RG flows with enhanced infrared supersymmetry

Kazunobu Maruyoshi (Seikei University)

w/ Jaewon Song, 1606.05632, 1607.04281 w/ Prarit Agarwal and Jaewon Song, 1610.05311 w/ Emily Nardoni and Jaewon Song, 1806.08353

"Strings, Branes and Gauge Theories", APCTP July 21, 2018

Introduction

Symmetry is an important quantity which characterizes QFT.

We usually define a theory in UV and try to analyze the RG flow and its IR theory.

(Suppose we have a nontrivial fixed point in IR, then) Can the symmetry in UV still characterize the IR theory? Or is the IR symmetry same as the UV symmetry?

— in many cases yes, but

the IR symmetry could be different from the UV symmetry.

Susy enhancement

W*e consider enhancement of supersymmetry in 4d supersymmetric QFTs along a renormalization group flow.*

Few example is known for supersymmetry in 4d:

- $N=1$ SU(n) theory (with gauge coupling g) with three adjoint chirals with superpotential $W = h \Phi_1 \Phi_2 \Phi_3 \rightarrow N=4$
- N=1 Lagrangian theories where a coupling constant is set to infinity \rightarrow N=2 E6, E7 and R0,N theories **[Gadde-Razamat-Willet, Agarwal-KM-Song]**
- … 3d examples **[Dongmin Gang's talk]**

N=1 SU(2) adjoint SQCD w/ Nf=1 coupled to a gauge-singlet [KM-Song]↓ N=2 Argyres-Douglas theory

The main point, which has not been fully studied so far, is the coupling with (gauge-singlet) chiral fields. **[Seiberg, Leigh-Strassler]**

This example shows that coupling singlets leads to an interesting IR fixed point. Other example… **[Kim-Razamat-Vafa-Zafrir]**

Argyres-Douglas theory

- was originally found at a special point on the Coulomb branch of $N=2$ SU(3) pure SYM with mutually non-local massless particles **[Argyres-Douglas, Argyres-Plesser-Seiberg-Witten]**
- with the Coulomb branch operator of scaling dimension 6/5
- **strongly coupled; no known Lagrangian description….**

Many generalizations

[Argyres-Plesser-Seiberg-Witten, Eguchi-Hori-Ito-Yang] [Cecotti-Neitzke-Vafa, Bonelli-KM-Tanzini, Xie, ….]

Motivations

The UV Lagrangian enables us to compute the partition functions of the SCFTs, e.g., superconformal index in the full generality LKM -**Song, Agarwal-KM-Song]**

N=2 theories describe interesting physics as a toy model, and are also related to theories in other dimensions and various areas of mathematical physics:

- integrable systems **[Gorsky et al., Nekarasov-Shatashvilli]**
- 2d CFTs **[Alday-Gaiotto-Tachikawa]**
- 2d chiral algebra **[Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees]**
- Topological string theory **[Aganagic et al., Eguchi-Kanno]**
- M-theory **[Gaiotto, Gaiotto-Moore-Neitzke]**

Results

We find Lagrangian descriptions for the following theories:

$$
H_0, H_1, (A_1, A_k), \text{ and } (A_1, D_k)
$$

more results [Agarwal-Sciarappa-Song]

We compute SCIs in full generality of the above theories.

Lagrangians for H₀ and H₁ theories are simply SU(2) SQCD with one *adjoint and two fundamental chiral multiplets with some superpotential coupling with gauge-singlets.*

(We classify all relevant deformations from W=0 fixed point and find various new N=1 SCFT.)

 [→] [Jaewon's talk]

- **Review of N=2 AD theories**
- **A Lagrangian for AD theory**
- **N=1 deformations of N=2 SCFTs**

Review of N=2 AD theories

N=2 physics on Coulomb branch

The effective theory on Coulomb branch is determined by the so-called Seiberg-Witten curve and (one-form)

Conformal point

In some limits of parameters, two or more points where mutually non-local massless particle appears collides.

In this case, there appear a fixed point where the theory is described by an SCFT [Argyres-Douglas] **[Argyres-Plesser-Seiberg-Witten, Eguchi-Hori-Ito-Yang]**

Argyres-Douglas theory

dimension of Coulomb branch operator is 6/5 !

the central charges are given by [Aharony-Tachikawa]

$$
a = \frac{43}{120}, \quad c = \frac{11}{30}
$$

this value of c saturates the bound of nontrivial N=2 SCFT [Liendo-Ramirez-Seo]

Recent developments

Argyres-Douglas theory and its generalization are strongly coupled, so basically it is difficult to analyze, but

- classifications **[Argyres-Lotito-Lu-Martone] [Cecotti-Neitzke-Vafa, Xie, Xie-Yau, Wang-Xie, Argyres-Martone, Caorsi-Cecotti]**
- chiral algebra **[Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees, Cordova-Shao, Creutzig, Song-Xie-Yan]**
- conformal bootstrap **[Cornagliotto-Lemos-Liendo]**
- BPS quivers and spectral network **[Alim-Cecotti-Cordova-Espahbodi-Rastogi-Vafa, Gaiotto-Moore-Neitzke, KM-Park-Yan]**
- superconformal index **[Buican-Nishinaka, Cordova-Shao, Song]**

A Lagrangian for AD theory

Let us consider the following N=1 theory with **SU(2) vector multiplets** and **with the following chiral multiplets**:

with the superpotential

$$
W = \phi qq + M\phi q'q'
$$

Central charges

The central charges of the SCFT are determined from the anomaly coefficients of the IR R-symmetry: **[Anselmi-Freedman-Grisaru-Johansen]**

$$
a = \frac{3}{32}(3 \text{Tr} R_{\text{IR}}^3 - \text{Tr} R_{\text{IR}}), \quad c = \frac{1}{32}(9 \text{Tr} R_{\text{IR}}^3 - 5 \text{Tr} R_{\text{IR}})
$$

In our case, the IR R-symmetry is a combination of two $U(1)$'s. Thus consider the following

 $R_{\text{IR}}(\epsilon) = R_0 + \epsilon \mathcal{F}$

The true R symmetry is determined by maximizing trial central charge [Intriligator-Wecht]

$$
a(\epsilon) = \frac{3}{32} (3 \text{Tr} R_{\text{IR}}(\epsilon)^3 - \text{Tr} R_{\text{IR}}(\epsilon))
$$

Decoupling issue

The trɸ2 operator hits the unitarity bound (∆<1). We interpret this as being decoupled. Thus we subtract its

contribution from central charge, and re-a-maximize

13
$$
\theta^2
$$
, M , ...
\n $\epsilon = \frac{13}{15}$, $a = \frac{43}{120}$, $c = \frac{11}{30}$
\n**dimension 6/5**

A way to pick up the interacting part is by introducing a chiral multiplet X to set tr $\oint 2=0$: $\delta W = X\oint 2$ *a*_{chiral} $(r) = -a$ _{chiral} $(2 - r)$

In the end, the Lagrangian which flows to the Argyres-Douglas theory $(H₀)$ theory) is $W = \phi qq + M\phi q'q' + X\phi^2$

$$
W = \phi qq + M\phi q'q' + X\phi^2
$$

Chiral ring of H0

We had the following chiral operators

$$
\mathrm{tr}\phi q^2,\quad \mathrm{tr}\phi q q',\quad \mathrm{tr} qq',\quad \mathrm{tr}\phi q'^2,\quad X,\quad M
$$

The F-term conditions are

$$
0 = qq + Mq^2 + 2X\phi, \ \ 0 = \text{tr}\phi q^2, \ \ 0 = \phi q, \ \ 0 = M\phi q', \ \ 0 = \text{tr}\phi^2.
$$

Thus, **the generators in the chiral ring** are only

$$
trqq', \quad M
$$

$$
\lim_{z \to 0} \frac{1}{5} \quad 6/5
$$

(moduli space of X is uplifted quantum mechanically)

dim =11/5, 6/5 **form N=2 Coulomb branch operator multiplet**

Localization computations

• One can get the superconformal index in full generality which agrees with the results in some limits **[KM-Song, Agarwal-KM-Song] [Evtikhiev]**

Other partition functions **[Fredrickson-Pei-Yan-Ye, Gukov, Fluder-Song]**

3d reduction and mirror quiver **[Benvenuti-Giacomelli]**

N=1 deformations of N=2 SCFTs

N=1 deformation

Suppose we have an N=2 SCFT *T* with **non-Abelian flavor symmetry F. [Gadde-KM-Tachikawa-Yan, Agarwal-Bah-KM-Song]**

[Agarwal-Intriligator-Song] cf. [Heckman-Tachikawa-Vafa-Wecht]

Then let us

couple N=1 chiral multiplet M in the adjoint rep of F by the superpotential

 $W = \mathrm{tr} \mu M$

give a nilpotent vev to M (which is specified by the embedding ρ **: SU(2) → F), which breaks F.** $W = \sum \mu_{j,j} M_{j,-j}$

(For F=SU(N), this is classified by a partition of N or Young diagram.) *j*

This gives IR theory $T_{IR}[T, p]$, which is generically $N=1$ supersymmetric.

T **= SU(2) w/ 4 flavors**

In this case, F = SO(8)

We consider the principal embedding of SO(8), the vev which breaks SO(8) completely.

The adjoint rep decomposes as

 $28 \rightarrow 3, 7, 7, 11$

 $M_{1,-1}, M_{3,-3}, M'_{3,-3}, M_{5,-5}$

→ after integrating out the massive fields, **we get the superpotential**

 $W = \phi qq + M_1\phi^2 qq' + M_3qq' + M_5\phi q'q' + M_3'\phi^3 q'q',$

T **= SU(2) w/ 4 flavors**

Other choices of embeddings:

 \bullet **[5,13], [4,4]** (with SU(2)) \rightarrow **H₁ theory** (SU(2) flavor symmetry)

$$
a = \frac{11}{24}, \ c = \frac{1}{2}
$$

• $[3^2, 1^2]$ (with $U(1)\times U(1)$) \rightarrow **H₂ theory** (SU(3) flavor symmetry)

$$
a = \frac{7}{12}, \ c = \frac{2}{3}
$$

• other embeddings \rightarrow N=1 SCFTs

H1 theory

By the deformation procedure one can obtain **SU(2) gauge theory with the following chiral multiplets**:

with the superpotential

$$
W = X\phi^2 + Mqq'
$$

This theory flows to the H_1 theory with central charges

$$
a = \frac{11}{24}, \ c = \frac{1}{2}
$$

Chiral ring of H1

By using the F-term conditions one can show that the chiral ring is generated by the following operators

M, Oⁱ

where

$$
\mathcal{O}_1 = \text{tr}\phi qq, \quad \mathcal{O}_0 = \text{tr}\phi qq', \quad \mathcal{O}_{-1} = \text{tr}\phi q'q',
$$

M is the lowest component of the Coulomb branch operator multiplet, and Oi are the moment map operator of flavor SU(2). Indeed, they satisfy the relation

 $M \cdot \mathcal{O}_i \sim 0, \quad \mathcal{O}_1 \cdot \mathcal{O}_{-1} \sim \mathcal{O}_0^2$

Conditions for N=2 susy

For principal embedding: we conjecture that the condition for *T* to have enhancement of supersymmetry in the IR is as follows:

- F is of ADE type
- 2d chiral algebra satisfies the Sugawara condition:

[Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees]

$$
\frac{\dim F}{c} = \frac{24h^{\vee}}{k_F} - 12
$$

- **rank-one theories H₁, H₂, D₄, E₆, E₇, E₈ → H₀**
- $SU(N)$ SQCD with 2N flavors \rightarrow (A_1, A_{2N})
- $Sp(N)$ SQCD with $2N+2$ flavors \rightarrow (A_1, A_{2N+1}) \bullet
- \bullet (A₁, D_k) theory \rightarrow (A₁, A_{k-1})
- **some quiver gauge theories → (AN, AL) [Agarwal-Sciarappa-Song, Benvenuti-Giacomelli]**

N=2? on Coulomb branch

From the Argyres-Douglas theory viewpoint, one can go to the Coulomb branch by turning on

- vev of Coulomb branch operator $\langle 0 \rangle = u$
- *relevant coupling:* $\delta \mathcal{L} = c \int d^2 \theta_1 d^2 \theta_2 U$
- mass deformation: $\delta \mathcal{L} = m \int d^2 \theta_1 \mu_0$, (μ_0 : moment map operator)

One can study the physics on the IR Coulomb branch from the Lagrangian viewpoint: for the H₁ theory, the above deformations correspond to adding

$$
W = X\phi^2 + uqq' + cX + m\phi qq'
$$

The theory with superpotential

$$
W = uqq' + m\phi qq'
$$

has been studied by **[Intriligator-Seiberg]**. They found the theory is in **N=1 Coulomb branch** parametrized by $v = \langle \text{tr} \phi^2 \rangle$, whose curve is given by

$$
y^{2} = x^{3} - \nu x^{2} + \frac{1}{4}u\Lambda^{3}x - \frac{1}{64}m^{2}\Lambda^{6}
$$

Adding the terms $X\phi^2 + cX$ sets the vev $v = \langle \text{tr}\phi^2 \rangle$ to -c. Thus the N=1 curve is now

$$
y^{2} = x^{3} + cx^{2} + \frac{1}{4}u\Lambda^{3}x - \frac{1}{64}m^{2}\Lambda^{6}
$$

which is indeed the same as the Seiberg-Witten curve of the N=2 H₁ theory after the redefinition of the parameters.

Discussions

- What is the precise conditions for susy enhancement?
- Why susy enhancement??
- Holographic dual of the RG flow with the enhanced susy.
- string/M-theory realization?

Discussion

Experimentally, something interesting (symmetry enhancement) happens in the IR when we **flip** the relevant operators:

> **SU(2)** w/ adjoint + 2 fundamentals and $W=0$ $(a=0.4525...$ $c=0.4986.$.)

At this fixed point, there are four relevant deformations

$$
\mathcal{O}_1 = Q^2 \phi, \ \mathcal{O}_2 = Q \tilde{Q} \phi, \ \mathcal{O}_3 = Q \tilde{Q}, \ \mathcal{O}_4 = \tilde{Q}^2 \phi
$$

We can deform by these or flip these by adding a term like

$$
W=M_i\mathcal{O}_i
$$

We get various fixed points with interesting properties.

[Jaewon's talk]

Superconformal index

Now we had Lagrangian theories which flow to SCFTs in the IR. **Thus the superconformal indices of the latter can be simply computed from the matter content.**

The index of our $N=1$ theory is defined by

$$
I = \text{Tr}_{\mathcal{H}_{S^3}}(-1)^F p^{j_1+j_2-R/2} q^{j_1-j_2-R/2} \xi^{\mathcal{F}}
$$

where j_1 and j_2 are rotation generators of the maximal torus $U(1)_1$ and $U(1)_2$ of SO(4)=SU(2)₁×SU(2)₂ and R and *F* is the generators of the $U(1)$ _R and $U(1)$ _F.

(If S³ is described by equation $|x_1|^2 + |x_2|^2 = 1$, $j_1 + j_2$ and $j_1 - j_2$ rotate x_1 and x_2 by phase.)

Index of H₀ theory

For instance one could calculate the index of the Argyres-Douglas (H_0) theory from the Lagrangian:

$$
I = \kappa \frac{\Gamma((pq)^3 \xi^{-6})}{\Gamma((pq)^1 \xi^{-2})} \oint \frac{dz}{2\pi i z} \frac{\Gamma(z^{\pm}(pq)^{\frac{1}{4}} \xi^{\frac{1}{2}}) \Gamma(z^{\pm}(pq)^{-\frac{5}{4}} \xi^{\frac{7}{2}}) \Gamma(z^{\pm 2,0}(pq)^{\frac{1}{2}} \xi^{-1})}{\Gamma(z^{\pm 2})}
$$

 ξ : fugacity for $U(1)$ _F

(We subtract the contributions of the decoupled operators!)

We substitute $\xi \to t^{\frac{1}{5}}(pq)^{\frac{3}{10}}$ for the correct IR R symmetry. After that $\overline{1}$ $\bar{5}\left(pq\right)$ 3 10

- basically one can compute the integral \bullet
- Coulomb index limit (pq/t=u, p,q,t \rightarrow 0): $I_C =$ 1 $1 - u^{\frac{6}{5}}$ 5
- Macdonald limit (p→0) agrees with the index by **[Cordova-Shao, Song]**