RG flows with enhanced infrared supersymmetry

Kazunobu Maruyoshi (Seikei University)

w/ Jaewon Song, 1606.05632, 1607.04281 w/ Prarit Agarwal and Jaewon Song, 1610.05311 w/ Emily Nardoni and Jaewon Song, 1806.08353

"Strings, Branes and Gauge Theories", APCTP July 21, 2018

Introduction

Symmetry is an important quantity which characterizes QFT.

We usually define a theory in UV and try to analyze the RG flow and its IR theory.

(Suppose we have a nontrivial fixed point in IR, then) Can the symmetry in UV still characterize the IR theory? Or is the IR symmetry same as the UV symmetry?

— in many cases yes, but

the IR symmetry could be different from the UV symmetry.

Susy enhancement

We consider enhancement of supersymmetry in 4d supersymmetric QFTs along a renormalization group flow.

Few example is known for supersymmetry in 4d:

- N=I SU(n) theory (with gauge coupling g) with three adjoint chirals with superpotential W = h $\Phi_1 \Phi_2 \Phi_3 \rightarrow N=4$
- N=1 Lagrangian theories where a coupling constant is set to infinity → N=2 E₆, E₇ and R_{0,N} theories [Gadde-Razamat-Willet, Agarwal-KM-Song]

... 3d examples [Dongmin Gang's talk]

N=I SU(2) adjoint SQCD w/ N_f=I coupled to a gauge-singlet [KM-Song] ↓ N=2 Argyres-Douglas theory

The main point, which has not been fully studied so far, is the coupling with (gauge-singlet) chiral fields. [Seiberg, Leigh-Strassler]

This example shows that coupling singlets leads to an interesting IR fixed point. Other example... [Kim-Razamat-Vafa-Zafrir]

Argyres-Douglas theory

- was originally found at a special point on the Coulomb branch of N=2 SU(3) pure SYM with mutually non-local massless particles [Argyres-Douglas, Argyres-Plesser-Seiberg-Witten]
- with the Coulomb branch operator of scaling dimension 6/5
- strongly coupled; no known Lagrangian description....

Many generalizations

[Argyres-Plesser-Seiberg-Witten, Eguchi-Hori-Ito-Yang] [Cecotti-Neitzke-Vafa, Bonelli-KM-Tanzini, Xie,]

Motivations

The UV Lagrangian enables us to compute the partition functions of the SCFTs, e.g., superconformal index in the full generality [KM-Song, Agarwal-KM-Song]

N=2 theories describe interesting physics as a toy model, and are also related to theories in other dimensions and various areas of mathematical physics:

- integrable systems [Gorsky et al., Nekarasov-Shatashvilli]
- 2d CFTs [Alday-Gaiotto-Tachikawa]
- 2d chiral algebra [Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees]
- Topological string theory [Aganagic et al., Eguchi-Kanno]
- M-theory [Gaiotto, Gaiotto-Moore-Neitzke]

Results

We find Lagrangian descriptions for the following theories:

$$H_0, H_1, (A_1, A_k), and (A_1, D_k)$$

more results [Agarwal-Sciarappa-Song]

• We compute SCIs in full generality of the above theories.

Lagrangians for H_0 and H_1 theories are simply SU(2) SQCD with one adjoint and two fundamental chiral multiplets with some superpotential coupling with gauge-singlets.

 (We classify all relevant deformations from W=0 fixed point and find various new N=I SCFT.)

→ [Jaewon's talk]

- Review of N=2 AD theories
- A Lagrangian for AD theory
- N=I deformations of N=2 SCFTs

Review of N=2 AD theories

N=2 physics on Coulomb branch

The effective theory on Coulomb branch is determined by the so-called Seiberg-Witten curve and (one-form)

Conformal point

In some limits of parameters, two or more points where mutually non-local massless particle appears collides.

In this case, there appear a fixed point where the theory is described by an SCFT [Argyres-Douglas] [Argyres-Plesser-Seiberg-Witten, Eguchi-Hori-Ito-Yang]

Argyres-Douglas theory

dimension of Coulomb branch operator is 6/5 !

• the central charges are given by [Aharony-Tachikawa]

$$a = \frac{43}{120}, \quad c = \frac{11}{30}$$

this value of c saturates the bound of nontrivial N=2
 SCFT [Liendo-Ramirez-Seo]

Recent developments

Argyres-Douglas theory and its generalization are strongly coupled, so basically it is difficult to analyze, but

- classifications [Argyres-Lotito-Lu-Martone] [Cecotti-Neitzke-Vafa, Xie, Xie-Yau, Wang-Xie, Argyres-Martone, Caorsi-Cecotti]
- chiral algebra [Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees, Cordova-Shao, Creutzig, Song-Xie-Yan]
- conformal bootstrap [Cornagliotto-Lemos-Liendo]
- BPS quivers and spectral network [Alim-Cecotti-Cordova-Espahbodi-Rastogi-Vafa, Gaiotto-Moore-Neitzke, KM-Park-Yan]
- Superconformal index [Buican-Nishinaka, Cordova-Shao, Song]

A Lagrangian for AD theory

Let us consider the following N=1 theory with SU(2) vector multiplets and with the following chiral multiplets:

	q	q'	ϕ	M
SU(2)	2	2	adj	I
U(I) _{R0}	1/2	-5/2		6
$\cup () \mathcal{F}$	1/2	7/2	-	-6

with the superpotential

$$W = \phi q q + M \phi q' q'$$

Central charges

The central charges of the SCFT are determined from the anomaly coefficients of the IR R-symmetry: [Anselmi-Freedman-Grisaru-Johansen]

$$a = \frac{3}{32} (3 \text{Tr} R_{\text{IR}}^3 - \text{Tr} R_{\text{IR}}), \quad c = \frac{1}{32} (9 \text{Tr} R_{\text{IR}}^3 - 5 \text{Tr} R_{\text{IR}})$$

In our case, the IR R-symmetry is a combination of two U(1)'s. Thus consider the following (

 $R_{\rm IR}(\epsilon) = R_0 + \epsilon \mathcal{F}$

The true R symmetry is determined by maximizing trial central charge [Intriligator-Wecht]

$$a(\epsilon) = \frac{3}{32} (3 \operatorname{Tr} R_{\mathrm{IR}}(\epsilon)^3 - \operatorname{Tr} R_{\mathrm{IR}}(\epsilon))$$

Decoupling issue

The tr ϕ^2 operator hits the unitarity bound (Δ <1). We interpret this as being decoupled. Thus we subtract its

contribution from central charge, and re-a-maximize

Trop²,
$$M$$
, ...
 $\epsilon = \frac{13}{15}$, $a = \frac{43}{120}$, $c = \frac{11}{30}$

A way to pick up the interacting part is by introducing a chiral multiplet X to set tr $\Phi^2=0$: $\delta W = X\phi^2$ $a_{chiral}(r) = -a_{chiral}(2-r)$

In the end, the Lagrangian which flows to the Argyres-Douglas theory (H_0 theory) is

$$W = \phi q q + M \phi q' q' + X \phi^2$$

Chiral ring of H₀

We had the following chiral operators

$$\mathrm{tr}\phi q^2$$
, $\mathrm{tr}\phi q q'$, $\mathrm{tr}q q'$, $\mathrm{tr}\phi q'^2$, X , M

The F-term conditions are

$$0 = qq + Mq'^2 + 2X\phi$$
, $0 = tr\phi q'^2$, $0 = \phi q$, $0 = M\phi q'$, $0 = tr\phi^2$.

Thus, **the generators in the chiral ring** are only

$$trqq', M$$

dim =11/5, 6/5

(moduli space of X is uplifted quantum mechanically)

form N=2 Coulomb branch operator multiplet

Localization computations

• One can get the superconformal index in full generality which agrees with the results in some limits [KM-Song, Agarwal-KM-Song] [Evtikhiev]

• Other partition functions [Fredrickson-Pei-Yan-Ye, Gukov, Fluder-Song]

• 3d reduction and mirror quiver [Benvenuti-Giacomelli]

N=I deformations of N=2 SCFTs

N=I deformation

Suppose we have an N=2 SCFT **T** with **non-Abelian flavor symmetry F.**[Gadde-KM-Tachikawa-Yan, Agarwal Intriligator, Song]

[Agarwal-Intriligator-Song] cf. [Heckman-Tachikawa-Vafa-Wecht]

Then let us

 couple N=I chiral multiplet M in the adjoint rep of F by the superpotential

 $W = \mathrm{tr} \mu M$

• give a nilpotent vev to M (which is specified by the embedding ρ : SU(2) \rightarrow F), which breaks F. $W = \sum \mu_{j,j} M_{j,-j}$

(For F=SU(N), this is classified by a partition of N or Young diagram.)

This gives IR theory $T_{IR}[T, \rho]$, which is generically N=1 supersymmetric.

T = SU(2) w/4 flavors

In this case, F = SO(8)

We consider the principal embedding of SO(8), the vev which breaks SO(8) completely.

The adjoint rep decomposes as

28 → **3**, **7**, **7**, **I**

 $M_{1,-1}, M_{3,-3}, M'_{3,-3}, M_{5,-5}$

→ after integrating out the massive fields, we get the superpotential

 $W = \phi qq + M_1 \phi^2 qq' + M_3 qq' + M_5 \phi q'q' + M'_3 \phi^3 q'q',$

T = SU(2) w/4 flavors

Other choices of embeddings:

• [5,1³], [4,4] (with SU(2)) \rightarrow H₁ theory (SU(2) flavor symmetry)

$$a = \frac{11}{24}, \ c = \frac{1}{2}$$

• $[3^2, 1^2]$ (with U(1)×U(1)) \rightarrow H₂ theory (SU(3) flavor symmetry)

$$a = \frac{7}{12}, \ c = \frac{2}{3}$$

• other embeddings \rightarrow N=1 SCFTs

H_I theory

By the deformation procedure one can obtain **SU(2)** gauge theory with the following chiral multiplets:

	(q, q')	ϕ	M
SU(2)	2	adj	
U(I) _{R0}	-		4
$\cup ()\mathcal{F}$	2	-	-4
SU(2)f	2		

with the superpotential

$$W = X\phi^2 + Mqq'$$

This theory flows to the H_1 theory with central charges

$$a = \frac{11}{24}, \ c = \frac{1}{2}$$

Chiral ring of H₁

By using the F-term conditions one can show that the chiral ring is generated by the following operators

 M, \mathcal{O}_i

where

$$\mathcal{O}_1 = \mathrm{tr}\phi q q, \quad \mathcal{O}_0 = \mathrm{tr}\phi q q', \quad \mathcal{O}_{-1} = \mathrm{tr}\phi q' q',$$

M is the lowest component of the Coulomb branch operator multiplet, and Oi are the moment map operator of flavor SU(2). Indeed, they satisfy the relation

$$M \cdot \mathcal{O}_i \sim 0, \quad \mathcal{O}_1 \cdot \mathcal{O}_{-1} \sim \mathcal{O}_0^2$$

Conditions for N=2 susy

For principal embedding: we conjecture that the condition for *T* to have enhancement of supersymmetry in the IR is as follows:

- F is of ADE type
- 2d chiral algebra satisfies the Sugawara condition:

[Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees]

 \rightarrow (A₁, A_{2N+1})

 \rightarrow (A₁, A_{k-1})

$$\frac{\dim F}{c} = \frac{24h^{\vee}}{k_F} - 12$$

- rank-one theories H_1 , H_2 , D_4 , E_6 , E_7 , $E_8 \rightarrow H_0$
- SU(N) SQCD with 2N flavors \rightarrow (A₁, A_{2N})
- Sp(N) SQCD with 2N+2 flavors
- (A₁, D_k) theory
- some quiver gauge theories → (A_N, A_L)
 [Agarwal-Sciarappa-Song, Benvenuti-Giacomelli]

N=2? on Coulomb branch

From the Argyres-Douglas theory viewpoint, one can go to the Coulomb branch by turning on

- vev of Coulomb branch operator $\langle \mathcal{O} \rangle = u$
- relevant coupling: $\delta \mathscr{L} = c \int d^2 \theta_1 d^2 \theta_2 U$
- mass deformation: $\delta \mathscr{L} = m \left[d^2 \theta_1 \mu_0, (\mu_0 : \text{moment map operator}) \right]$

One can study the physics on the IR Coulomb branch from the Lagrangian viewpoint: for the H₁ theory, the above deformations correspond to adding

$$W = X\phi^2 + uqq' + cX + m\phi qq'$$

The theory with superpotential

$$W = uqq' + m\phi qq'$$

has been studied by [Intriligator-Seiberg]. They found the theory is in N=I Coulomb branch parametrized by $v = \langle tr \phi^2 \rangle$, whose curve is given by

$$y^{2} = x^{3} - vx^{2} + \frac{1}{4}u\Lambda^{3}x - \frac{1}{64}m^{2}\Lambda^{6}$$

Adding the terms $X\phi^2 + cX$ sets the vev $v = \langle tr\phi^2 \rangle$ to -c. Thus the N=1 curve is now

$$y^{2} = x^{3} + cx^{2} + \frac{1}{4}u\Lambda^{3}x - \frac{1}{64}m^{2}\Lambda^{6}$$

which is indeed the same as the Seiberg-Witten curve of the N=2 H_I theory after the redefinition of the parameters.

Discussions

- What is the precise conditions for susy enhancement?
- Why susy enhancement??
- Holographic dual of the RG flow with the enhanced susy.
- string/M-theory realization?

Discussion

Experimentally, something interesting (symmetry enhancement) happens in the IR when we **flip** the relevant operators:

SU(2) w/ adjoint + 2 fundamentals and W=0 (a=0.4525..., c=0.4986..)

At this fixed point, there are four relevant deformations

$$\mathcal{O}_1 = Q^2 \phi, \ \mathcal{O}_2 = Q \tilde{Q} \phi, \ \mathcal{O}_3 = Q \tilde{Q}, \ \mathcal{O}_4 = \tilde{Q}^2 \phi$$

We can deform by these or flip these by adding a term like

$$W = M_i \mathcal{O}_i$$

We get various fixed points with interesting properties.

[Jaewon's talk]

Superconformal index

Now we had Lagrangian theories which flow to SCFTs in the IR. **Thus the superconformal indices of the latter can be simply computed from the matter content.**

The index of our N=1 theory is defined by

$$I = \text{Tr}_{\mathcal{H}_{S^3}}(-1)^F p^{j_1 + j_2 - R/2} q^{j_1 - j_2 - R/2} \xi^{\mathcal{F}}$$

where j_1 and j_2 are rotation generators of the maximal torus U(1)₁ and U(1)₂ of SO(4)=SU(2)₁×SU(2)₂ and R and F is the generators of the U(1)_R and U(1)_F.

(If S³ is described by equation $|x_1|^2 + |x_2|^2 = 1$, $j_1 + j_2$ and $j_1 - j_2$ rotate x_1 and x_2 by phase.)

Index of H₀ theory

For instance one could calculate the index of the Argyres-Douglas (H_0) theory from the Lagrangian:

$$I = \kappa \frac{\Gamma((pq)^{3}\xi^{-6})}{\Gamma((pq)^{1}\xi^{-2})} \oint \frac{dz}{2\pi iz} \frac{\Gamma(z^{\pm}(pq)^{\frac{1}{4}}\xi^{\frac{1}{2}})\Gamma(z^{\pm}(pq)^{-\frac{5}{4}}\xi^{\frac{7}{2}})\Gamma(z^{\pm 2,0}(pq)^{\frac{1}{2}}\xi^{-1})}{\Gamma(z^{\pm 2})}$$

 ξ : fugacity for U(1)_F

(We subtract the contributions of the decoupled operators!)

We substitute $\xi \to t^{\frac{1}{5}}(pq)^{\frac{3}{10}}$ for the correct IR R symmetry. After that

- basically one can compute the integral
- Coulomb index limit (pq/t=u, p,q,t→0): $I_C = \frac{1}{1-u^{\frac{6}{5}}}$
- Macdonald limit ($p \rightarrow 0$) agrees with the index by [Cordova-Shao, Song]