non-commuting $SL(2,\mathbb{R})$ monodromies for mutually non-local 7-branes, more general Riemann surfaces, . . .

 $AdS_2\times S^6$: local solution in [arXiv:1712.04463], global solutions?

Outlook

Establish AdS_6/CFT_5 dualities rigorously: confront holography with QFT results ("stringy" operators, $F(\mathrm{S}^5) \rightarrow$ next week).

AdS/CFT with warped products: spectra, correlation functions, defects, Wilson lines, truncation to 6d $F(4)$ gauged sugra...

Solutions with non-commuting $SL(2,\mathbb{R})$ monodromies for mutually non-local 7-branes, more general Riemann surfaces, . . .

 $AdS_2\times S^6$: local solution in [arXiv:1712.04463], global solutions?

Thank you!