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Introduction

Theories in d > 4 crucial part in general understanding of QFT.
Often reduce to interesting d ≤ 4 theories → new theories and
dualities, geometric realizations of known dualities.

Defining interacting QFTs in d > 4 challenging. In particular,
Yang-Mills theories non-renormalizable (∼

√
−gR in d = 4).

Evidence from Strings, Branes and Gauge theories suggests many
interacting d > 4 QFTs exist, challenging perturbative arguments.
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Introduction

Suitable superconformal algebras in d ≤ 6; maximal ones with
16Q + 16S = 32 supercharges

d= 4

d= 5

d= 6

– unique superconf. algebra F (4), 16 supercharges

– strongly-coupled UV fixed points for large classes

of gauge theories w/ 8Q supercharges [Seiberg ’96;. . . ]

– no standard Lagrangian, existence from Coulomb

branch analysis and string theory

Asymptotically safe gauge theories, exceptional global symmetries,

dualities, parents to isolated 4d theories, relations to 6d, . . .
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5-brane webs in Type IIB [Aharony,Hanany,Kol ’97]

5-brane web: planar arrangement of (p, q) 5-branes at angles
fixed by (p, q), junctions w/ conserved charges

D5= (1, 0)

NS5= (0, 1)

(1, 1)

Coulomb branch
finite gauge coupling

UV fixed point CFT

0 1 2 3 4 5 6 7 8 9

D5 ××××××
NS5 ××××× × 5

6

Large classes of 5d SCFTs, with and without gauge theory
deformations, quivers, flavors, Chern-Simons terms,. . .
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5-brane webs in Type IIB [Aharony,Hanany,Kol ’97]

SU(3), CS= 0

SU(2)×SU(2)×SU(2) quiver

E0, no global symmetry

SU(2) + 1 flavor
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5-brane webs in Type IIB [Aharony,Hanany,Kol ’97]

General picture: any planar 5-brane junction realizes a 5d SCFT
on the intersection point

(p1, q1)

(p2, q2)

(p3, q3)

∑
pi =

∑
qi = 0

pi, qi ∈ Z

Characterized entirely by external 5-brane charges. No standard
Lagrangian. May or may not have gauge theory deformations.
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Supergravity duals?

AdS/CFT to access superconformal fixed points? Harder than in
d 6= 5, no maximally supersymmetric solutions.

One well known AdS6 solution from type I’ construction:

O8 + Nf D8

D4D4
N D4 probing O8+Nf D8: USp(N)

with antisymmetric and Nf flavors

→ warped AdS6 × S4 in massive IIA [Brandhuber, Oz]

Locally unique [Passias], orbifolds dual to quiver gauge theories
[Rodriguez-Gomez, Bergman], T-duals in IIB [Cvetic et al.; Lozano et al.]
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Holographic duals for 5d SCFTs

Holographic duals for SCFTs realized by 5-brane webs in Type IIB?
Not a standard near-horizon limit – fully localized intersections.

Type IIB BPS equations studied by [Apruzzi,Fazzi,Passias,Rosa,Tomasiello;

H.Kim,N.Kim,Suh;H.Kim,N.Kim] . No explicit solutions.

Part I: Warped AdS6 solutions in Type IIB (today)

Part II: AdS6/CFT5 – Tests and applications (next week)
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Holographic duals for 5d SCFTs

Warped AdS6 solutions in Type IIB

– Ansatz and general local AdS6 × S2 × Σ solution

– Global solutions on the disc and 5-brane webs

– Solutions with more general Σ?

– Solutions with SL(2,R) monodromy → 7-branes
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AdS6 solutions in Type IIB

– ansatz and local solution –



Symmetries and ansatz

AdS6 + 16 susies → F(4)AdS6 + 16 susies → F(4) ⊃ bosonic SO(2,5)⊕SO(3)

AdS6 S2

General ansatz: AdS6 and S2

warped over Riemann surface Σ

×

Σ
∂Σ

M = (AdS6 × S2)×w Σ

ψM = λ = 0

Remaining bosonic fields: C(4) = 0 C(2) ∝ volS2 τ = χ+ ie−2φ

9



Symmetries and ansatz

AdS6 + 16 susies → F(4)

AdS6 + 16 susies → F(4) ⊃ bosonic SO(2,5)⊕SO(3)

AdS6 S2

General ansatz: AdS6 and S2

warped over Riemann surface Σ

×

Σ
∂Σ

M = (AdS6 × S2)×w Σ

ψM = λ = 0

Remaining bosonic fields: C(4) = 0 C(2) ∝ volS2 τ = χ+ ie−2φ

9



Symmetries and ansatz

AdS6 + 16 susies → F(4)

AdS6 + 16 susies → F(4) ⊃ bosonic SO(2,5)⊕SO(3)

AdS6 S2

General ansatz: AdS6 and S2

warped over Riemann surface Σ

×

Σ
∂Σ

M = (AdS6 × S2)×w Σ

ψM = λ = 0

Remaining bosonic fields: C(4) = 0 C(2) ∝ volS2 τ = χ+ ie−2φ

9



Symmetries and ansatz

AdS6 + 16 susies → F(4)

AdS6 + 16 susies → F(4) ⊃ bosonic SO(2,5)⊕SO(3)

AdS6 S2

General ansatz: AdS6 and S2

warped over Riemann surface Σ

×

Σ
∂Σ

M = (AdS6 × S2)×w Σ

ψM = λ = 0

Remaining bosonic fields: C(4) = 0 C(2) ∝ volS2 τ = χ+ ie−2φ

9



Symmetries and ansatz

AdS6 + 16 susies → F(4)

AdS6 + 16 susies → F(4) ⊃ bosonic SO(2,5)⊕SO(3)

AdS6 S2

General ansatz: AdS6 and S2

warped over Riemann surface Σ

×

Σ
∂Σ

M = (AdS6 × S2)×w Σ

ψM = λ = 0

Remaining bosonic fields: C(4) = 0 C(2) ∝ volS2 τ = χ+ ie−2φ

9



General local solution

With complex coordinate w on Σ

ds2 = f6(w, w̄)2ds2
AdS6

+ f2(w, w̄)2ds2
S2 + 4ρ(w, w̄)2|dw|2

C(2) = C(w, w̄) volS2 B(w, w̄) =
1 + iτ(w, w̄)

1− iτ(w, w̄)

Preserve 16 supersymmetries → BPS eq.

δψM = DM ε−
1

96
(ΓM (Γ ·G) + 2(Γ ·G)ΓM )B−1ε∗

!
= 0

δλ = i(Γ · P )B−1ε∗ − i

24
(Γ ·G)ε

!
= 0

Decomposing Killing spinors, reducing BPS eq. on AdS6 and S2

→ coupled PDEs on Σ for supergravity fields & Killing spinors
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– AdS6×S2 gravitino eq. → radii in terms of Killing spinors

– dilatino eq. → 3-form in terms of B, Killing spinors

– Killing spinors in terms of ρ2, B, holomorphic ∂wA±

– decouple and integrate remaining equations for ρ2, B

11



General local solution

. . .→ general local solution to BPS eq., parametrized by two
locally holomorphic functions on Σ.

×

Σ
∂Σ

A±

f 2
6 f 2

2

ρ2

Arbitrary locally holomorphic

A± : Σ→ C

yield metric functions f2
6 , f2

2 , ρ2,

axion-dilaton B, two-form field C
and Killing spinors solving BPS eq.

SU(1, 1)⊗ C transf. of A± induce SL(2,R) on supergravity fields
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General local solution

Explicit solution for supergravity fields:

f2
6 =
√

6G
[

1 +R

1−R

]1/2

f2
2 =

1

9

√
6G
[

1−R
1 +R

]3/2

ρ2 =
κ2

√
6G

[
1 +R

1−R

]1/2

B =
∂wA+ ∂w̄G −R∂w̄Ā−∂wG
R∂w̄Ā+∂wG − ∂wA−∂w̄G

C =
4i

9

[
(1 +R2)∂wG ∂w̄Ā− − 2R∂w̄G ∂wA+

(1 +R)2 κ2
− Ā− − 2A+

]

with composite quantities

κ2 = −|∂wA+|2 + |∂wA−|2 ∂wB = A+∂wA− −A−∂wA+

G = |A+|2 − |A−|2 + B + B̄ R+
1

R
= 2 + 6

κ2 G
|∂wG|2
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General local solution

General type IIB supergravity solution with 16 supersymmetries on
AdS6×S2 warped over Σ, in terms of locally holomorphic A± on Σ.

Solves IIB supergravity equations of motion for arbitrary A± 3

[arXiv:1712.04463 Corbino, D’Hoker, CFU]

Generic A± do not lead to physically regular solutions. 7

→ narrow down to globally regular solutions
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AdS6 solutions in Type IIB

– global solutions –



Regularity conditions

Imposing physical regularity conditions imposes constraints. Real
geometry with consistent spacetime signature, Im(τ) > 0:

κ2
∣∣
int(Σ)

> 0 G
∣∣
int(Σ)

> 0

→ Σ must have a boundary (∂w∂w̄G = −κ2 by construction)

For 10d geometry w/o boundary, collapse S2 on ∂Σ (AdS6 finite):

κ2
∣∣
∂Σ

= 0 G
∣∣
∂Σ

= 0

Not all independent, G|int(Σ) > 0 implied by the other conditions.
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Solving the regularity conditions

Fix topology of Σ, 1) construct locally holomorphic A± producing
regular κ2, 2) implement additional constraints for regular G.

Σ
•

•

•
•

s1
s2 . . .

r3r1 r2 . . .

1a) Φ ≡ − ln |∂wA+/∂wA−| from 2d electrostatics:

positive charges sn inside Σ + negative mirror charges

1b) From Φ to (∂w)A±: poles r` on ∂Σ, integ. constants A0
±

2) G|∂Σ = 0: constraints on {sn, r`,A0
±}
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Regular solutions on the disc

Σ =disc/upper half plane: L poles ∼ L− 2 “charges” =⇒ L ≥ 3

• s1

• s2

• s3

. . . • sL−2

Σ×

× ×

× r2r3

r1rL

..
.

A± = A0
± +

L∑
`=1

Z`± ln(w − r`)

Z`+ = σ

L−2∏
n=1

(r` − sn)

L∏
k 6=`

1

r` − rk

A−(w) = −A+(w̄)
∑
`

Z`+ = 0

G|∂Σ = 0 ∼ one local condition per pole → 2L− 2 free parameters

A0
+Z

k
− −A0

−Z
k
+ +

∑
` 6=k

Z [`,k] ln |p` − pk| = 0Solutions regular everywhere, except for possibly the poles. . .
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Regular solutions on the disc – behavior near poles

Σ

×
rm

θ
r

string frame metric, r � 1:

d̃s
2
≈ 2

3

∣∣Zm+ − Zm− ∣∣ [3 | ln r|ds2
AdS6

+
dr2

r2
+ dθ2 + sin2 θ ds2

S2

]Σ

S3→ R1,5

string frame: d̃s
2
≈ 2

3

∣∣Zm+ − Zm− ∣∣ [ds2
R1,5 +

dr2

r2
+ ds2

S3

]

dC(2) ≈
8

3
Zm+ volS3 e−2φ ≈

√
3κ2

m

4 Re(Zm+ )2

r√
| ln r|

χ ≈
Im(Zm+ )

Re(Zm+ )

Entire near-pole solution matches (p, q) 5-branes of [Lu,Roy ’98]

q + ip ←→ Zm+

Solutions regular with isolated poles corresponding to 5-branes 3
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AdS6 solutions in Type IIB

– connection to 5-brane webs –



5-brane web picture

(p1, q1)

(p2, q2)(p3, q3)

(pL, qL)

.
.
.

Z1
+ ∼ q1 + ip1

Z2
+ ∼ q2 + ip2Z3

+ ∼ q3 + ip3

ZL+ ∼ qL + ipL

.
.
.

• s1

• s2

• s3

. . . • sL−2

×

× ×

× r2r3

r1rL

..
.

Σ

– external 5-branes explicitly
(p, q) charge conserved

– parametrized by choice of
residues mod charge cons.

– AdS6 + 16 susies = F (4)

– need L ≥ 3, p and q charge
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“Large N”

Classical supergravity: Z`+ ∼ q` + ip` ∈ C. Limit of string theory
with large 5-brane charges → effectively continuous.

Large numbers of like-charged coincident 5-branes at each pole

N1(p1, q1)

N2(p2, q2)

N3(p3, q3)

Ni � 1 ∀i

pi, qi ∈ Z, relatively prime

Z`+ ∼ N`q` + ip`

In particular: generally large D5 and NS5 brane charges.
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SCFT/gauge theory connections

NS5/D5 intersection [Aharony,Hanany,Kol ’97]

N N

M

M

M

N

N − SU(N)× · · · × SU(N)︸ ︷︷ ︸
SU(N)M−1

−N

↔ 4-pole solution with Z1
+ = −Z3

+ ∼ iN , Z2
+ = −Z4

+ ∼M

large D5 and large NS5 charge ↔ large number of nodes in quiver
deformation and (at least some) large-rank gauge groups
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SCFT/gauge theory connections

5d TN theories: junction of N D5, N NS5 and N (1, 1) 5-branes
[Benini,Benvenuti,Tachikawa ’09]

N

N

N
– Reduce on S1 to 4d T [AN−1]

– IR gauge theory [Bergman,Zafrir ’14]

N − SU(N − 1)− · · · − SU(2)− 2

↔ 3-pole solution with Z1
+ ∼ iN , Z2

+ ∼ N , Z3
+ ∼ (1 + i)N

Potential subtlety: s-rule constraints from 5-branes on 7-branes

vs.
SU(4)3

vs.

SU(4)2 × SU(2)→ E7

Supergravity sol. ∼ unconstrained junctions (details next week).
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Global solutions on the disc

Physically regular solutions for Σ =disc, L ≥ 3 poles on ∂Σ,
2L− 2 real parameters = residues at poles with zero sum.

Poles required by regularity, correspond to (p, q) 5-branes with
q + ip ∼ Z`+. Natural identification with 5-brane junctions.

Recipe for Σ w/ arbitrary numbers of handles and boundaries.
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AdS6 solutions in Type IIB

– More general Riemann surfaces? –



More general Riemann surfaces?

Construction of regular κ2 works for general Riemann surfaces.
Boundary condition G∂Σ = 0 not automatic.

Two natural options: (i) add handles (ii) add further boundaries

Technically more challenging. Charge distribution on doubled
surface + Green’s function → κ2, Green’s functions not as simple.
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More general Riemann surfaces?

Next-to-simplest option: annulus, no
handles, two boundaries

Doubled surface=torus → quasi-periodic

Jacobi ϑ-functions in Green’s function

L≥ 2 poles, N “charges”

Σ

×
r1×

r2

×r3

• s1

• s2

• s3

A+(w|τ) = A0
+ + α+w +

∑L
`=1 Z

`
+ lnϑ1(w − r`|τ)

Z`+ = σ

∏N
n=1 ϑ1(r` − sn|τ)∏
n6=` ϑ1(r` − pn|τ)

exp

{
−2πi

τ
r` Λ+ −

πi

τ

N∑
n=1

(r2
n + rn)

}
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More general Riemann surfaces?

Main challenge: G = 0 on two boundaries ⇒ non-local condition.

Necessary for G|∂Σ = 0: G constant along regular boundary
segments, no monodromy around poles ∼ local conditions.

This is sufficient for a single boundary component:

G = |A+|2 − |A−|2 + B + B̄ ∂B = A+∂A− −A−∂A+

B defined up to integration constant → use it to set G = 0.

Annulus needs extra constraint, connecting both boundaries.
Found no solutions for L = 2, 3, 4, 5 7
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AdS6 solutions in type IIB

– solutions with monodromy –



5-brane webs with 7-branes [DeWolfe,Hanany,Iqbal,Katz ’99]

Supergravity fields single-valued in solutions so far. Could allow for

SL(2,R) monodromy, induced by simple action on A± ⇒ 7-branes

0 1 2 3 4 5 6 7 8 9

D5 ××××××
NS5 ××××× ×
D7 ××××× ×××

(i) terminate external (p, q) 5-branes on [p, q] 7-branes

(ii) add 7-branes into faces of web

In conformal and “near-horizon” limit, (ii) should be represented in
corresponding supergravity solution.
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Solutions with monodromy

Construction from disc solutions without monodromy:

×

× ×

×r2r3

r1rL

..
.

Σ

• s1

• s2
• s3

. . . • sL−2

• s1

• s2
• s3

. . . • sL−2

w1

w2 w3
– add punctures wi, “charge” ni,

orientation of branch cut γi

– pick parabolic SL(2,R) matrix

M[p,q] =

(
1− pq p2

−q2 1 + pq

)

Encode branch cut structure in f =
I∑
i=1

n2
i

4π
ln

(
γi
w − wi
w − w̄i

)
.

Differentials ∂A± = ∂As± + η±f
(
η−∂As+ − η+∂As−

)
, η± = p∓ iq.
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Solutions with monodromy

Differentials ∂A± realize commuting SL(2,R) monodromies
M[nip,niq] around wi; sum of residues not necessarily zero.

Locally holomorphic functions A± involve “polylogarithm integrals”
Regular κ2 by construction, G|∂Σ = 0 still one condition per pole.

Demanding monodromies to lift to SL(2,R) transformations on
A± yields further constraints, forcing punctures onto curves in Σ.

→ regular solutions for disc with punctures and commuting
parabolic SL(2,R) monodromies
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Solutions with monodromy

At punctures, solution as expected for 7-brane wrapping AdS6×S2.
Infinitesimal monodromy: recover probe D7 (DBI, κ symmetry) 3

Additional parameters due to punctures:
charge 3 branch cut orientation 3 position in Σ ??

Internal structure of brane web encoded in Σ?

?

×

× ×

×r2r3

r1r4

Σ

• s1

• s2

Dense grid at large N . Position in Σ ↔ choice of face.
Continuous parameter, remains meaningful in conformal limit.
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Solutions with monodromy

Hanany/Witten: pull 7-branes out of web → 5-brane creation

s-rule: max one D5
between NS5 and D7
[Benini,Benvenuti,Tachikawa]

=

In general not the same as (unconstrained) 5-brane junction.

Exception: 7-branes “trapped” by only one NS5 brane

=

Same as unconstrained 5-brane junction with additional D5s
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Solutions with monodromy

Supergravity picure: family of 3-pole solutions

Σ

D5

NS5

NS5

D7

– two NS5 poles one D5 pole
with fixed residues

– one D7 puncture, on “equator”
charge depends on location

In general, on-shell action (=free energy) different from 4-pole
solution w/o monodromy.

As D7→ ∂Σ w/ fixed 5-brane charges, puncture turns into pole.

Consistent with 5-brane webs just shown. Confirmation: next week.
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Summary & Outlook



Summary

Supergravity solutions for fully localized 5-brane junctions in
type IIB. Holographic duals for the corresponding 5d SCFTs.

Solutions regular everywhere except for isolated physically
meaningful singularities.

Extension to solutions with parabolic SL(2,R) monodromy,
for 5-brane junctions with (mutually local) 7-branes.
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Outlook

Establish AdS6/CFT5 dualities rigorously: confront holography
with QFT results (“stringy” operators, F (S5) → next week).

AdS/CFT with warped products: spectra, correlation functions,
defects, Wilson lines, truncation to 6d F (4) gauged sugra. . .

Solutions with non-commuting SL(2,R) monodromies for mutually
non-local 7-branes, more general Riemann surfaces, . . .

AdS2 × S6: local solution in [arXiv:1712.04463] , global solutions?

Thank you!

34



Outlook

Establish AdS6/CFT5 dualities rigorously: confront holography
with QFT results (“stringy” operators, F (S5) → next week).

AdS/CFT with warped products: spectra, correlation functions,
defects, Wilson lines, truncation to 6d F (4) gauged sugra. . .

Solutions with non-commuting SL(2,R) monodromies for mutually
non-local 7-branes, more general Riemann surfaces, . . .

AdS2 × S6: local solution in [arXiv:1712.04463] , global solutions?

Thank you!

34


