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Modern conformal bootstrap
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In an arbitrary unitary 4D CFT we consider a scalar operator \phi, and the operator \phi*2
defined as the lowest dimension scalar which appears in the OPE \phi\times\phi with a
nonzero coefficient. Using general considerations of OPE, conformal block decomposition,
and crossing symmetry, we derive a theory-independent inequality [\phi*2] \leq f([\phi]) for
the dimensions of these two operators. The function f(d) entering this bound is computed
numerically. For d->1 we have f(d)=2+O(\sqrt{d-1}), which shows that the free theory limit is

aggroached continuouslx. We Eerform some checks of our bound. We find that the bound is |
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Conformal Field Theory

Two-point and three-point functions are fixed conformal symmetry

(b(xa)p(x)) = ——

- |X1 _ X2|2A¢

N
(P1(x1)P2(x2)P3(x3)) = o B2 B3 ey B 85— Bl g B3 TAT B2
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Conformal Field Theory

Two-point and three-point functions are fixed conformal symmetry

(b(xa)p(x)) = ——

- |X1 _ X2|2A¢
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Four-point functions are fixed up to a function of cross ratio

where

Junchen Rong (FGS,IBS)
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Conformal Field Theory

Consider Operator Product Expansion
$i(x)gi(y) =D XjaCalx — y,0,)0°
a

where O? is a (quasi-)primary operator.
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Conformal Field Theory

Consider Operator Product Expansion
$i(x)gi(y) =D XjaCalx — y,0,)0°
a

where O? is a (quasi-)primary operator.

(6(x1)0(x2)0(x3)0(xa))

= D Mo0Gla —x, 3)Colxs — xa, 0a) (¢ (x3)(xa))
O€epx

—Ay Dy 2
= E, X1p “X3q4 ' A2o X 8Ap,lo(Us V)
Oepxop
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Conformal Block

Conformal Block [Dolan,Osborn '01,"04]

8no.io(U,v) = kni(2)ka—i(Z+z > 2) in D=2

zZ
80,0 Uy v) = ——

Z(kAJr/(Z)kA,/,z(f) —Z Z) in D=4
where u = zz,v =(1—2z)(1 — Z) and

ka(z) = 2°/% -y F1(B/2,8/2, B 2)

Junchen Rong (FGS,IBS) July 25th, 2018 APCTP 5/ 40



Conformal Block

Conformal Block [Dolan,Osborn '01,"04]

8Ao .o (U V) = knyi(2)ka—1(Z + z < 2) in D=2
zz
80,0 Uy v) = ——

Z(kAJr/(Z)kA,/,z(f) —Z Z) in D=4
where u = zz,v =(1—2z)(1 — Z) and

ka(z) = 2°/% -y F1(B/2,8/2, B 2)

One can forget about Lagrangian and describe a CFT merely by its
spectrum and OPE coefficient. Is that all?
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Conformal Bootstrap

Four-point functions have crossing symmetry

(D(x1)6(x2) 0 (x3)0(xa)) = ($(x1)H(x2)(x3)6(xa)),

which leads to

T Z )\gs(po X 8Ap,lo (U, V) = v Z >\3¢¢o X 8Ap,lo (Vs U)
Ocpxo Ocopxo
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Conformal Bootstrap

Define convolved conformal block Fa ; = u‘A¢gA7,(u, v) — v_AgA,/(v, u),
we get

> NoFapio(2,2) =0
Oepxop
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Conformal Bootstrap

Define convolved conformal block Fa ; = u‘A¢gA7,(u, v) — v_AgA,/(v, u),
we get

> NoFapio(2,2) =0
Oepxop

For “Unitary” CFT, the OPE coefficient /\%9 > 0.
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Conformal Bootstrap

Define convolved conformal block Fa ; = u‘A¢gA7,(u, v) — v_AgA,/(v, u),
we get

> NoFapio(2,2) =0
Oepxop

For “Unitary” CFT, the OPE coefficient /\%9 > 0.

All / = 0 primaries operators in ¢ x ¢ OPE has scaling dimension A > Ay. \

Suppose

Fo,o > 0,
FA,O >0, when A > Ay,
and Fa; >0, when A > [+ 2(Unitary bound),

then the assumption is excluded!
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Conformal bootstrap

In more complicated cases, we need to consider linear functional acting on
2 s\
ZOEgZ)Xd))‘OFAJ(Z?Z) =0.
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Conformal bootstrap

In more complicated cases, we need to consider linear functional acting on
Y ocoxs NoFni(z,2) = 0.
Suppose we could find a linear functional « such that

a(Foo(z,2)) =1,

Oz(FAp(Z,f)) > 0, forA > Ay,

OJ(FA’/(Z,E)) > 0, forA > Aunitary'
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Conformal bootstrap

In more complicated cases, we need to consider linear functional acting on
2 s\
ZOEngd))‘OFAJ(Z?Z) =0.

Suppose we could find a linear functional « such that
a(Foo(z,2)) =1,

Oz(FAp(Z,f)) > 0, forA > Ay,
OJ(FA’/(Z,E)) > 0, forA > Aunitary'

Then there must be an operator whose dimension is lower that Ag.
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Conformal bootstrap

In more complicated cases, we need to consider linear functional acting on
Y ocoxs NoFni(z,2) = 0.
Suppose we could find a linear functional « such that

a(Foo(z,2)) =1,

Oz(FAp(Z,f)) > 0, forA > Ay,

OJ(FA’/(Z,E)) > 0, forA > Aunitary'

Then there must be an operator whose dimension is lower that Ag.

A simple basis is @ = Y amp02702, and the problem could be studied
using "SDPB". [Simmons-Duffin '15]
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Conformal bootstrap

Applied to 3D Ising model, one get

Ac
1.8}
16|
4]
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As

[EI-Showk,Paulos,Poland,Rychkov,Simmons-Duffin,Vichi '12]
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Constraining critical exponents

Same plot at wider range [Nakayama, Ohtsuki '16]

35;

Bound on 4
MR W
[==] wn (=]

=
wn

1'8,5 06 07 08 09 1.0 1.1 1.2
ﬂt?

One need to allow € to appear in € x ¢ OPE.
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Constraining critical exponents

Same plot at wider range [Nakayama, Ohtsuki '16]

35;

Bound on 4
MR W
[==] wn (=]

=
wn

1'8,5 06 07 08 09 1.0 1.1 1.2
At?

One need to allow € to appear in € x ¢ OPE.
This simple tells us that for any 2nd order phase transition that could be
reached without fine-tunning, the critical exponents need to satisfy

v > 0511
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Constraining critical exponents

This result rules out certain claims from Monte Carlo simulation. [Qin, He,
You, Lu, Sen, Sandvik, Xu, Meng '17]
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Constraining critical exponents

This result rules out certain claims from Monte Carlo simulation. [Qin, He,
You, Lu, Sen, Sandvik, Xu, Meng '17]

A model of special interest is called model studied is call JQ model

[Sandvik '07]. It describes the quantum phase transition from Neel phase
to VBS pahse, with lattice Hamiltonian:

H=-J> Pj— Q> PiPu

(if) (ijkl)
with Pj = 1 —S;-S;.
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Constraining critical exponents

This result rules out certain claims from Monte Carlo simulation. [Qin, He,
You, Lu, Sen, Sandvik, Xu, Meng '17]

A model of special interest is called model studied is call JQ model

[Sandvik '07]. It describes the quantum phase transition from Neel phase
to VBS pahse, with lattice Hamiltonian:

H=-J> Pj— Q> PiPu

(i) (ijkl)
with Pj = 1 —S;-S;.
Neel phase:
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Constraining critical exponents
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Constraining critical exponents

VBS phase:

- (F—t )2
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Constraining critical exponents

VBS phase:

= (- F—1/2

It is believed that these model would flow to the IR critical point of
scalar-QEDs.

1
L= SFuF"™ + D + m?|®? + A|d,|*
e
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Constraining critical exponents

VBS phase:

= (- F—1/2

It is believed that these model would flow to the IR critical point of
scalar-QEDs3.

1
L= SFuF"™ + D + m?|®? + A|d,|*
e

The theory has SU(N) x U(1) symmetry, where U(1) is the monopole
charge.
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Constraining critical exponents

VBS phase:

= (- F—1/2

It is believed that these model would flow to the IR critical point of
scalar-QEDs3.

1
L= SFuF"™ + D + m?|®? + A|d,|*
e

The theory has SU(N) x U(1) symmetry, where U(1) is the monopole
charge. Large N calculation can be performed. The fate of the small N
fixed points are not clear.

Junchen Rong (FGS,IBS) July 25th, 2018 APCTP 12 / 40



Constraining critical exponents

The SU(2) model is believed to have emergent symmetry. [Nahum, Serna,
Chalker, Ortufi o, Somoza '15]
Where

SU(2) x U(1) — SO(5)
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Constraining critical exponents

The SU(2) model is believed to have emergent symmetry. [Nahum, Serna,
Chalker, Ortufi o, Somoza '15]
Where

SU(2) x U(1) — SO(5)
The Neel order parameter
57 = olo?0
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Constraining critical exponents

The SU(2) model is believed to have emergent symmetry. [Nahum, Serna,
Chalker, Ortufi o, Somoza '15]
Where

SU(2) x U(1) — SO(5)
The Neel order parameter
57 = olo?0

and the VBS order parameter (monopole)

Mq—1

Junchen Rong (FGS,IBS) July 25th, 2018 APCTP 13 / 40



Constraining critical exponents

The SU(2) model is believed to have emergent symmetry. [Nahum, Serna,
Chalker, Ortufi o, Somoza '15]
Where

SU(2) x U(1) — SO(5)

The Neel order parameter
57 = olo?0

and the VBS order parameter (monopole)
Mq—1

combine to form a five dimensional representation of SO(5).
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Constraining critical exponents

The SU(2) model is believed to have emergent symmetry. [Nahum, Serna,
Chalker, Ortufi o, Somoza '15]
Where

SU(2) x U(1) — SO(5)

The Neel order parameter
57 = olo?0

and the VBS order parameter (monopole)
Mq—1
combine to form a five dimensional representation of SO(5).

See Dongmin'’s talk for a similar story in SCFT setup.
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Emergent symmetry

Given a microscopic model (lattice or real material) with explicit symmetry

H, at 2nd order phase transition, the symmetry might enhance to a larger
symmetry G that contain H.
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Emergent symmetry

Given a microscopic model (lattice or real material) with explicit symmetry
H, at 2nd order phase transition, the symmetry might enhance to a larger
symmetry G that contain H.

Suppose the spectrum contains O € 1. If this operator is relevant
(Ao < 3), we need to manually tune the corresponding coupling to zero.
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Emergent symmetry

Given a microscopic model (lattice or real material) with explicit symmetry
H, at 2nd order phase transition, the symmetry might enhance to a larger
symmetry G that contain H.

Suppose the spectrum contains O € 1. If this operator is relevant

(Ao < 3), we need to manually tune the corresponding coupling to zero.
Usually, we allow only one relevant scalar operator that is H-singlet in the
spectrum, otherwise, the fixed point needs fine tunning.
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Emergent symmetry

Given a microscopic model (lattice or real material) with explicit symmetry
H, at 2nd order phase transition, the symmetry might enhance to a larger
symmetry G that contain H.

Suppose the spectrum contains O € 1. If this operator is relevant

(Ao < 3), we need to manually tune the corresponding coupling to zero.
Usually, we allow only one relevant scalar operator that is H-singlet in the
spectrum, otherwise, the fixed point needs fine tunning.

Liquid-gas transition vs Magnetization
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Emergent symmetry

The lattice JQ-model preserves SU(2) x U(1) symmetry. (More precisely,
SU(2) x Zyy3/s.- )
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Emergent symmetry

The lattice JQ-model preserves SU(2) x U(1) symmetry. (More precisely,
SU(2) x Zyy3/s- )

Notice symmetric traceless representation of SO(5), when branching into
irreps of SU(2) x U(1), gives one singlet

0

o O O

O

e elNeoNellS
O O O+~ O
Nlw
o O O O

0
1
0 —
0

o
|
NIw
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Emergent symmetry

The lattice JQ-model preserves SU(2) x U(1) symmetry. (More precisely,
SU(2) x Zyy3/s- )

Notice symmetric traceless representation of SO(5), when branching into
irreps of SU(2) x U(1), gives one singlet

0

o O O

O

e elNeoNellS
O O O+~ O
Nlw
o O O O

0
1
0 —
0

o
|
NIw

Lattice measurement shows that this operator is relevant.
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Emergent symmetry

The lattice JQ-model preserves SU(2) x U(1) symmetry. (More precisely,
SU(2) x Zyy3/s- )

Notice symmetric traceless representation of SO(5), when branching into
irreps of SU(2) x U(1), gives one singlet

0

o O O

O

e elNeoNellS
O O O+~ O
Nlw
o O O O

0
1
0 —
0

o
|
NIw

Lattice measurement shows that this operator is relevant.
The SO(5) singlet operator must be irrelevant!
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Emergent symmetry
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Emergent symmetry

Bootstrap tells that A > 0.775 or n > 0.55. This result was first discussed
in [Nakayama, Ohtsuki '16].
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Emergent symmetry

in [Nakayama, Ohtsuki '16].

Junchen Rong (FGS,IBS)

Bootstrap tells that A > 0.775 or n > 0.55. This result was first discussed

Monte Carlo simulation, however gives 1 ~ 0.25 to 0.3.

[m]
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Emergent symmetry

Bootstrap tells that A > 0.775 or n > 0.55. This result was first discussed
in [Nakayama, Ohtsuki '16].

Monte Carlo simulation, however gives 1 ~ 0.25 to 0.3.

Notice that there is indeed a paper claiming that the phase transition is
1st order [Chen, Huang, Deng, Kuklov, Prokofev, Svistunov_"13]..

Junchen Rong (FGS,IBS)
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Emergent SUSY

The candidate theory is simply

1 - M- A3
L= E(BMU)2 + P + ?lmmb + §204.

Here v is a Majorana spinor.
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Emergent SUSY

The candidate theory is simply

L=

2
;(a,pf + i + %m/?w + %o“-

Here v is a Majorana spinor. The theory preserves time reversal symmetry,
under which 0 — —o.
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Emergent SUSY

The candidate theory is simply

1 - M- A3
L= 5((3“0)2 + P + ?lmmb + §204.

Here v is a Majorana spinor. The theory preserves time reversal symmetry,
under which 0 — —o.

When A1 = Ap, the model could be written as Wess-Zumino model with
superpotential W = ¥3.
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Emergent SUSY

The candidate theory is simply

Lo o mgn A2 A3,
L= 5((3“0) + PP + 70”(/)¢ + 57
Here v is a Majorana spinor. The theory preserves time reversal symmetry,
under which ¢ — —o.

When A1 = Ay, the model could be written as Wess-Zumino model with
superpotential W = ¥3.

For susy enhancement to happen, the CFT spectrum must contain only
one T-even singlet.
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Emergent SUSY

The candidate theory is simply

Lo o =4 A= Ay
L= 5((9“0) + PP + 70”(/)¢ + 57
Here v is a Majorana spinor. The theory preserves time reversal symmetry,
under which ¢ — —0.

When A1 = A, the model could be written as Wess-Zumino model with
superpotential W = ¥3.

For susy enhancement to happen, the CFT spectrum must contain only
one T-even singlet.

It was argued in [Grover, Sheng, Vishwanath '15] that it can be realized at
the boundary of a 3+1D topological superconductor. Emergent SUSY is
critical for experimental realization.
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Emergent SUSY

[Fei, Giombi, Klebanov, Tarnopolsky '16]
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Emergent SUSY

Imposing emergent SUSY in numerical bootstrap, we get [Rong, Su '18]

5_
ol
Sl
<
ol
1r L
0.5 0.6 0.7
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Emergent SUSY

Assuming the spectrum to contain only two T-parity even scalar, we get a
bootstrap island

2.90 T T T T

2.881 1

b
2.881 1
<

2871 1

286 . . . .
0.58440 0.58442 0.58444 0.58446 0.58448 0.58450

Ag
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details of the calculation

Bootstrap equation for Ising model

- Aoo ¥
2 :(AG'O'O )\eeO) V—hA,f < O) + E )\3'60 V—7A7Z = 0’
o-

o+ AecO
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details of the calculation

Bootstrap equation for Ising model

- Aoo ¥
2 :(AG'O'O )\eeO) V—hA,f < O) + E )\(27'60 V—7A7Z = 0’
o-

o+ AecO

(Ffjfgg(u, v) o)

0 0
0 0
(0 Fie,f,e(uv V)) 0
. (0 0) . el
where Via,= 00 , Vonae= FZ* X5 (u,v) ,
0 I wy) U )
LR (u,v) 0 —(=1) A, v)
o )
§F+,A,e(”7 v) 0
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details of the calculation

Assuming the spectrum to contain one Z, even and one Z, odd relevant
operators, we get [Kos, Poland, Simmons-Duffin, Vichi '16]

Ising: Scaling Dimensions

A
Monte Carlo
: 1.412¢ i
1.41264
1.4129 s
! 1.41262]
14128 PoLnze
: 1.41260— e T T
0.518146 0.518148 0.518150 0.518152 ‘
1.4127
1.4126 Bootstrap

Ay

0.51808 0.51810 0.51812 0.51814 0.51816 0.51818
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details of the calculation

Constrains from SUSY
o Ac =N, +1, since X =0+ 0+ 06,
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details of the calculation

Constrains from SUSY
o Ac =N, +1, since X =0+ 0+ 06,

@ A\;50: Ageo’ and Ao are proportional to each other, with ratios fixed
by SUSY.
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details of the calculation

Constrains from SUSY
o Ac =N, +1, since X =0+ 0+ 06,

@ A\;50: Ageo’ and Ao are proportional to each other, with ratios fixed
by SUSY.

The line A = A, + 1 intersect with single correlator bound at
A, = 0.565, which is a lower bound for A,.
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details of the calculation

To get the OPE relation, we use the result of [Park '99].

t(X1,01,m)
<O(I)(X1)917771)Z(X2702)Z(X3503)> = 20o—Do—1 20o—Do—1 Do+’
X12 X13 x23

. 1o
X{E = X{t + Xét + 1(91’)%(92, X124+ = X{E’yu + 15912912, 0912 = 91 — (92,

1
-1 -1 -1 -1 — -1
X1 = §(X31+X23—X21+ + X514 X234+ X531 ),  ©O1 = i(xp, 021 — X317, 631).
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details of the calculation

To get the OPE relation, we use the result of [Park '99].

t(X1,01,m)
<O(I)(X1)917771)Z(X2702)Z(X3503)> = 20o—Do—1 20o—Do—1 Do+’
X12 X13 x23

. 1o
X{E = X{t + Xét + 1(91’)/}”92, X124+ = X{E’yu + 15912912, (912 = 91 — (92,

1
-1 -1 -1 -1 -1 -1
X1 = §(X31+X23—X21+ + X21+X23+X31—)7 O = 1(X21+921 - X31+931)-

X1 and ©; are in tangent space of point 1. Under superconformal
transformation, they transform as (x1,61) £ (x{,6})

0 = Q Y2(xq, 601 g)L 7 (x1,01: 8)O1
X' = Q_l(xl,91;g)R“y_1(X1,91;g)X,:f
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details of the calculation

There are four tensor structures
BSFI) L (X)),
BY : 8101 (7 Xam)' (tr[X3)) 12,
J—"J(;j) L X1 O (M Xam Y 2 (wr[X3]) 734,
FU - mon(mXam YA (e[ X3) V4,
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details of the calculation

There are four tensor structures

BSFI) L (X)),

BY 101 (i Xam) (r[X3]) 12,

J:g) L X1 (M Xam Y 2 (1 [X3]) 74,
FY . M O1 (X Y Y2 (tr[X3]) "4,

The super multiplets contains
/ +/- Q Q rn—/+ . .
BEF)F ; [/]A/ = [+ 1/2]a412 — [/]A{i-l’ with | = integer,

o Ui-1/2 ]A+1/2 Q

= [ +1]at1. with j = half integer.
i+1/21,),

79l
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details of the calculation

For example, since O = O, + ...+ 000_, we have

(O(x1,01)P(x2, 02)P(x3,0)) = (O100)
+(§292§393<O+66>
+601010202(0_c0)
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details of the calculation

In summary, the OPE rations are

\ Even channel Odd channel
B Ager _ ((11-DO+2A¢) -AO+2 Ag) Ao \2 _ (1+A0) (-1-/+AD) (/+AQ)
+ Aoss 2A¢ (-1+2Ag) (Aom) T 4(-1+2 A0) A (-1+2 Agh)
B | e (3/+A0+2 Ag) (2+/+A0+2Ad) | [Aorg |2 _ (1-/+A0) ((+AO) (-1+2A0)
T Asge 2 A (-1+2 A¢) (,\PW ) (-1+AQ) Ag (—1+2 Ad)
¥ Aguirr  (1+j-Ai+2 Ad) (=2+i+Aj+2 Ad) Aora \2 __(1+) (Ai=2-)) (j+A))
| Aouiee 2 A (-1+2 Ad) Aoee] — 2(142))Ad (-1+2Ad)
F Agire  (-1-j-A0+2A¢) (-4-j+A0+2A¢) | [AopiFe 2 _ _ (142 )} 2+j-A) (j+A)
“ | Aojee 2Ap (—1+2 Ag) Ao, a0 T 2(14)) Ad (142 Ag)

¢=0 and F=¢ for super Ising model|
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details of the calculation

In summary, the OPE rations are

\ Even channel Odd channel
B Ager _ ((11-DO+2A¢) -AO+2 Ag) Ao \2 _ (1+A0) (-1-/+AD) (/+AQ)
+ Aoss 2A¢ (-1+2Ag) (Aom) T 4(-1+2 A0) A (-1+2 Agh)
B | e (3/+A0+2 Ag) (2+/+A0+2Ad) | [Aorg |2 _ (1-/+A0) ((+AO) (-1+2A0)
T Asge 2 A (-1+2 A¢) (,\PW ) (-1+AQ) Ag (—1+2 Ad)
¥ Aguirr  (1+j-Ai+2 Ad) (=2+i+Aj+2 Ad) Aora \2 __(1+) (Ai=2-)) (j+A))
| Aouiee 2 A (-1+2 Ad) Aoee] — 2(142))Ad (-1+2Ad)
F Agire  (-1-j-A0+2A¢) (-4-j+A0+2A¢) | [AopiFe 2 _ _ (142 )} 2+j-A) (j+A)
“ | Aojee 2Ap (—1+2 Ag) Ao, a0 T 2(14)) Ad (142 Ag)

¢=0 and F=¢ for super Ising model|

Notice in each multiplet, only one operator appears in ¢ x ¢ OPE, and
only one operator appears in o x ¢ OPE.
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details of the calculation

Plug the OPE ratios to the Ising bootstrap equation, we get

2 B4 2 \/B- 2 \F+ 2 \gF- _
E A, VAt E Y Vas+ E : AF Vajt E . AR Va; =0,
| € even | € even j—1/2 € even Jj—1/2 € odd
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details of the calculation

Plug the OPE ratios to the Ising bootstrap equation, we get

DB VAH 2 X VAt X RVEGE X ARV =0

| € even | € even j—1/2 € even Jj—1/2 € odd
with
| v oo,
F_ 717777 Foatna
2 “ELEE 2 EEEE
. LIF_IAJ“ L 5 {IIF_:‘,_\_'_“
FBL TETE B TETE
Vai = 273 A+LL ) Var = A2
. [ege . €T, T 3 B
el PO+ e 1) F°UTY, dy T,“” + dg(—l}fF Eg(,"
o TTEE 3l g €0,0¢€ o OEE | o ed,o¢
af Ny — a1 R LT Ay P — da( =) FRY
oo aaod
F Al F Al
2 o EE,EE 2 g €6
- FiF- A - el A
e o oeoe — B - aae
Vaj = e DNIE o Vas = el A7)
Ve 1yl o \ g6 oyl emoe
NS S T E 16t D R erFly i e =) F
T EE I+1 T TE , T EE I ETTE
le+|3r_; — fa(-1) F+A1,(_1 ﬁ1F+!,.31_g+1 —ea(-1) F+_,_\I,f
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details of the calculation

How to impose emergent SUSY?
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How to impose emergent SUSY?

e all Bgrl) multiplets with / = 0 have scaling dimension bigger than 3,
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details of the calculation

How to impose emergent SUSY?

e all Bgrl) multiplets with / = 0 have scaling dimension bigger than 3,

e all B(_I) multiplets with / = 0 (except for X) have scaling dimension
bigger than 2,
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details of the calculation

How to impose emergent SUSY?

e all Bgrl) multiplets with / = 0 have scaling dimension bigger than 3,

e all B(_I) multiplets with / = 0 (except for X) have scaling dimension
bigger than 2,

o all ]-](g) multiplets with j = 1/2 have scaling dimension bigger than
5/2.
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Emergent SUSY

Imposing emergent SUSY in numerical bootstrap, we get [Rong, Su '18]

5_
ol
Sl
<
ol
1r L
0.5 0.6 0.7
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Emergent SUSY

2.90 T T T T

2.891 1

2.881 1
<

2.87r 1

286 . . . .
0.58440 0.58442 0.58444 0.58446 0.58448 0.58450

A,

See also [Atanasov, Hillman Poland '18], where OPE constrains from
(XXX) were considered.
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Descendants are important!
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Critical exponents

From the island we get A, = 0.584444(30),
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Critical exponents

From the island we get A, = 0.584444(30), corresponding to the critical
exponents

ne = 1y = 0.168888(60), 1/v = 1.415556(30).

Y’ contains a super-primary with A, = 2.882(9)
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Critical exponents

From the island we get A, = 0.584444(30), corresponding to the critical
exponents

ne = 1y = 0.168888(60), 1/v = 1.415556(30).

Y’/ contains a super-primary with A, = 2.882(9) and also a
super-descendant which is the lowest dimensional irrelevant T-parity even
scalar operator. This helps us determine the critical exponent

w = 0.882(9).
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Critical exponents

From the island we get A, = 0.584444(30), corresponding to the critical
exponents

ne = 1y = 0.168888(60), 1/v = 1.415556(30).

Y’/ contains a super-primary with A, = 2.882(9) and also a
super-descendant which is the lowest dimensional irrelevant T-parity even
scalar operator. This helps us determine the critical exponent

w = 0.882(9).

By bootstrapping the OPE coefficient A2 , with F2~>/24=3/2

_ being the
SUSY current multiplet, we get

Y=t/ Chs ~ 1.684
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Resumming large N series

Large N perturbation theory gives us [Gracey '93]

1792 64(—3402¢(3)+14172—668+32472 log(2)) 1
Ty = 37r2N + e 243763 +O(5)-

We could use the N = 1 result to perform “two-sided” Padé approximation

N 4 8

large-N, Padép, o 0.0942 | 0.0430
Iarge—N Padé[3 1) 0.1043 | 0.0437
4—e, €', Padép o) [Zerf, et al '17] | 0.0976 | 0.0539
2+, 64 Padé [Gracey, et al '16] - 0.082

Junchen Rong (FGS,IBS) July 25th, 2018 APCTP 34 / 40



Resumming large N series

Large N perturbation theory gives us [Gracey '93]

1792 64(—3402¢(3)+14172—668+32472 log(2)) 1
Ty = 37r2N + e 243763 +O(5)-

We could use the N = 1 result to perform “two-sided” Padé approximation

N 4 8

large-N, Padép o 0.0942 | 0.0430
Iarge—N Padé[3 1) 0.1043 | 0.0437
4—e, €', Padép o) [Zerf, et al '17] | 0.0976 | 0.0539
2+e, 64 Padé [Gracey, et al '16] - 0.082

The N = 8 model describes the quantum critical point of the semimetal to
charge density wave order transition in graphene [Herbut '06].
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What else can we do?

Recently, there has been some work on duality between N' =1
superconformal field theories [Benini, Benvenuti '18], [Gaiotto,

Komargodski, Wu 18], ...

U(A:)N+% SU{N)_,‘_%_% with 1 flavor P
with 1 flavor @

w=-1(2L, QQ)’

11
5. N—3

— and a gauge-singlet H
N t :
W=H Y, PP -0
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What else can we do?

Recently, there has been some work on duality between N' =1
superconformal field theories [Benini, Benvenuti '18], [Gaiotto,

Komargodski, Wu 18], ...

U(A:)N+% SU{N)_,‘_%_% with 1 flavor P
with 1 flavor @

w=-1(2L, QQ)’

11
5. N—3

— and a gauge-singlet H
N t :
W=H Y, PP -0

Set N =k =1, we get
WZ model with P,

U(1)y with 1 flavor @
W =HPP' — 1H* .

W= —1QQ'QQ"
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What else can we do?

RHS is time-reversal invariant, while the LHS is not. For the duality to
work, it is essential that there is no relevant deformation made of

Os = PPT + 4 H?. Such a term breaks time-reversal symmetry, which
would be automatically generated on the LHS and drives the RG flow away

from the fixed point.
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What else can we do?

RHS is time-reversal invariant, while the LHS is not. For the duality to
work, it is essential that there is no relevant deformation made of

Os = PPT + 4 H?. Such a term breaks time-reversal symmetry, which
would be automatically generated on the LHS and drives the RG flow away

from the fixed point.
A two loop calculation, after Padé re-summation, gives

Ao, ~ 2 +0.12448¢ — 0.12448¢> + O(€3) ~ 2.058.

This needs to be confirmed by numerical bootstrap.
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What else can we do?

Can we test AdS/CFT correspondence?
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What else can we do?

Can we test AdS/CFT correspondence?

When the AdS solution is maximally supersymmetric, the Kaluza-Klein
modes are BPS multiplets, which are protected by supersymmetry, their
scaling dimension is fixed to be some finite value.
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What else can we do?

Can we test AdS/CFT correspondence?

When the AdS solution is maximally supersymmetric, the Kaluza-Klein
modes are BPS multiplets, which are protected by supersymmetry, their
scaling dimension is fixed to be some finite value.

When the AdS solution is not maximally supersymmetric, the Kaluza-Klein
spectrum contain certain long multiplets, though not protected by SUSY,
their scaling dimensions are finite. For ' = 1 solutions, non of the
multiplets are protected (except for conserved currents)!
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What else can we do?

N =8 SO(8) gauged supergravity has 70 scalar, they form a complicated
potential.

Junchen Rong (FGS,IBS) July 25th, 2018 APCTP 38 / 40



What else can we do?

N =8 SO(8) gauged supergravity has 70 scalar, they form a complicated
potential.
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What else can we do?

N =8 SO(8) gauged supergravity has 70 scalar, they form a complicated
potential.

There exist a A = 1 critical points which preserves Gy C SO(8). There

exist a holographic RG from connecting the N/ = 8 vacuum and the
N =1 vacuum.
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What else can we do?

N =8 SO(8) gauged supergravity has 70 scalar, they form a complicated
potential.

There exist a A = 1 critical points which preserves Gy C SO(8). There

exist a holographic RG from connecting the N/ = 8 vacuum and the
N =1 vacuum.

On the field theory sides, this corresponds to turning on boson and
fermion bilinear term in ABJM theory

O = tr(gsps + 20

The theory flow to a IR fixed point.
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What else can we do?

N =8 SO(8) gauged supergravity has 70 scalar, they form a complicated
potential.

There exist a A = 1 critical points which preserves Gy C SO(8). There
exist a holographic RG from connecting the N/ = 8 vacuum and the
N =1 vacuum.

On the field theory sides, this corresponds to turning on boson and
fermion bilinear term in ABJM theory

O = tr(gsps + 20

The theory flow to a IR fixed point.
Linearized perturbation around the AdS solution tells us that

Ojj = tr[$igj]
has scaling dimension
1

A=2(6- V6) ~ 0.591752
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What else can we do?

N =8 SO(8) gauged supergravity has 70 scalar, they form a complicated
potential.

There exist a A = 1 critical points which preserves Gy C SO(8). There
exist a holographic RG from connecting the N/ = 8 vacuum and the
N =1 vacuum.

On the field theory sides, this corresponds to turning on boson and
fermion bilinear term in ABJM theory

O = tr[gggs + ¥*7).
The theory flow to a IR fixed point.
Linearized perturbation around the AdS solution tells us that

0y = tr[¢i¢;]

has scaling dimension

1
A=2(6- V6) ~ 0.591752
Non-perturbative test of AdS/CFT?!
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What else can we do?
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What else can we do?

@ Can we add fermions?
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What else can we do?

@ Can we add fermions?
By counting superconformal invariants, we know that there are in
total seven equations. Here we considered only four of them, which
involve only bosonic external operators.
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By counting superconformal invariants, we know that there are in
total seven equations. Here we considered only four of them, which
involve only bosonic external operators.

@ What about N'=2,3,4,5,6,7,87
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What else can we do?

@ Can we add fermions?
By counting superconformal invariants, we know that there are in
total seven equations. Here we considered only four of them, which
involve only bosonic external operators.

@ What about N =2,3,4,5,6,7,8? Descendants are important!
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What else can we do?

@ Can we add fermions?
By counting superconformal invariants, we know that there are in
total seven equations. Here we considered only four of them, which
involve only bosonic external operators.

@ What about N =2,3,4,5,6,7,8?7 Descendants are important! This
is just the beginning!
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Thank you!
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