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Outline
• Introduction to kinetic plasma model

– Very brief on essential things to understand kinetic simulation

• Reduced kinetic models for magnetized plasma

– 5D gyrokinetic, 4D bounce-averaged kinetic, 3D fluid with kinetic closure

• Numerical methods for kinetic simulation of magnetized plasma

– Particle-in-Cell methods, and related numerical issues

• Help students understand the basic idea behind the models and read related 

literatures for further studies
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Introduction to 

Kinetic Plasma Model
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Kinetic Plasma Model

• The most general description of physical system 

with many particles

• Each particle satisfies the following equations of 

motion

𝑑𝑑𝑥⃗𝑥
𝑑𝑑𝑑𝑑

= 𝑣⃗𝑣, 𝑚𝑚
𝑑𝑑𝑣⃗𝑣
𝑑𝑑𝑑𝑑

= 𝐹⃗𝐹 𝑥𝑥, 𝑡𝑡 = 𝑞𝑞𝐸𝐸 +
𝑣⃗𝑣
𝑐𝑐

× 𝐵𝐵

• Number of particles in 𝑑𝑑3𝑥𝑥𝑑𝑑3𝑣𝑣

𝑓𝑓 𝑥⃗𝑥, 𝑣⃗𝑣, 𝑡𝑡 𝑑𝑑3𝑥𝑥𝑥𝑥3𝑣𝑣
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Klimontovich Equation
• Exact description of classical particles interacting with self-consistent electromagnetic forces

𝐹𝐹 𝑥𝑥,𝑣𝑣, 𝑡𝑡 = �
𝑝𝑝=1

𝑁𝑁

𝛿𝛿 𝑥𝑥 − 𝑋𝑋𝑝𝑝 𝑡𝑡 𝛿𝛿 𝑣𝑣 − 𝑉𝑉𝑝𝑝 𝑡𝑡

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑋𝑋𝑝𝑝 𝑡𝑡 = 𝑉𝑉𝑝𝑝 𝑡𝑡 , 𝑚𝑚𝑠𝑠

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑉𝑉𝑝𝑝 𝑡𝑡 = 𝑞𝑞𝐸𝐸𝑚𝑚 𝑋𝑋𝑝𝑝 𝑡𝑡 , 𝑡𝑡 +

𝑞𝑞
𝑐𝑐
𝑉𝑉𝑝𝑝 𝑡𝑡 × 𝐵𝐵𝑚𝑚 𝑋𝑋𝑝𝑝 𝑡𝑡 , 𝑡𝑡

• Then, 𝐹𝐹 satisfies

𝜕𝜕
𝜕𝜕𝜕𝜕 𝐹𝐹 + 𝑣𝑣 ⋅ 𝛻𝛻𝐹𝐹 +

𝑞𝑞
𝑚𝑚 𝐸𝐸𝑚𝑚 +

𝑣𝑣
𝑐𝑐 × 𝐵𝐵𝑚𝑚 ⋅ 𝛻𝛻𝑣𝑣𝐹𝐹 = 0

• Note that this equation contains whole spatio-temporal scales all the way down to particle 

distances.
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Klimontovich Equation
• Since we are not interested in physical phenomena occurring in super micro-scales (actually, the equation 

itself is not valid in such scales),

• We separate quantities into two scales i.e. smooth part in large scale and non-smooth part in small scale, 
and 

• We keep only the smooth part in left hand side and through out all the remaining into the right hand side 
and call them “collision”

𝐹𝐹 = 𝑓𝑓 + 𝛿𝛿𝛿𝛿, 𝐸𝐸𝑚𝑚 = 𝐸𝐸 + 𝛿𝛿𝛿𝛿, 𝐵𝐵𝑚𝑚 = 𝐵𝐵 + 𝛿𝛿𝛿𝛿

𝜕𝜕
𝜕𝜕𝜕𝜕
𝑓𝑓 + 𝑣𝑣 ⋅ 𝛻𝛻𝑓𝑓 +

𝑞𝑞
𝑚𝑚

𝐸𝐸 +
𝑣𝑣
𝑐𝑐

× 𝐵𝐵 ⋅ 𝛻𝛻𝑣𝑣𝑓𝑓 = −
𝑞𝑞
𝑚𝑚

𝛿𝛿𝛿𝛿 +
𝑣𝑣
𝑐𝑐

× 𝛿𝛿𝛿𝛿 ⋅ 𝛻𝛻𝑣𝑣𝛿𝛿𝛿𝛿 ≡ 𝐶𝐶

𝜌𝜌 = �
𝑠𝑠

𝑞𝑞𝑠𝑠∫ 𝑓𝑓𝑠𝑠𝑑𝑑𝑣⃗𝑣 𝚥𝚥 = �
𝑠𝑠

𝑞𝑞𝑠𝑠∫ 𝑓𝑓𝑠𝑠𝑣⃗𝑣𝑑𝑑𝑣⃗𝑣

𝛻𝛻 ⋅ 𝐵𝐵 = 0
𝜕𝜕𝐵𝐵
𝜕𝜕𝜕𝜕

= −𝛻𝛻 × 𝐸𝐸 𝛻𝛻 ⋅ 𝐸𝐸 =
𝜌𝜌
𝜖𝜖0

𝜕𝜕𝐸𝐸
𝜕𝜕𝜕𝜕

= 𝛻𝛻 × 𝐵𝐵 − 𝜇𝜇0𝚥𝚥
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Collision Operator

• Collision term can be derived by following BBGKY hierarchy and truncating higher order 

interaction terms (Introduction to Plasma Theory, Nicholson)

𝐶𝐶 𝑓𝑓 = −𝛻𝛻𝑣𝑣 ⋅ 𝐴𝐴𝑓𝑓 𝑣⃗𝑣 +
1
2
𝛻𝛻𝑣𝑣𝛻𝛻𝑣𝑣: 𝐵𝐵𝑓𝑓 𝑣⃗𝑣

𝐴𝐴 𝑣⃗𝑣, 𝑡𝑡 ≡
8𝜋𝜋𝑛𝑛0𝑒𝑒4𝑙𝑙𝑙𝑙Λ

𝑚𝑚𝑒𝑒
2 𝛻𝛻𝑣𝑣∫ 𝑑𝑑𝑣⃗𝑣′

𝑓𝑓 𝑣⃗𝑣′, 𝑡𝑡
𝑣⃗𝑣 − 𝑣⃗𝑣′

𝐵𝐵 𝑣⃗𝑣, 𝑡𝑡 ≡
4𝜋𝜋𝑛𝑛0𝑒𝑒4𝑙𝑙𝑙𝑙Λ

𝑚𝑚𝑒𝑒
2 𝛻𝛻𝑣𝑣𝛻𝛻𝑣𝑣∫ 𝑑𝑑𝑣⃗𝑣′ 𝑣⃗𝑣 − 𝑣⃗𝑣′ 𝑓𝑓 𝑣⃗𝑣′, 𝑡𝑡

• For high temperature plasmas, the collision frequency becomes very small

𝜈𝜈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∝ 𝑛𝑛/𝑇𝑇3/2

In tokamak plasma   𝜈𝜈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−1 = 10 ~ 100 𝑚𝑚𝑚𝑚  collisionless
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Kinetic Phase Mixing

𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

+ 𝒗𝒗
𝝏𝝏𝒇𝒇
𝝏𝝏𝝏𝝏

= 𝟎𝟎

𝑣𝑣

𝑥𝑥

𝑣𝑣

𝑥𝑥

𝑣𝑣

𝑓𝑓

𝑣𝑣

𝑓𝑓
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Collisionless ≠ No Collision

• As Δ𝑣𝑣 → 0, 𝐶𝐶 𝑓𝑓, 𝑓𝑓 ~ 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑣𝑣2

increases faster than streaming term ∼ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

• Collision becomes important as fine scale structures are developed in 

velocity space

𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

= 𝑪𝑪(𝒇𝒇,𝒇𝒇)

𝑣𝑣

𝑓𝑓

𝑣𝑣

𝑓𝑓

𝑓𝑓 ∼ 𝑒𝑒−𝑣𝑣2
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Kinetic Phase Mixing

𝑣𝑣

𝑥𝑥
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Kinetic Plasma Model
𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

+ 𝒗𝒗 ⋅ 𝜵𝜵𝜵𝜵 +
𝑭𝑭
𝒎𝒎
⋅ 𝜵𝜵𝒗𝒗𝒇𝒇 = 𝑪𝑪 𝒇𝒇,𝒇𝒇

Streaming motions of particles +
Mutual interactions in large scales

Tend to drive complicated 
phase space structures

Mutual interactions in very short 
scales ~ Random collision

Tend to erase fine scale phase space 
structures

Weaker for small density and high 
temperature system. Stronger for 
smaller velocity space scales

𝑣𝑣𝑣𝑣

𝑓𝑓 ∼ 𝑒𝑒−𝑣𝑣2
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Kinetic vs Fluid

Navier-Stokes (Fluid) Equation

𝑛𝑛
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

+ 𝑢𝑢 ⋅ 𝛻𝛻𝑢𝑢 = −𝛻𝛻𝑝𝑝 + 𝜇𝜇𝛻𝛻2𝑢𝑢

𝑝𝑝 = 𝑛𝑛𝑛𝑛

𝑣𝑣

Shifted Gaussian distribution function 

𝑓𝑓 𝑥𝑥,𝑣𝑣, 𝑡𝑡 =
𝒏𝒏(𝑥⃗𝑥)

2𝜋𝜋 3/2 𝑻𝑻 𝑥⃗𝑥
𝑚𝑚

3/2 exp[−
𝑚𝑚 𝑣⃗𝑣 − 𝒖𝒖(𝒙𝒙) 2

2𝑻𝑻(𝒙𝒙)
]

�
−∞

∞
�
−∞

∞
�
−∞

∞
𝑑𝑑𝑣⃗𝑣𝑓𝑓 = 𝒏𝒏

𝑢𝑢
𝑣𝑣𝑡𝑡 =

𝑇𝑇
𝑚𝑚
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Spatio-Temporal Scales of Fusion Plasma

S.Either et al, IBM J. RES. & DEV. Vol. 52 2008
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Turbulence in Fusion Device

• Fusion plasma confined by external magnetic field 

 strongly magnetized plasma 𝜌𝜌 ≪ 𝑅𝑅
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Turbulence in Fusion Device

ECEI measured 𝑇𝑇𝑒𝑒 fluctuation with 𝑓𝑓 ≤ 100 𝑘𝑘𝑘𝑘𝑘𝑘 (M.J. Choi, 2018)MIR measured 𝑛𝑛𝑒𝑒 fluctuation on KSTAR L-mode 
(J.A. Lee et al, PoP 25, 022513(2018))

• In Tokamak, anomalous heat and particle transport driven by micro-scale fluctuations with 

relatively low frequency 𝑓𝑓 ≤ 300 𝑘𝑘𝑘𝑘𝑘𝑘 and 𝑘𝑘⊥𝜌𝜌𝑖𝑖 ≤ 1

• Collisionless plasma  𝜈𝜈𝑐𝑐/𝑓𝑓 ≪ 1
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Kinetic Plasma Model: Problem Size

• Problem size for KSTAR plasma

• Even for limited spatio-temporal scales, simulations based 

on brute-force approaches are practically impossible

• Reduced models are essential

Number of grids: 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑧𝑧 × 𝑁𝑁𝑣𝑣𝑥𝑥 × 𝑁𝑁𝑣𝑣𝑦𝑦 × 𝑁𝑁𝑣𝑣𝑧𝑧
≥ 256 × 256 × 256 × 128 × 128 × 128 ~ 1013

Electron-Ion mass ratio ~ 1:3600  
 time scale disparity ~ 100
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Model Hierarchy for Magnetized Plasma

𝝏𝝏𝒇𝒇𝒔𝒔
𝝏𝝏𝝏𝝏

+ 𝒗𝒗 ⋅ 𝛁𝛁𝒇𝒇𝒔𝒔 +
𝒒𝒒𝒔𝒔
𝒎𝒎𝒔𝒔

𝑬𝑬 + 𝒗𝒗 × 𝑩𝑩 ⋅ 𝛁𝛁𝒗𝒗𝒇𝒇𝒔𝒔 = 𝑪𝑪 𝒇𝒇𝒔𝒔

𝝆𝝆 = �
𝒔𝒔

𝒒𝒒𝒔𝒔∫ 𝒇𝒇𝒔𝒔𝒅𝒅𝒗𝒗 𝒋𝒋 = �
𝒔𝒔

𝒒𝒒𝒔𝒔∫ 𝒇𝒇𝒔𝒔𝒗𝒗𝒅𝒅𝒗𝒗

𝛁𝛁 ⋅ 𝑩𝑩 = 𝟎𝟎
𝝏𝝏𝑩𝑩
𝝏𝝏𝝏𝝏

= −𝛁𝛁 × 𝑬𝑬

𝛁𝛁 ⋅ 𝑬𝑬 =
𝝆𝝆
𝝐𝝐𝟎𝟎

𝝏𝝏𝑬𝑬
𝝏𝝏𝝏𝝏

= 𝛁𝛁 × 𝑩𝑩 − 𝝁𝝁𝟎𝟎𝒋𝒋

5D Gyrokinetic
(4D Kinetic)

3D Fluid 
(Gyro-Landau-Fluid, 

MHD)

1D Diffusion

6D Boltzmann
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5D Gyrokinetic Model
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Gyro Motion in Magnetized Plasma

𝝁𝝁 ∝ 𝒗𝒗⊥𝟐𝟐

𝛀𝛀𝐢𝐢
 Adiabatic invariant of motion for time scales slower than 𝛀𝛀𝒊𝒊

−𝟏𝟏

Electron

Magnetic field
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Basic Idea of Gyrokinetic Model
• Gyrokinetic orderings

– Small fluctuation: 𝛿𝛿𝛿𝛿
𝑓𝑓0

~ 𝑒𝑒𝑒𝑒𝑒𝑒
𝑇𝑇

~ 𝛿𝛿𝛿𝛿
𝐵𝐵0
≪ 1

– Low frequency: 𝜔𝜔
Ω𝑖𝑖
≪ 1

– Anisotropic fluctuation:  𝑘𝑘∥
𝑘𝑘⊥
≪ 1, 𝑘𝑘⊥𝜌𝜌𝑖𝑖 ~ 1

– Mild non-uniformity in plasma profiles, background magnetic field: 𝜌𝜌𝑖𝑖
𝐿𝐿𝑇𝑇,𝑛𝑛

≪ 1

– Low beta: 𝛽𝛽 ≪ 1 Free energy to drive turbulence
(GK with strong gradient; 
Hahm et al, Phys. Plasmas 16, 022305(2009))

Fast MHD waves and cyclotron waves are ruled out 
(high freq. GK; Kolesnikov et al, Phys. Plasmas 14, 072506(2007))

Frieman, Chen, Phys. Fluids 25, 502(1982)

Hahm, Lee et al, Phys. Fluids 31, 1940(1988)

Hahm, Phys. Fluids 31, 2670(1988)

Brizard, Hahm, Rev. Mod. Phys. 79, 421(2007)

Shear Alfven wave only
(GK with Compressional Alfven; 
Brizard, Hahm ‘07 )
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Basic Idea of Gyrokinetic Model

• Guiding center transformation
particle space 𝑥⃗𝑥, 𝑣⃗𝑣 ↔  guiding center space 𝑋⃗𝑋, 𝑣𝑣∥, 𝜇𝜇,𝜃𝜃

+

𝑋⃗𝑋
𝑥⃗𝑥

𝜌⃗𝜌
𝜃𝜃

𝜃𝜃: gyro-angle → average out

𝑋⃗𝑋 = 𝑥⃗𝑥 − 𝜌⃗𝜌 𝜌⃗𝜌 = �𝑏𝑏 × 𝑣𝑣
Ω

Ω = 𝑒𝑒𝐵𝐵0
𝑚𝑚𝑚𝑚

𝑣𝑣∥ = �𝑏𝑏 ⋅ 𝑣⃗𝑣 𝜇𝜇 = 𝑣𝑣⊥
2

2𝐵𝐵

𝑣⃗𝑣 = 𝑣𝑣∥ �𝑏𝑏 + 𝑣𝑣⊥𝑒̂𝑒⊥
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Basic Idea of Gyrokinetic Model
• Schematics of guiding center transformation in Gyrokinetic model

 Solve Vlasov equation in guiding center space and evaluate sources (𝑛𝑛𝑠𝑠, 𝑗𝑗𝑠𝑠)

 Transform sources (𝑛𝑛𝑠𝑠, 𝑗𝑗𝑠𝑠) to particle space

 Solve recued Maxwell equations to obtain EM fields

 Transform EM fields to guiding center space

Particle Space (𝑥⃗𝑥, 𝑣⃗𝑣) Guiding Center Space (𝑋⃗𝑋,𝑣𝑣∥, 𝜇𝜇)

Vlasov Equation (6D)

Reduced Maxwell 
Equation (3D)

GK Equation (5D)

Recued Maxwell 
Equation (3D)
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Gyrokinetic Vlasov Equation for Low-𝜷𝜷 Plasma

• Transform original 6D Vlasov equation in particle space into guiding 

center space

• Take gyro-angle average to remove 𝜃𝜃

→ reduction to 5D  ̅𝑓𝑓(𝑋𝑋, 𝑣𝑣∥, 𝜇𝜇, 𝑡𝑡), retaining only slow time scales Δ𝑡𝑡 ≪ 1/Ω𝑖𝑖

𝜕𝜕 ̅𝑓𝑓
𝜕𝜕𝜕𝜕

+ 𝑣𝑣∥ �𝑏𝑏∗ +
𝜇𝜇
𝐵𝐵
�𝑏𝑏 × 𝛻𝛻𝐵𝐵 +

𝑐𝑐
𝐵𝐵0

�𝑏𝑏 × 𝛻𝛻〈𝛿𝛿𝛿𝛿〉 ⋅
𝜕𝜕 ̅𝑓𝑓
𝜕𝜕𝑋⃗𝑋

+
𝑞𝑞
𝑚𝑚

−�𝑏𝑏∗ ⋅ 𝜇𝜇𝛻𝛻𝐵𝐵 − �𝑏𝑏∗ ⋅ 𝛻𝛻 𝛿𝛿𝛿𝛿 −
1
𝑐𝑐
𝜕𝜕
𝜕𝜕𝜕𝜕

𝛿𝛿𝐴𝐴∥
𝜕𝜕 ̅𝑓𝑓
𝜕𝜕𝑣𝑣∥

= 0

𝛿𝛿𝛿𝛿 = 𝛿𝛿𝛿𝛿 −
𝑣𝑣∥
𝑐𝑐 𝛿𝛿𝐴𝐴∥

�𝑏𝑏∗ = �𝑏𝑏 +
𝑣𝑣∥
𝐵𝐵
�𝑏𝑏 × �𝑏𝑏 ⋅ 𝛻𝛻�𝑏𝑏

〈 ⋅ 〉 = gyro-phase 
averaged fluctuations
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Gyrokinetic Model – Simple View
• Gyrokinetic description of magnetized plasmas

( )BBv
mc
q

m
qv

dt
d

vx
dt
d





δδφ +×+∇−=

=

0

Motion of charged particle

Motion of charged ring 
centered at 𝑋𝑋

𝑑𝑑𝑋𝑋
𝑑𝑑𝑑𝑑 = 𝑣𝑣∥ �𝑏𝑏∗ +

𝜇𝜇
𝐵𝐵
�𝑏𝑏 × 𝛻𝛻𝐵𝐵 +

𝑐𝑐
𝐵𝐵0

�𝑏𝑏 × 𝛻𝛻〈𝛿𝛿𝛿𝛿〉

𝑑𝑑𝑣𝑣∥
𝑑𝑑𝑑𝑑 = −

𝑞𝑞
𝑚𝑚

�𝑏𝑏∗ ⋅ 𝜇𝜇𝛻𝛻𝐵𝐵 + �𝑏𝑏∗ ⋅ 𝛻𝛻 𝛿𝛿𝛿𝛿 +
1
𝑐𝑐
𝜕𝜕
𝜕𝜕𝜕𝜕 𝛿𝛿𝐴𝐴∥
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Gyrokinetic Model – Simple View

• 𝐹⃗𝐹 × 𝐵𝐵 drift motion of charged particle 

 drift motion of gyro-center in 𝐹⃗𝐹 × 𝐵𝐵 direction

𝐹⃗𝐹

𝐵𝐵
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𝑑𝑑𝑣𝑣∥
𝑑𝑑𝑑𝑑

≈ −
𝑞𝑞
𝑚𝑚

𝜇𝜇�𝑏𝑏 ⋅ 𝛻𝛻𝐵𝐵 + �𝑏𝑏 ⋅ 𝛻𝛻 𝛿𝛿𝛿𝛿 +
1
𝑐𝑐
𝜕𝜕
𝜕𝜕𝜕𝜕
𝛿𝛿𝐴𝐴∥

Gyrokinetic Model – Simple View

 GK equations of motion are nothing but a combination of familiar drift 

motions ensuring phase space volume conservation and making them 

Hamiltonian flows

ExB drift

mirror force

Parallel motion along perturbed magnetic field

Grad-B + Curvature drift

Parallel E-field

𝑑𝑑𝑋⃗𝑋
𝑑𝑑𝑑𝑑

≈ 𝑣𝑣∥ �𝑏𝑏 +
𝛻𝛻𝛿𝛿𝐴𝐴∥ × �𝑏𝑏

𝑐𝑐𝑐𝑐
+ 𝑚𝑚𝑣𝑣∥2 + 𝜇𝜇𝜇𝜇

�𝑏𝑏 × 𝛻𝛻𝐵𝐵
𝑞𝑞𝐵𝐵2

+
𝑐𝑐
𝐵𝐵0

�𝑏𝑏 × 𝛻𝛻𝛿𝛿𝛿𝛿

𝜕𝜕
𝜕𝜕𝜕𝜕

𝐵𝐵∥∗ ̅𝑓𝑓 +
𝜕𝜕
𝜕𝜕𝑋⃗𝑋

𝑑𝑑𝑋⃗𝑋
𝑑𝑑𝑑𝑑

𝐵𝐵∥∗ ̅𝑓𝑓 +
𝜕𝜕
𝜕𝜕𝑣𝑣∥

𝑑𝑑𝑣𝑣∥
𝑑𝑑𝑑𝑑

𝐵𝐵∥∗ ̅𝑓𝑓 = 0
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Gyrokinetic Model – Simple View

• Poisson equation with enhanced polarization shielding

−(1 +
𝜌𝜌𝑖𝑖2

𝜆𝜆𝐷𝐷𝐷𝐷2
)𝛻𝛻2𝛿𝛿𝛿𝛿 𝑥⃗𝑥, 𝑡𝑡 = 4𝜋𝜋�

𝑠𝑠

𝑞𝑞𝑠𝑠 �𝑁𝑁𝑠𝑠

 Additional shielding by polarization charges carried by charged rings

 Significantly enhanced compared to Debye shielding

Density from charged rings

• Ampere equation without displacement current, also for 𝛿𝛿𝐴𝐴 = �𝑏𝑏𝛿𝛿𝐴𝐴∥ for low-𝛽𝛽

𝛻𝛻 × 𝛿𝛿𝐵𝐵 ≈ 𝛻𝛻 × 𝛻𝛻 × �𝑏𝑏𝛿𝛿𝐴𝐴∥ ≈
4𝜋𝜋
𝑐𝑐
�
𝑆𝑆

𝐽𝐽𝑠𝑠

⇒ −𝛻𝛻⊥2𝛿𝛿𝐴𝐴∥ =
4𝜋𝜋
𝑐𝑐
�
𝑠𝑠

̅𝐽𝐽∥𝑠𝑠
Parallel current carried 
by charged rings

𝐵𝐵0

𝑋𝑋

𝑥⃗𝑥𝑖𝑖=1… 𝑁𝑁𝑔𝑔
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Gyrokinetic Model – Simple View

• Gyro-averaged potentials 𝛿𝛿𝛿𝛿 , 𝛿𝛿𝐴𝐴∥ felt by charged ring

∑∫

∫ ∫
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

or in Fourier space (as is often done in continuum codes)

( )
( )

( ) ( ) ∫∫ ∫
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π
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π
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Integration can be approximated by a few points sum
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Reduced Problem Size

• Problem size for KSTAR plasma

Number of grids: 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑧𝑧 × 𝑁𝑁𝑣𝑣𝑥𝑥 × 𝑁𝑁𝑣𝑣𝑦𝑦 × 𝑁𝑁𝑣𝑣𝑧𝑧
≥ 256 × 256 × 256 × 128 × 128 × 128 ~ 1013

Number of grids: 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑧𝑧 × 𝑁𝑁𝑣𝑣∥ × 𝑁𝑁𝜇𝜇
≥ 256 × 256 × 256 × 128 × 16 ~ 1010

Electron-Ion mass ratio ~ 1:3600  

 Time scale disparity ~ 100

Fluid Model?
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4D Bounce-Averaged 

Kinetic Model
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Bounce Motion in Magnetized Plasma

Trapped 
particles

𝒗𝒗∥

𝒗𝒗⊥

𝑣𝑣∥2

𝑣𝑣2
= 1 −

𝐵𝐵
𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚

Passing 
particles

Passing 
particles

• Passing and trapped particles behave very differently 

– Passing particles move freely along magnetic field line 

 For slow perturbation, fluid model works well

– Trapped particles show non-trivial responses to slow perturbations 

 Hard to capture in fluid model

𝐹𝐹 = −𝜇𝜇𝛻𝛻𝐵𝐵
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Bounce Motion in Magnetized Plasma

𝑱𝑱𝟏𝟏 = �𝑷𝑷⊥ ⋅ 𝒅𝒅𝒍𝒍 = � 𝒎𝒎𝒗𝒗⊥ −
𝟏𝟏
𝟐𝟐
𝒒𝒒𝒒𝒒𝒒𝒒 𝑹𝑹𝑹𝑹𝑹𝑹 =

𝝅𝝅𝝅𝝅𝒗𝒗⊥𝟐𝟐

𝛀𝛀
∝ 𝝁𝝁

Figure from Geomagnetism, Nathani Basavaiah

𝑱𝑱𝟐𝟐 = ∮𝑷𝑷∥𝒅𝒅𝒅𝒅 ≈ ∮𝒎𝒎𝒗𝒗𝒛𝒛𝒅𝒅𝒅𝒅 = ∮𝒎𝒎𝒗𝒗𝒛𝒛𝟐𝟐𝒅𝒅𝒅𝒅 = 𝝅𝝅𝝅𝝅�𝒗𝒗𝒛𝒛𝟐𝟐

𝝎𝝎𝒃𝒃
,  𝒗𝒗𝒛𝒛 = �𝒗𝒗𝒛𝒛 𝐜𝐜𝐜𝐜𝐜𝐜𝝎𝝎𝒃𝒃𝒕𝒕
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Bounce Motion in Magnetized Plasma

https://www.euro-fusion.org/wpcms/wp-content/uploads/2011/09/jg05-537-4c.jpg

• Trapped electrons in fusion device

– Motions along banana are very fast  detailed position is negligible

– Toroidal precession motions are slow  comparable with ion transit motions

• Trapped electron bounce-centers behave like ions  resonate with ion scale turbulence



34

Bounce-Averaged Kinetic Model

• Bounce-center coordinate

– Radial position of bounce center: 𝛽𝛽 = 𝑟𝑟

– Toroidal angle of bounce center at outer mid-plane: 𝛼𝛼 = 𝜁𝜁

– Bounce phase:  Ψ = 𝜋𝜋 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣|| sin−1 sin 𝜃𝜃/2
𝜅𝜅𝑝𝑝

+ 𝜋𝜋/2

 Ignorable variable, averaged out

– Bounce invariant: 𝐼𝐼 ≅ 2𝑞𝑞𝑅𝑅0 𝑚𝑚𝜀𝜀𝜀𝜀𝐵𝐵0𝜅𝜅𝑝𝑝2

• Further reduction of 5D gyrokinetic equation to 4D 

bounce-averaged kinetic model
𝛼𝛼

𝛽𝛽

Ψ

Fong, Hahm, Phys. Plasmas 6, 188 (1999)

Qi, Kwon, Hahm, Jo, Phys. Plasmas 23, 062513(2016)

Kwon, Qi, Yi, Hahm, Comput. Phys. Commun. 177, 775(2017)
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Bounce-Averaged Kinetic Model

• Hamiltonian and equations of motion:

𝐻𝐻 𝛽𝛽,𝛼𝛼, 𝛪𝛪, 𝜇𝜇 = 𝜇𝜇𝐵𝐵0 1 + 𝛥𝛥 − 𝜀𝜀 +
𝜅𝜅2

2𝑞𝑞2
𝜀𝜀2 +

𝜀𝜀𝜀𝜀𝐵𝐵0
𝑞𝑞𝑅𝑅0 𝑚𝑚

𝐼𝐼 + 𝑞𝑞𝑠𝑠 𝜙𝜙 𝑏𝑏

𝑑𝑑𝛽𝛽
𝑑𝑑𝑑𝑑

= 𝑐𝑐 𝜕𝜕 𝜙𝜙 𝑏𝑏
𝜕𝜕𝛼𝛼

𝑑𝑑𝛼𝛼
𝑑𝑑𝑑𝑑

= − 𝑐𝑐
𝑒𝑒
𝜕𝜕𝐻𝐻0
𝜕𝜕𝛽𝛽

− 𝑐𝑐 𝜕𝜕 𝜙𝜙 𝑏𝑏
𝜕𝜕𝛽𝛽

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0

• Bounce averaged kinetic equation:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝑑𝑑𝛽𝛽
𝑑𝑑𝑑𝑑

𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽

+
𝑑𝑑𝛼𝛼
𝑑𝑑𝑑𝑑

𝜕𝜕𝜕𝜕
𝜕𝜕𝛼𝛼

= 0
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Bounce-Averaged Kinetic Model

• Numerical calculation of bounce average 

𝜙𝜙 𝑏𝑏 ≡
∮𝜙𝜙 𝑑𝑑𝑑𝑑̇𝑙𝑙
∮ 𝑑𝑑𝑑𝑑̇𝑙𝑙

=
1
𝑇𝑇
�𝜙𝜙

𝑑𝑑𝑑𝑑
̇𝑙𝑙

Approximation of bounce orbit by 

unperturbed guiding center motion
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Reduced Problem Size
• Problem size for KSTAR plasma

Number of grids: 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑧𝑧 × 𝑁𝑁𝑣𝑣𝑥𝑥 × 𝑁𝑁𝑣𝑣𝑦𝑦 × 𝑁𝑁𝑣𝑣𝑧𝑧
≥ 256 × 256 × 256 × 128 × 128 × 128 ~ 1013

Number of grids: 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑧𝑧 × 𝑁𝑁𝑣𝑣∥ × 𝑁𝑁𝜇𝜇
≥ 256 × 256 × 256 × 32 × 16 ~ 109

Electron-Ion mass ratio ~ 1:3600  
 time scale disparity ~ 100

Δ𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶 ∼ Δ𝑡𝑡 for ions only
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Fluid Model with 

Kinetic Closure
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Kinetic Phase Mixing

𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

+ 𝒗𝒗
𝝏𝝏𝒇𝒇
𝝏𝝏𝝏𝝏

= 0
𝑣𝑣

𝑥𝑥

𝑣𝑣

𝑥𝑥

𝑣𝑣

𝑓𝑓

𝑣𝑣

𝑓𝑓
𝛿𝛿𝛿𝛿(0) 𝛿𝛿𝛿𝛿 𝑡𝑡 < 𝛿𝛿𝛿𝛿(0)

Decay rate?
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Kinetic Closure: How to mimic kinetic process?

• Fluid Model

– For neutral gas  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝜕𝜕

𝑉𝑉𝑉𝑉 = 0 with particle flux Γ = 𝑛𝑛𝑛𝑛 = −𝐷𝐷 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(Fick’s law)

– Then, we have 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷 𝜕𝜕2

𝜕𝜕𝑥𝑥2
𝑛𝑛

– Let’s assume a stationary solution 𝑛𝑛 𝑥𝑥, 𝑡𝑡 = 𝑛𝑛0 and put a perturbation 

at 𝑡𝑡 = 0 as 𝛿𝛿𝛿𝛿 𝑥𝑥, 0 = 𝑛𝑛1𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖.

– Then, the solution of the equation becomes 𝛿𝛿𝛿𝛿 𝑥𝑥, 𝑡𝑡 = 𝛿𝛿𝛿𝛿 𝑥𝑥, 0 𝑒𝑒−𝐷𝐷𝑘𝑘2𝑡𝑡
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Kinetic Closure: How to mimic kinetic process?
• Kinetic Model

– For neutral gas  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0

– With a stationary solution, 𝑓𝑓0 𝑣𝑣 = 𝑛𝑛0

2𝜋𝜋𝑣𝑣𝑡𝑡2
𝑒𝑒
− 𝑣𝑣2

2𝑣𝑣𝑡𝑡
2 (note that  ∫−∞

+∞𝑑𝑑𝑑𝑑𝑓𝑓0 = 𝑛𝑛0)

– Let’s put a perturbation at 𝑡𝑡 = 0,  𝑓𝑓1 𝑥𝑥, 𝑣𝑣 = 𝑛𝑛1𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

2𝜋𝜋𝑣𝑣𝑡𝑡2
𝑒𝑒
− 𝑣𝑣2

2𝑣𝑣𝑡𝑡
2 (note that  ∫−∞

+∞𝑑𝑑𝑑𝑑𝑓𝑓1 = 𝑛𝑛1𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖)

– Then the solution of the kinetic equation becomes

𝑓𝑓 𝑥𝑥, 𝑣𝑣, 𝑡𝑡 = 𝑛𝑛0 + 𝑛𝑛1𝑒𝑒𝑖𝑖𝑖𝑖 𝑥𝑥−𝑣𝑣𝑣𝑣 1

2𝜋𝜋𝑣𝑣𝑡𝑡2
𝑒𝑒−𝑣𝑣2/2𝑣𝑣𝑡𝑡2
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Kinetic Closure: How to mimic kinetic process?

• Kinetic Model

– 𝑓𝑓 𝑥𝑥,𝑣𝑣, 𝑡𝑡 = 𝑛𝑛0 + 𝑛𝑛1𝑒𝑒𝑖𝑖𝑖𝑖 𝑥𝑥−𝑣𝑣𝑣𝑣 1

2𝜋𝜋𝑣𝑣𝑡𝑡2
𝑒𝑒−𝑣𝑣2/2𝑣𝑣𝑡𝑡2

– The density evolution becomes 

𝑛𝑛 𝑥𝑥, 𝑡𝑡 = ∫ 𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑛𝑛0 + 𝑛𝑛1
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

2𝜋𝜋𝑣𝑣𝑡𝑡2
∫ 𝑑𝑑𝑑𝑑𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒

− 𝑣𝑣2
2𝑣𝑣𝑡𝑡2 = 𝑛𝑛0 + 𝑛𝑛1𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒−𝑘𝑘

2𝑣𝑣𝑡𝑡2𝑡𝑡2/2

i.e.   𝛿𝛿𝛿𝛿 𝑥𝑥, 𝑡𝑡 = 𝛿𝛿𝛿𝛿 𝑥𝑥, 0 𝑒𝑒−𝑘𝑘2𝑣𝑣𝑡𝑡
2𝑡𝑡2/2

• Kinetic vs Fluid

𝒆𝒆−𝒌𝒌𝟐𝟐𝒗𝒗𝒕𝒕𝟐𝟐𝒕𝒕𝟐𝟐/𝟐𝟐 𝒆𝒆−𝑫𝑫𝒌𝒌𝟐𝟐𝒕𝒕
kinetic fluid
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Kinetic Closure: How to mimic kinetic process?

kinetic

fluid

𝒆𝒆−𝒌𝒌𝟐𝟐𝒗𝒗𝒕𝒕𝟐𝟐𝒕𝒕𝟐𝟐/𝟐𝟐

𝒆𝒆−𝑫𝑫𝒌𝒌𝟐𝟐𝒕𝒕

𝑡𝑡

�
𝟎𝟎

∞
𝒅𝒅𝒅𝒅 𝒆𝒆−𝒌𝒌𝟐𝟐𝒗𝒗𝒕𝒕𝟐𝟐𝒕𝒕𝟐𝟐/𝟐𝟐 =

𝟏𝟏

𝒌𝒌𝟐𝟐𝒗𝒗𝒕𝒕𝟐𝟐

𝝅𝝅
𝟐𝟐

�
𝟎𝟎

∞
𝒅𝒅𝒅𝒅𝒆𝒆−𝑫𝑫𝒌𝒌𝟐𝟐𝒕𝒕 =

𝟏𝟏
𝑫𝑫𝒌𝒌𝟐𝟐

𝑫𝑫 =
𝟐𝟐
𝝅𝝅
𝒗𝒗𝒕𝒕
𝒌𝒌Match two time responses ~ match the two areas 

Hammett et al, Phy Rev Lett 64, 3019(1990)
Hammett et al, Phys Fluids B 4, 2052(1992)
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Kinetic Closure: How to mimic kinetic process?

• With 𝐷𝐷𝑘𝑘 = 2
𝜋𝜋
𝑣𝑣𝑡𝑡
𝑘𝑘

, the particle flux can be written as 𝛤𝛤𝑘𝑘 = −𝐷𝐷𝑘𝑘𝑖𝑖𝑖𝑖𝑛𝑛𝑘𝑘

• In real space, Γ = 1
2𝜋𝜋 ∫−∞

+∞𝑑𝑑𝑑𝑑𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖Γ𝑘𝑘 = − 1
2𝜋𝜋 ∫−∞

+∞𝑑𝑑𝑑𝑑𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥𝑛𝑛𝑘𝑘
𝑖𝑖𝑖𝑖
𝑘𝑘

• Using delta function identities   

1
𝑘𝑘

= ∫−∞
+∞𝛿𝛿 𝑘𝑘𝑘𝑘𝑘 𝑑𝑑𝑑𝑑𝑑,  𝛿𝛿 𝑘𝑘𝑥𝑥′ = lim

𝜖𝜖→0
1
𝜋𝜋

𝜖𝜖
𝜖𝜖2+𝑘𝑘2𝑥𝑥′2

• Γ = − 2𝑣𝑣𝑡𝑡
𝜋𝜋3/2 ∫0

∞𝑑𝑑𝑥𝑥′ 𝑛𝑛 𝑥𝑥+𝑥𝑥′ −𝑛𝑛 𝑥𝑥−𝑥𝑥′

𝑥𝑥′
( c.f. conventional closure Γ = −𝐷𝐷 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
)

i.e.  𝐷𝐷𝑘𝑘 is a non-local integral operator
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Hammett et al, Phys Fluids B 4, 2052(1992)
Beer, Hammett, Phys. Plasmas 3, 4046(1996)
P. Snyder, Ph.D. Thesis (1999)
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Numerical Methods for Kinetic Plasma Simulation

• Continuum (Eulerian) Method

– Discretize 5D/4D phase space, and apply FDM, FVM, FEM

– Computationally expensive, but enable high quality simulation

• Particle-in-Cell (Lagrangian) Method

– Computationally cheap (relative to continuum method)

– Noise issues

• Semi-Lagrangian Method
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Particle-in-Cell Method

for Kinetic Simulation

C.K. Birdsall and A.B. Langdon, “Plasma Physics via Computer Simulation”, McGraw-Hill, 1985
R.W. Hockney and J.W. Eastwood, “Computer Simulation using Particles”, IPP, 1988
W.W. Lee, J. Comput. Phys. 72, 243 (1987)



From Klimontovich Equation to PIC

• We want simulate 𝑁𝑁-particle system with 𝑁𝑁𝑠𝑠 ≪ 𝑁𝑁,  𝐺𝐺 = ∑𝑝𝑝=1
𝑁𝑁𝑠𝑠 𝛿𝛿 𝑥𝑥 − 𝑋𝑋𝑝𝑝 𝑡𝑡 𝛿𝛿 𝑣𝑣 − 𝑉𝑉𝑝𝑝 𝑡𝑡

𝐹𝐹 ≈ 𝑊𝑊 𝑥𝑥,𝑣𝑣 𝐺𝐺 = �
𝑝𝑝=1

𝑁𝑁𝑠𝑠

𝑊𝑊𝑝𝑝 𝛿𝛿 𝑥𝑥 − 𝑋𝑋𝑝𝑝 𝑡𝑡 𝛿𝛿 𝑣𝑣 − 𝑉𝑉𝑝𝑝 𝑡𝑡

• {𝑊𝑊𝑝𝑝} depends on marker particle loading scheme i.e. how to set {𝑋𝑋𝑝𝑝 0 , 𝑉𝑉𝑝𝑝(0)}

𝜕𝜕
𝜕𝜕𝜕𝜕
𝐹𝐹 + 𝑣𝑣 ⋅ 𝛻𝛻𝐹𝐹 +

𝑞𝑞
𝑚𝑚

𝐸𝐸𝑚𝑚 +
𝑣𝑣
𝑐𝑐

× 𝐵𝐵𝑚𝑚 ⋅ 𝛻𝛻𝑣𝑣𝐹𝐹 = 0 𝐹𝐹 𝑥𝑥,𝑣𝑣, 𝑡𝑡 = �
𝑝𝑝=1

𝑁𝑁

𝛿𝛿 𝑥𝑥 − 𝑋𝑋𝑝𝑝 𝑡𝑡 𝛿𝛿 𝑣𝑣 − 𝑉𝑉𝑝𝑝 𝑡𝑡

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑋𝑋𝑝𝑝 𝑡𝑡 = 𝑉𝑉𝑝𝑝 𝑡𝑡 𝑚𝑚𝑠𝑠

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑉𝑉𝑝𝑝 𝑡𝑡 = 𝑞𝑞𝐸𝐸𝑚𝑚 𝑋𝑋𝑝𝑝 𝑡𝑡 , 𝑡𝑡 +

𝑞𝑞
𝑐𝑐
𝑉𝑉𝑝𝑝 𝑡𝑡 × 𝐵𝐵𝑚𝑚 𝑋𝑋𝑝𝑝 𝑡𝑡 , 𝑡𝑡

– For example, if 𝐺𝐺 𝑥𝑥, 𝑣𝑣, 𝑡𝑡 = 0 ∝ 𝐹𝐹(𝑥𝑥, 𝑣𝑣, 𝑡𝑡 = 0) 𝑊𝑊𝑝𝑝 = 𝑁𝑁
𝑁𝑁𝑠𝑠

– More sophisticated schemes to minimize loading noise: 

quite starting scheme, optimal loading scheme etc. (J. 

Denavit and J.M. Walsh, Plasma Phys. Control. Fusion 6, 

209 (1981))



Poisson Equation:  −𝛁𝛁𝟐𝟐𝝓𝝓 = 𝟒𝟒𝟒𝟒𝟒𝟒∫ 𝒅𝒅𝒅𝒅𝒅𝒅

• If we write electrostatic potential as 𝜙𝜙 𝑥𝑥, 𝑡𝑡 = ∑𝑗𝑗 �𝜙𝜙𝑗𝑗 𝑡𝑡 𝑆𝑆𝑗𝑗 𝑥𝑥 using a set of basis function 𝑆𝑆𝑗𝑗 𝑥𝑥 , 

the Poisson equation becomes

−�
𝑗𝑗

�𝜙𝜙𝑗𝑗 𝑡𝑡 𝛻𝛻2𝑆𝑆𝑗𝑗 𝑥𝑥 = 4𝜋𝜋𝜋𝜋∫ 𝑑𝑑𝑑𝑑 𝐹𝐹 𝑥𝑥, 𝑣𝑣, 𝑡𝑡 = 4𝜋𝜋𝜋𝜋∫ 𝑑𝑑𝑑𝑑 �
𝑝𝑝=0

𝑁𝑁

𝑊𝑊𝑝𝑝𝛿𝛿 𝑥𝑥 − 𝑋𝑋𝑝𝑝 𝑡𝑡 𝛿𝛿 𝑣𝑣 − 𝑉𝑉𝑝𝑝 𝑡𝑡

P.M. Prenter, “Splines and Variational Methods”, John Wiley & Sons

𝜙𝜙 𝑥𝑥, 𝑡𝑡 = �
𝑗𝑗

�𝜙𝜙𝑗𝑗 𝑡𝑡 𝑆𝑆𝑗𝑗 𝑥𝑥 = �
𝑗𝑗

�𝜙𝜙𝑗𝑗 𝑡𝑡 𝑆𝑆 𝑥𝑥 − 𝑥𝑥𝑗𝑗

𝑥𝑥 𝑥𝑥

𝑥𝑥𝑗𝑗



Poisson Equation:  −𝛁𝛁𝟐𝟐𝝓𝝓 = 𝟒𝟒𝟒𝟒𝟒𝟒∫ 𝒅𝒅𝒅𝒅𝒅𝒅

−�
𝑗𝑗

�𝜙𝜙𝑗𝑗 𝑡𝑡 𝛻𝛻2𝑆𝑆𝑗𝑗 𝑥𝑥 = 4𝜋𝜋𝜋𝜋∫ 𝑑𝑑𝑑𝑑 𝐹𝐹 𝑥𝑥,𝑣𝑣, 𝑡𝑡 = 4𝜋𝜋𝜋𝜋∫ 𝑑𝑑𝑑𝑑 �
𝑝𝑝=0

𝑁𝑁

𝑊𝑊𝑝𝑝𝛿𝛿 𝑥𝑥 − 𝑋𝑋𝑝𝑝 𝑡𝑡 𝛿𝛿 𝑣𝑣 − 𝑉𝑉𝑝𝑝 𝑡𝑡

• Appling ∫ 𝑑𝑑𝑑𝑑 𝑆𝑆𝑖𝑖(𝑥𝑥) on both sides,

�
𝑗𝑗

∫ 𝑑𝑑𝑑𝑑 𝛻𝛻𝑆𝑆𝑖𝑖 𝑥𝑥 ⋅ 𝛻𝛻𝑆𝑆𝑗𝑗 𝑥𝑥 �𝜙𝜙𝑗𝑗(𝑡𝑡) = 4𝜋𝜋𝜋𝜋 �
𝑝𝑝

𝑊𝑊𝑝𝑝𝑆𝑆𝑖𝑖 𝑋𝑋𝑝𝑝 𝑡𝑡

• Note that if S is spline function, it satisfies 𝑆𝑆𝑥𝑥 𝑦𝑦 = 𝑆𝑆𝑦𝑦 𝑥𝑥

�
𝑝𝑝

𝑊𝑊𝑝𝑝𝑆𝑆𝑖𝑖 𝑋𝑋𝑝𝑝 𝑡𝑡 = �
𝑝𝑝

𝑊𝑊𝑝𝑝𝑆𝑆𝑋𝑋𝑝𝑝 𝑡𝑡 (𝑥𝑥𝑖𝑖) = ∫ 𝑑𝑑𝑑𝑑 �
𝑝𝑝

𝑊𝑊𝑝𝑝𝑆𝑆𝑋𝑋𝑝𝑝 𝑡𝑡 (𝑥𝑥𝑖𝑖)𝛿𝛿 𝑥𝑥 − 𝑋𝑋𝑝𝑝 𝑡𝑡 𝛿𝛿 𝑣𝑣 − 𝑉𝑉𝑝𝑝 𝑡𝑡

i.e. the distribution function can be interpreted as a set of particles with spatial shape 𝑆𝑆 𝑥𝑥

P.M. Prenter, “Splines and Variational Methods”, John Wiley & Sons

𝑋𝑋𝑝𝑝 𝑡𝑡

𝑥𝑥𝑗𝑗 𝑥𝑥𝑗𝑗+1𝑥𝑥𝑗𝑗−1



Collision in PIC Simulation

• Fokker-Planck equation

𝜕𝜕
𝜕𝜕𝜕𝜕
𝑓𝑓 𝑣𝑣, 𝑡𝑡 = −

𝜕𝜕
𝜕𝜕𝜕𝜕

𝛼𝛼 𝑣𝑣 𝑓𝑓 𝑣𝑣, 𝑡𝑡 +
𝜕𝜕2

𝜕𝜕𝑣𝑣2
[𝛽𝛽 𝑣𝑣 𝑓𝑓 𝑣𝑣, 𝑡𝑡 ]

• It can be interpreted as a distribution function for particles with characteristic equation

𝑑𝑑𝑣𝑣
𝑑𝑑𝑑𝑑 = 𝛼𝛼 𝑣𝑣, 𝑡𝑡 + 𝛽𝛽 𝑣𝑣, 𝑡𝑡 𝜉𝜉 𝑡𝑡 , 𝜉𝜉 𝑡𝑡′ 𝜉𝜉 𝑡𝑡 = 𝛿𝛿 𝑡𝑡′ − 𝑡𝑡

• Due to the drag and diffusion on the right hand side, particle trajectories are scattered as

Δ𝑣𝑣 = 𝛼𝛼Δ𝑡𝑡 + 2 3 𝑅𝑅 − 0.5 2𝛽𝛽Δ𝑡𝑡

𝑅𝑅 is a random number in [0, 1]

J. Grasman and O.A. van Herwaarden, 
“Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications”, Springer



Example: 2nd order Runge-Kutta

• Push Particles

𝑧𝑧𝑝𝑝
𝑛𝑛+12 = 𝑧𝑧𝑝𝑝𝑛𝑛 +

Δ𝑡𝑡
2 𝑍𝑍(𝑧𝑧𝑝𝑝𝑛𝑛,Φ𝑛𝑛)

• Calculate charge density using 𝑧𝑧𝑝𝑝𝑛𝑛

• Solve Poisson equation for Φ𝑛𝑛

• Calculate charge density using 𝑧𝑧𝑝𝑝
𝑛𝑛+12

• Solve Poisson equation for Φ𝑛𝑛+12

• Push Particles

𝑧𝑧𝑝𝑝𝑛𝑛+1 = 𝑧𝑧𝑝𝑝𝑛𝑛 + Δ𝑡𝑡 𝑍𝑍(𝑧𝑧𝑝𝑝
𝑛𝑛+12,Φ𝑛𝑛+12)

Start

• Initialize Poisson solver

• Initialize 𝑧𝑧𝑝𝑝0 ≡ 𝑥⃗𝑥𝑝𝑝0, 𝑣⃗𝑣𝑝𝑝0

End

Diagnosis

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑍𝑍 𝑧𝑧,Φ
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Numerical Issues in 

PIC Simulation



𝑵𝑵-Particle System

Temperature ↑



𝑵𝑵-Particle System

• Fourier representation of potential and distribution function

𝛷𝛷 𝑥𝑥 = �
𝑘𝑘

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 �𝛷𝛷𝑘𝑘 , �𝛷𝛷𝑘𝑘 =
1
𝐿𝐿 ∫ 𝑑𝑑𝑑𝑑𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝛷𝛷(𝑥𝑥)

𝑓𝑓 𝑥𝑥,𝑣𝑣, 𝑡𝑡 = �
𝑝𝑝

𝑤𝑤𝑝𝑝𝛿𝛿 𝑥𝑥 − 𝑥𝑥𝑝𝑝 𝛿𝛿(𝑣𝑣 − 𝑣𝑣𝑝𝑝) , 𝑓𝑓𝑘𝑘 𝑡𝑡 =
1
𝐿𝐿 ∫ 𝑑𝑑𝑑𝑑𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓 𝑥𝑥,𝑣𝑣, 𝑡𝑡 =

1
𝐿𝐿 �

𝑝𝑝

𝑤𝑤𝑝𝑝𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥𝑝𝑝𝛿𝛿 𝑣𝑣 − 𝑣𝑣𝑝𝑝

• Poisson equation in Fourier space
−𝛻𝛻2𝛷𝛷 = 4𝜋𝜋𝜋𝜋 = 4𝜋𝜋𝜋𝜋∫ 𝑑𝑑𝑑𝑑𝑑𝑑

𝑘𝑘2 �𝛷𝛷𝑘𝑘 =
4𝜋𝜋𝜋𝜋
𝐿𝐿 �

𝑝𝑝

𝑤𝑤𝑝𝑝𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥𝑝𝑝

• Apply a filter 𝑆𝑆𝑘𝑘 on RHS

𝑘𝑘2 �𝛷𝛷𝑘𝑘 =
4𝜋𝜋𝑒𝑒
𝐿𝐿 𝑆𝑆𝑘𝑘�

𝑝𝑝

𝑤𝑤𝑝𝑝𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥𝑝𝑝

∴ �𝛷𝛷𝑘𝑘
2 =

4𝜋𝜋𝜋𝜋
𝐿𝐿𝑘𝑘2

2
𝑆𝑆𝑘𝑘2�

𝑝𝑝

�
𝑝𝑝𝑝

𝑤𝑤𝑝𝑝𝑤𝑤𝑝𝑝𝑝𝑒𝑒
−𝑖𝑖𝑖𝑖(𝑥𝑥𝑝𝑝−𝑥𝑥𝑝𝑝′)



𝑵𝑵-Particle System

�Φ𝑘𝑘
2 =

4𝜋𝜋𝜋𝜋
𝐿𝐿𝑘𝑘2

2
𝑆𝑆𝑘𝑘2�

𝑝𝑝

�
𝑝𝑝𝑝

𝑤𝑤𝑝𝑝𝑤𝑤𝑝𝑝𝑝𝑒𝑒
−𝑖𝑖𝑖𝑖(𝑥𝑥𝑝𝑝−𝑥𝑥𝑝𝑝′)

• For randomly scattered particles and 𝑁𝑁 ≫ 1 , we can simplify RHS

�Φ𝑘𝑘
2 ≈

4𝜋𝜋𝑒𝑒
𝐿𝐿𝑘𝑘2

2
𝑆𝑆𝑘𝑘2�

𝑝𝑝

𝑤𝑤𝑝𝑝2 =
4𝜋𝜋𝑒𝑒
𝐿𝐿𝑘𝑘2

2
𝑆𝑆𝑘𝑘2〈𝑤𝑤2〉𝑁𝑁

𝑒𝑒�Φ𝑘𝑘

𝑇𝑇

2

≈
4𝜋𝜋𝑒𝑒2

𝐿𝐿𝑇𝑇𝑘𝑘2

2

𝑆𝑆𝑘𝑘2 𝑤𝑤2 𝑁𝑁 =
4𝜋𝜋𝜋𝜋𝑒𝑒2

𝑇𝑇

2 1
𝑛𝑛2𝐿𝐿2𝑘𝑘4

𝑆𝑆𝑘𝑘2 𝑤𝑤2 𝑁𝑁 =
𝑆𝑆𝑘𝑘2

𝜆𝜆𝐷𝐷4 𝑘𝑘4
𝑤𝑤2

𝑁𝑁

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ~

1
𝑁𝑁



Dielectric Response Function and 
Fluctuation Dissipation Theorem

• Suppose we put an external test charge

�𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥, 𝑡𝑡 = �
𝑘𝑘,𝜔𝜔

𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘,𝜔𝜔 exp[𝑖𝑖 𝑘𝑘𝑘𝑘 − 𝜔𝜔𝜔𝜔 ]

• Then, plasma will respond to this external perturbation and generate density fluctuation 𝜌𝜌(𝑘𝑘,𝜔𝜔)

• If we write the total charge density as 𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡(𝑘𝑘,𝑤𝑤), dielectric response function is defined as

𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡 𝑘𝑘,𝜔𝜔 = 𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘,𝜔𝜔 + 𝜌𝜌 𝑘𝑘,𝜔𝜔 ≡
𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘,𝜔𝜔
𝜖𝜖 𝑘𝑘,𝜔𝜔

, 𝜖𝜖 𝑘𝑘,𝜔𝜔 𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡 𝑘𝑘,𝜔𝜔 = 𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘,𝜔𝜔

• Fluctuation Dissipation Theorem tells us how system responds to small fluctuations and 
provides useful information for fluctuation spectrum

𝐿𝐿
2𝜋𝜋

𝛿𝛿𝛿𝛿 𝜔𝜔, 𝑘𝑘 2 = −
𝑇𝑇
𝜔𝜔
𝐼𝐼𝐼𝐼

1
𝜖𝜖(𝑘𝑘,𝜔𝜔)

 Lower bound of fluctuation (or noise) for N-body system



Fluctuation and Dissipation Theorem: 
Implication for PIC simulation

• PIC simulation employs finite number of particles, actually far fewer than the real number 

of particles (e.g. in medium fusion device  𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ~ 1021 ≫ 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 = 109~ 1012 ) 

• Fluctuation (or noise) from simulation should be much bigger than physical ones

• However, we have numerical tools to control too big fluctuation (or noise):

– Number of particles

– Particle shape function 𝑆𝑆𝑘𝑘

– Spatio-temporal discretization  Δ𝑥𝑥,Δ𝑡𝑡

• The strategy is to employ these to suppress noise to a level not to affect key physics

𝑒𝑒�Φ𝑘𝑘
𝑇𝑇

2

≈
𝑆𝑆𝑘𝑘2

𝜆𝜆𝐷𝐷4 𝑘𝑘4
𝑤𝑤2

𝑁𝑁



Noises

Noises

Noises

𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≫ 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

particle shape,
filtering, smoothing, errors etc.
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Summary
• Reduced kinetic models for magnetized plasma

– 5D gyrokinetic, 4D bounce-averaged kinetic, 3D fluid with kinetic closure

– These enable us to perform kinetic simulation with reasonable computing cost

• Numerical methods for kinetic simulation of magnetized plasma

– Particle-in-Cell method

– Fluctuation dissipation theorem to understand discrete particle noise

• Verification and benchmark test are necessary, and experimental validation 

should be the next step  very active area of on-going research in fusion
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