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Conformal Field Theory

Two-point and three-point functions are fixed conformal symmetry

〈φ(x1)φ(x2)〉 =
1

|x1 − x2|2∆φ

〈φ1(x1)φ2(x2)φ3(x3)〉 = λ123

|x1−x2|∆1+∆2−∆3 |x2−x3|∆2+∆3−∆1 |x3−x1|∆3+∆1−∆2

Four-point functions are fixed up to a function of cross ratio

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
f (u, v)
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Conformal Field Theory

Consider Operator Product Expansion

φi (x)φj(y) =
∑
a

λijaCa(x − y , ∂y )Oa

where Oa is a (quasi-)primary operator.

〈φ(x1)φ(x2)φ(x3)φ(x4)〉
=

∑
O∈φ×φ

λ2
12OCa(x1 − x2, ∂2)Cb(x3 − x4, ∂4)〈φ(x3)φ(x4)〉

=
∑
O∈φ×φ

x
−∆φ

12 x
−∆φ

34 λ2
12O × g∆O,lO(u, v)
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Conformal Block

Conformal Block [Dolan,Osborn ’01,’04]

g∆O,lO(u, v) = k∆+l(z)k∆−l(z̄ + z ↔ z̄) in D=2

g∆O,lO(u, v) =
zz̄

z − z̄
(k∆+l(z)k∆−l−2(z̄)− z ↔ z̄) in D=4

where u = zz̄ , v = (1− z)(1− z̄) and

kβ(z) = zβ/2 · 2F1(β/2, β/2, β z)

One can forget about Lagrangian and describe a CFT merely by its
spectrum and OPE coefficient. Is that all?
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Conformal Bootstrap

Four-point functions have crossing symmetry

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = 〈φ(x1)φ(x2)φ(x3)φ(x4)〉,

which leads to

u−∆φ
∑
O∈φ×φ

λ2
φφO × g∆O,lO(u, v) = v−∆φ

∑
O∈φ×φ

λ2
φφO × g∆O,lO(v , u)
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Conformal Bootstrap

Define convolved conformal block F∆,l = u−∆φg∆,l(u, v)− v−∆g∆,l(v , u),
we get ∑

O∈φ×φ
λ2
OF∆O,lO(z , z̄) = 0

For “Unitary” CFT, the OPE coefficient λ2
O > 0.

Assumption

All l = 0 primaries operators in φ× φ OPE has scaling dimension ∆ ≥ ∆0.

Suppose

F0,0 > 0,

F∆,0 > 0, when ∆ > ∆0,

and F∆,l > 0, when ∆ > l + 2(Unitary bound),

then the assumption is excluded!
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Conformal bootstrap

In more complicated cases, we need to consider linear functional acting on∑
O∈φ×φ λ

2
OF∆,l(z , z̄) = 0.

Suppose we could find a linear functional α such that

α(F0,0(z , z̄)) = 1,

α(F∆,0(z , z̄)) > 0, for∆ > ∆0,

α(F∆,l(z , z̄)) > 0, for∆ > ∆unitary.

Then there must be an operator whose dimension is lower that ∆0.

A simple basis is α =
∑
αmn∂

m
z ∂

n
z̄ , and the problem could be studied

using ”SDPB”. [Simmons-Duffin ’15]
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Conformal bootstrap

Applied to 3D Ising model, one get

[El-Showk,Paulos,Poland,Rychkov,Simmons-Duffin,Vichi ’12]
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Constraining critical exponents

Same plot at wider range [Nakayama, Ohtsuki ’16]

One need to allow ε to appear in ε× ε OPE.

This simple tells us that for any 2nd order phase transition that could be
reached without fine-tunning, the critical exponents need to satisfy

ν > 0.511

.
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Constraining critical exponents

This result rules out certain claims from Monte Carlo simulation. [Qin, He,
You, Lu, Sen, Sandvik, Xu, Meng ’17]

A model of special interest is called model studied is call JQ model
[Sandvik ’07]. It describes the quantum phase transition from Neel phase
to VBS pahse, with lattice Hamiltonian:

H = −J
∑
〈ij〉

Pij − Q
∑
〈ijkl〉

PijPkl

with Pij = 1
4 − Si · Sj .

Neel phase:
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Constraining critical exponents

VBS phase:

It is believed that these model would flow to the IR critical point of
scalar-QED3.

L =
1

e2
FµνF

µν + |DΦI |2 + m2|ΦI |2 + λ|ΦI |4

The theory has SU(N)× U(1) symmetry, where U(1) is the monopole
charge. Large N calculation can be performed. The fate of the small N
fixed points are not clear.
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Constraining critical exponents

The SU(2) model is believed to have emergent symmetry. [Nahum, Serna,
Chalker, Ortuñ o, Somoza ’15]
Where

SU(2)× U(1)→ SO(5)

The Neel order parameter
Sa = Φ†σaΦ

and the VBS order parameter (monopole)

Mq=1

combine to form a five dimensional representation of SO(5).

See Dongmin’s talk for a similar story in SCFT setup.
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Emergent symmetry

Given a microscopic model (lattice or real material) with explicit symmetry
H, at 2nd order phase transition, the symmetry might enhance to a larger
symmetry G that contain H.

Suppose the spectrum contains O ∈ 1H . If this operator is relevant
(∆O < 3), we need to manually tune the corresponding coupling to zero.
Usually, we allow only one relevant scalar operator that is H-singlet in the
spectrum, otherwise, the fixed point needs fine tunning.

Liquid-gas transition vs Magnetization
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Emergent symmetry

The lattice JQ-model preserves SU(2)× U(1) symmetry. (More precisely,
SU(2)× Z2/3/4. )

Notice symmetric traceless representation of SO(5), when branching into
irreps of SU(2)× U(1), gives one singlet

O ∝


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −3

2 0
0 0 0 0 −3

2


Lattice measurement shows that this operator is relevant.
The SO(5) singlet operator must be irrelevant!
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Emergent symmetry

Bootstrap tells that ∆ > 0.775 or η > 0.55. This result was first discussed
in [Nakayama, Ohtsuki ’16].
Monte Carlo simulation, however gives η ∼ 0.25 to 0.3.
Notice that there is indeed a paper claiming that the phase transition is
1st order [Chen, Huang, Deng, Kuklov, Prokofev, Svistunov ’13].
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Emergent SUSY

The candidate theory is simply

L =
1

2
(∂µσ)2 + ψ̄ /∂ψ +

λ1

2
σψ̄ψ +

λ2
2

8
σ4.

Here ψ is a Majorana spinor.

The theory preserves time reversal symmetry,
under which σ → −σ.
When λ1 = λ2, the model could be written as Wess-Zumino model with
superpotential W = Σ3.
For susy enhancement to happen, the CFT spectrum must contain only
one T-even singlet.
It was argued in [Grover, Sheng, Vishwanath ’15] that it can be realized at
the boundary of a 3+1D topological superconductor. Emergent SUSY is
critical for experimental realization.
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Emergent SUSY

[Fei, Giombi, Klebanov, Tarnopolsky ’16]
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Emergent SUSY

Imposing emergent SUSY in numerical bootstrap, we get [Rong, Su ’18]

Junchen Rong (FGS,IBS) July 25th, 2018 APCTP 19 / 40



Emergent SUSY

Assuming the spectrum to contain only two T-parity even scalar, we get a
bootstrap island
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details of the calculation

Bootstrap equation for Ising model∑
O+

(
λσσO λεεO

)
~V+,∆,`

(
λσσO
λεεO

)
+
∑
O−

λ2
σεO

~V−,∆,` = 0,

where ~V+,∆,` =



(
F σσ,σσ−,∆,` (u, v) 0

0 0

)
(

0 0
0 F εε,εε−,∆,`(u, v)

)
(

0 0
0 0

)
(

0 1
2F

σσ,εε
−,∆,`(u, v)

1
2F

σσ,εε
−,∆,`(u, v) 0

)
(

0 1
2F

σσ,εε
+,∆,`(u, v)

1
2F

σσ,εε
+,∆,`(u, v) 0

)


, ~V−,∆,` =


0
0

F σε,σε−,∆,`(u, v)

(−1)`F εσ,σε−,∆,`(u, v)

−(−1)`F εσ,σε+,∆,`(u, v)

 ,
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details of the calculation

Assuming the spectrum to contain one Z2 even and one Z2 odd relevant
operators, we get [Kos, Poland, Simmons-Duffin, Vichi ’16]
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details of the calculation

Constrains from SUSY

∆ε = ∆σ + 1, since Σ = σ + θ̄ψ + θ̄θε,

λσσO , λσεO′ and λεεO are proportional to each other, with ratios fixed
by SUSY.

The line ∆ε = ∆σ + 1 intersect with single correlator bound at
∆σ ≈ 0.565, which is a lower bound for ∆σ.
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details of the calculation

To get the OPE relation, we use the result of [Park ’99].

〈O(l)(x1, θ1, η1)Σ(x2, θ2)Σ(x3, θ3)〉 =
t(X1,Θ1, η1)

x2∆Φ−∆O−l
12 x2∆Φ−∆O−l

13 x∆O+l
23

,

xµ12 = xµ1 + xµ2 + iθ̄1γµθ2, x12± = xµ12γµ ± i
1

2
θ̄12θ12, θ12 = θ1 − θ2,

X1 =
1

2
(x−1

31+x23−x
−1
21+ + x−1

21+x23+x
−1
31−), Θ1 = i(x−1

21+θ21 − x−1
31+θ31).

X1 and Θ1 are in tangent space of point 1. Under superconformal
transformation, they transform as (x1, θ1)

g−→ (x ′1, θ
′
1)

Θ′1 = Ω−1/2(x1, θ1; g)L−1(x1, θ1; g)Θ1

X ′µ1 = Ω−1(x1, θ1; g)Rµν
−1(x1, θ1; g)X ν

1
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details of the calculation

There are four tensor structures

B(l)
+ : (η̄1X1η1)l ,

B(l)
− : Θ̄1Θ1(η̄1X1η1)l(tr[X2

1])−1/2,

F (j)
+ : η̄1X1Θ1(η̄1X1η1)j−1/2(tr[X2

1])−3/4,

F (j)
− : η̄1Θ1(η̄1X1η1)j−1/2(tr[X2

1])−1/4.

The super multiplets contains

B(l)
+/− : [l ]

+/−
∆

Q−→ [l ± 1/2]∆+1/2
Q−→ [l ]

−/+
∆+1, with l = integer,

F (j)
+/− : [j ]∆

Q−→
[j − 1/2]

+/−
∆+1/2

[j + 1/2]
−/+
∆+1/2

Q−→ [j + 1]∆+1. with j = half integer.
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details of the calculation

For example, since O = O+ + . . .+ θ̄θO−, we have

〈O(x1, θ1)Φ(x2, θ2)Φ(x3, θ)〉 = 〈O+σσ〉
+θ̄2θ2θ̄3θ3〈O+εε〉
+θ̄1θ1θ̄2θ2〈O−εσ〉
. . .
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details of the calculation

In summary, the OPE rations are

Notice in each multiplet, only one operator appears in σ × σ OPE, and
only one operator appears in σ × ε OPE.
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details of the calculation

Plug the OPE ratios to the Ising bootstrap equation, we get∑
l ∈ even

λ2
B+
~V B+

∆,l +
∑

l ∈ even

λ2
B−

~V
B−
∆,l +

∑
j − 1/2 ∈ even

λ2
F+
~VF+

∆,j +
∑

j − 1/2 ∈ odd

λ2
F−

~V
F−
∆,j = 0,

with
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details of the calculation

How to impose emergent SUSY?

all B(l)
+ multiplets with l = 0 have scaling dimension bigger than 3,

all B(l)
− multiplets with l = 0 (except for Σ) have scaling dimension

bigger than 2,

all F (j)
+ multiplets with j = 1/2 have scaling dimension bigger than

5/2.
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Emergent SUSY

Imposing emergent SUSY in numerical bootstrap, we get [Rong, Su ’18]
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Emergent SUSY

See also [Atanasov, Hillman Poland ’18], where OPE constrains from
〈ΣΣΣ〉 were considered.
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Emergent SUSY

Descendants are important!

Junchen Rong (FGS,IBS) July 25th, 2018 APCTP 32 / 40



Critical exponents

From the island we get ∆σ = 0.584444(30),

corresponding to the critical
exponents

ησ = ηψ = 0.168888(60), 1/ν = 1.415556(30).

Σ′ contains a super-primary with ∆σ′ = 2.882(9) and also a
super-descendant which is the lowest dimensional irrelevant T-parity even
scalar operator. This helps us determine the critical exponent

ω = 0.882(9).

By bootstrapping the OPE coefficient λ2
F− , with F∆=5/2,j=3/2

− being the
SUSY current multiplet, we get

CN=1
T /C f .s.

T ≈ 1.684
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Resumming large N series

Large N perturbation theory gives us [Gracey ’93]

ηψ = 8
3π2N

+ 1792
27π4N2 +

64(−3402ζ(3)+141π2−668+324π2 log(2))
243π6N3 +O( 1

N4 ).

We could use the N = 1 result to perform “two-sided” Padé approximation

N 4 8

large-N, Padé[2,2] 0.0942 0.0430

large-N, Padé[3,1] 0.1043 0.0437

4−ε, ε4, Padé[2,2] [Zerf, et al ’17] 0.0976 0.0539

2+ε, ε4, Padé [Gracey, et al ’16] - 0.082

The N = 8 model describes the quantum critical point of the semimetal to
charge density wave order transition in graphene [Herbut ’06].
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What else can we do?

Recently, there has been some work on duality between N = 1
superconformal field theories [Benini, Benvenuti ’18], [Gaiotto,
Komargodski, Wu ’18], . . .

Set N = k = 1, we get
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What else can we do?

RHS is time-reversal invariant, while the LHS is not. For the duality to
work, it is essential that there is no relevant deformation made of
Os = PP† + #H2. Such a term breaks time-reversal symmetry, which
would be automatically generated on the LHS and drives the RG flow away
from the fixed point.

A two loop calculation, after Padé re-summation, gives

∆Os ≈ 2 + 0.12448ε− 0.12448ε2 +O(ε3) ≈ 2.058.

This needs to be confirmed by numerical bootstrap.
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What else can we do?

Can we test AdS/CFT correspondence?

When the AdS solution is maximally supersymmetric, the Kaluza-Klein
modes are BPS multiplets, which are protected by supersymmetry, their
scaling dimension is fixed to be some finite value.
When the AdS solution is not maximally supersymmetric, the Kaluza-Klein
spectrum contain certain long multiplets, though not protected by SUSY,
their scaling dimensions are finite. For N = 1 solutions, non of the
multiplets are protected (except for conserved currents)!
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What else can we do?

N = 8 SO(8) gauged supergravity has 70 scalar, they form a complicated
potential.

There exist a N = 1 critical points which preserves G2 ⊂ SO(8). There
exist a holographic RG from connecting the N = 8 vacuum and the
N = 1 vacuum.
On the field theory sides, this corresponds to turning on boson and
fermion bilinear term in ABJM theory

O = tr[φ8φ8 + ψ8ψ8].

The theory flow to a IR fixed point.
Linearized perturbation around the AdS solution tells us that

Oij = tr[φiφj ]

has scaling dimension

∆ =
1

6
(6−

√
6) ≈ 0.591752

Non-perturbative test of AdS/CFT?!
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fermion bilinear term in ABJM theory

O = tr[φ8φ8 + ψ8ψ8].

The theory flow to a IR fixed point.
Linearized perturbation around the AdS solution tells us that

Oij = tr[φiφj ]

has scaling dimension

∆ =
1

6
(6−

√
6) ≈ 0.591752

Non-perturbative test of AdS/CFT?!
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What else can we do?

Can we add fermions?
By counting superconformal invariants, we know that there are in
total seven equations. Here we considered only four of them, which
involve only bosonic external operators.

What about N = 2, 3, 4, 5, 6, 7, 8? Descendants are important! This
is just the beginning!
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Thank you

Thank you!
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