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Introduction to kinetic plasma model

— Very brief on essential things to understand kinetic simulation

Reduced kinetic models for magnetized plasma

— 5D gyrokinetic, 4D bounce-averaged kinetic, 3D fluid with kinetic closure
Numerical methods for kinetic simulation of magnetized plasma

— Particle-in-Cell methods, and related numerical issues

Help students understand the basic idea behind the models and read related

literatures for further studies
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Introduction to
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Kinetic Plasma Model

The most general description of physical system

with many particles

Each particle satisfies the following equations of

motion
e PPN SN
— =17, m— = X, = —_
T dt =T

Number of particles in d3xd3v

f(X,9,t) d3xd3v
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Klimontovich Equation

Exact description of classical particles interacting with self-consistent electromagnetic forces

N

F(x,v,t) = z 5[x — X, (®)]6[v — v, (0)]

p=1

d d
SX® =0, meaTp(® = aE™[%,(0, 6] + L 10 x B [x,(0),¢]

Then, F satisfies

d %
—F+v-|7F+i(Em+—><Bm)-|7vF=0
dJt m C

Note that this equation contains whole spatio-temporal scales all the way down to particle

distances.




Klimontovich Equation

Since we are not interested in physical phenomena occurring in super micro-scales (actually, the equation
itself is not valid in such scales),

We separate quantities into two scales i.e. smooth part in large scale and non-smooth part in small scale,
and

We keep only the smooth part in left hand side and through out all the remaining into the right hand side
and call them “collision”

F=f+6f, E™=E+G6E, B™=B+6B

0 q v q v _
af+v-\7f+;(E+E><B)-|7vf——a((6E+Z><6B)-|7v5f)=c




Collision Operator

» Collision term can be derived by following BBGKY hierarchy and truncating higher order

interaction terms (Introduction to Plasma Theory, Nicholson)

, a1 -
C(f) = =V - [Af )] + 5 WW: [Bf ()]

R 8nnye*inA L f@,t)
A(,t) = V,)] dv' ——=
(v ) mg ’Uf v |v _ v/l
R 4tnge*inA i ot e
B(v,t) = 5 v,V dv'|v — ¥'|f (¥, t)
m

e
« For high temperature plasmas, the collision frequency becomes very small

3/2
Veoll X n/T /

In tokamak plasma v_};, = 10 ~ 100 ms -> collisionless
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Kinetic Phase Mixing
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Collisionless = No Collision

f A af A
3¢ = CULT)
/ e
> U >
« AsAv -0, C(f,f) ~ iz increases faster than streaming term ~ 2

v
» Collision becomes important as fine scale structures are developed in

velocity space
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Kinetic Phase Mixing

Quartic Interpolation (T=5) Quartic Interpolation (T=10) Quartic Interpolation (T=15)

5 5

D4
D.35

/ p— 0.3

v = 0 = 0 / n.2 =

/ 1 0.1

i— 0.05
X 0
o 5 10 ~ 5 10
X X

Quartic Interpolation (T=20) Quartic Interpolation (T=25)

=
o

10

X

&

n

X

X

Quartic Interpolation (T=60)

10 N



Kinetic Plasma Model

f vsovprEvy - ¢
’ Fre f+a' o = (f»f)\

Streaming motions of particles +
Mutual interactions in large scales

Tend to drive complicated
phase space structures

Mutual interactions in very short
scales ~ Random collision

Tend to erase fine scale phase space
structures

Weaker for small density and high
temperature system. Stronger for
smaller velocity space scales
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Kinetic vs Fluid

Shifted Gaussian distribution function

> SN2
ot = n(x) —expl m(vZT(I;()x))

(2m)3/2 (%f))

[LLJor =

Navier-Stokes (Fluid) Equation

aﬁ - - -
“ n<a+u-|7u> = —Up + uV4i

p =nT

/
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Spatio-Temporal Scales of Fusion Plasma

atomic mfp electron—ion mfp
skin depth system size

tearing length
ion gyroradius
Debye length

electron gyroradius

10-¢ 10—4 102 10°
Spatial scales (m)

pulse length
—_—
inverse ion plasma frequency current diffusion
inverse electron plasma frequency  confinement

ion gyroperiod  1on collision

electron gyroperiod electron collision

10—10 103 10° 10°
Temporal scales (s)

S.Either et al, IBM J. RES. & DEV. Vol. 52 2008
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Turbulence in Fusion Device

* Fusion plasma confined by external magnetic field

—> strongly magnetized plasma p < R

gk
L &
| i
B T
T .
. -f o | +
mpl
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Turbulence in Fusion Device

Spectral power [dB] Spectral power [dB] Spectral power [dB]

Spectral power [dB]

In Tokamak, anomalous heat and particle transport driven by micro-scale fluctuations with

relatively low frequency f <300kHzand k,p; <1

Collisionless plasma v./f « 1

In an ECH discharge 16485

In ohmic discharges
16124 and 16126
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MIR measured n, fluctuation on KSTAR L-mode
(J.A. Lee et al, PoP 25, 022513(2018))
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ECEI measured T, fluctuation with f < 100 kHz (M.J. Choi, 2018)
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Kinetic Plasma Model: Problem Size

* Problem size for KSTAR plasma

Number of grids: N, X Ny, X N, X N,, X Ny, X Ny,
> 256 X 256 X 256 x 128 x 128 x 128 ~ 1013

Electron-lon mass ratio ~ 1:3600
=» time scale disparity ~ 100

e Even for limited spatio-temporal scales, simulations based

on brute-force approaches are practically impossible

e Reduced models are essential

16 NERE



Model Hierarchy for Magnetized Plasma

6D Boltzmann

ats+”'vfs+ﬁss(E+”XB)'V"fs = C(fs)

3D Fluid

pzzqsffsdg ;:quffsgdg (Gyro-Landau-Fluid,

1D Diffusion




oD Gyrokinetic Model
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Gyro Motion in Magnetized Plasma

[Klasky, ORNL; Ethier, Wang, PPPL]

U < o = Adiabatic invariant of motion for time scales slower than Q;
i

19
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Basic Ildea of Gyrokinetic Model

Gyrokinetic orderings

Sf eS¢ OB

— Small fluctuation: — ~

Frieman, Chen, Phys. Fluids 25, 502(1982)
Hahm, Lee et al, Phys. Fluids 31, 1940(1988)
Hahm, Phys. Fluids 31, 2670(1988)

K1 Brizard, Hahm, Rev. Mod. Phys. 79, 421(2007)

fo T

— Low frequency: — « 1 0

Bg

Fast MHD waves and cyclotron waves are ruled out
(high freq. GK; Kolesnikov et al, Phys. Plasmas 14, 072506(2007))

— Anisotropic fluctuation: % LK1,k pi~1
4

— Mild non-uniformity in plasma profiles, background magnetic field:

— Low beta: g « 1
¥

Shear Alfven wave only
(GK with Compressional Alfven;
Brizard, Hahm ‘07 )

Pi
LT,n

<1
et

Free energy to drive turbulence
(GK with strong gradient;
Hahm et al, Phys. Plasmas 16, 022305(2009))

20
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Basic Ildea of Gyrokinetic Model

e Guiding center transformation

particle space (X, V) < guiding center space ()?, vy, 4, 0)

0: gyro-angle — average out

iy - - - o~ v eB
X=x—-p p=bXxg sz—g
2
I N _ "
U”—b‘v M—E




Basic Ildea of Gyrokinetic Model

« Schematics of guiding center transformation in Gyrokinetic model

Particle Space (x, V)

Reduced Maxwell :: ::

Equation (3D)

— Guiding Center Space (X, vy, 1)

GK Equation (5D)

v Solve Vlasov equation in guiding center space and evaluate sources (ng, j;)
v Transform sources (ng, j;) to particle space

\ v’ Solve recued Maxwell equations to obtain EM fields

v Transform EM fields to guiding center space

22 NFRI hationay Fusipn



Gyrokinetic Vlasov Equation for Low-# Plasma

center space

Take gyro-angle average to remove 6

Transform original 6D Vlasov equation in particle space into guiding

— reduction to 5D f()?, vy, U, t), retaining only slow time scales At < 1/4;

_ ] ] ] o7
a—f <v||b*+%b><\73 +Biob><|7(5l/))>-a—§
T(_b* uvB — b* - V(5 19 S5A of
E( U ( ¢>———( ||>>a v,

=0

_ 4T
5y = 8¢ —— 84,
Pl A~ vl\ A~ A~
b*=b+§”bxb.\7b

(- ) = gyro-phase
averaged fluctuations

23
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Gyrokinetic Model — Simple View

» Gyrokinetic description of magnetized plasmas

Motion of charged particle

Y

d
) dt
K@ @”"’J i\7 —&V5¢+i\7x(l§o+él§)
dt m mc
”@@@ B .

x|
Il

0

[ — Motion of charged ring
centered at X
X . .
F@%} E=v"b*+%bx\73+3ibx\7(6¢)

oq., . 10
- = m(b UuVB + b V(5¢)+Cat(5A||)>

24
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Gyrokinetic Model — Simple View

e F x B drift motion of charged particle

=>» drift motion of gyro-center in F x B direction

Ty
-
I

oyl &

25 NFRI lllxllll'



Gyrokinetic Model — Simple View

e Grad-B + Curvature drift

dX ; \VSA, x b} ! BbXVBI:CB 75 B drift
PrI L +(mvn+ﬂ) qB ‘,’F;O X ¢: xB an
I_ ____________ P - ]

Parallel motion along perturbed magnetic field
_____ | F""""""
idd 4| b - VB'+b \7(5)+165A Parallel E-field
_— —_— —_ %
Tt U | ) -3 04 arallel E-fie

= GK equations of motion are nothing but a combination of familiar drift

motions ensuring phase space volume conservation and making them

Hamiltonian flows o, o (dX 0 d "
E(Bnﬂ_"ﬁ )t v, Bif | =0

26 NERI: v,



Gyrokinetic Model — Simple View

* Poisson equation with enhanced polarization shielding

|————

|-—-

-1 -:— )\?25¢(x t) = 4n2 qsN ,<— Density from charged rings

Dl 1 -="

v Additional shielding by polarization charges carried by charged rings
v" Significantly enhanced compared to Debye shielding

 Ampere equation without displacement current, also for SA = 135/1” for low-p

N ~ 41 S fi=1...1vg
\7><58z|7><|7><(b6A")sz]S
S
AN Parallel t carried X
_p2 B arallel current carrie
= Vo4 c Z',_][S: T by charged rings J

S \\/ %o

27 NFRI:.— I: ,II_ .



Gyrokinetic Model — Simple View

« Gyro-averaged potentials (d¢), (64,) felt by charged ring

Integration can be approximated by a few points sum

>
(]

(58) == [ dO[dR5(X + 5,(6) - W) il

% TSH(X + p(0))d0 = = Z&é(i +5,(6)) o o

or in Fourier space (as is often done in continuum codes)

(5¢) = i [ do[dxs(X + 5,(0) ~ R)FH(R)

1

_i _ L 27 ik- X+p(.9)
=1, j SH(X + p,(0))d o > )o { 2x) j Sp(k)e }d

1 1 ik, p, cos@ ik- X _ 1 k ikK-X L
‘(zﬂ)sj{zﬂj Sp(K)e d@} dk_(zﬂ) [ 56( ( je dk

28 NERI: v,



Reduced Problem Size

* Problem size for KSTAR plasma

Number of grids: N, X N, X N, X N,, X Ny, X Ny,
> 256 X 256 X 256 X 128 x 128 x 128 ~ 1013

-

Number of grids: Ny X Ny, X N, X N;, X N,
> 256 X 256 X 256 x 128 x 16 ~ 101°

Electron-lon mass ratio ~ 1:3600
=>» Time scale disparity ~ 100
Fluid Model?

'
29 N:Rl Matiomal Fusion
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4D Bounce-Averaged
Kinetic Model
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Bounce Motion in Magnetized Plasma

v,
i A
|:F|II'?;IEE"|1?||-I—|L-I (NN -
F =—uvB Tragped
articles 2
P \ vl 1 B
vZ Bmax
Passing Passing
particles particles
> 4

« Passing and trapped particles behave very differently
— Passing particles move freely along magnetic field line
—> For slow perturbation, fluid model works well
— Trapped particles show non-trivial responses to slow perturbations

- Hard to capture in fluid model

31 NERE



Bounce Motion in Magnetized Plasma

Y e

»
AT . Trapped Particle LN )
frajectory A\

».
(D
= b
Proton ':} 7 f fi j 's Magnetic Field '
! Line T

ﬁ* -
Qs
Mirror Point ‘\\ - ..
= 1 nmv*
]1=fPl-dl =¢ mvl—EqBR RdO = q XH
2
J: = $Pydl = $mv,dz = §ﬁmv§dt=%, v, =V, CoS wpt
b

32 Figure from Geomagnetism, Nathani Basavaiah NE R o fusen



Bounce Motion in Magnetized Plasma

Trapped electrons in fusion device

— Motions along banana are very fast - detailed position is negligible

— Toroidal precession motions are slow - comparable with ion transit motions
Trapped electron bounce-centers behave like ions - resonate with ion scale turbulence

Toroidal
Direction

Separatrix

Banana
Trajectory

Projection of Trapped lon
Trajectories is Banana Shaped

(for illustration only) /) | -
X-point ' / »

[/ . ?,‘w
2 lon gyro-motion N R
Divertor
Targets

33
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Bounce-Averaged Kinetic Model

Bounce-center coordinate

Further reduction of 5D gyrokinetic equation to 4D

bounce-averaged kinetic model

Fong, Hahm, Phys. Plasmas 6, 188 (1999)

Radial position of bounce center. f =r A

Toroidal angle of bounce center at outer mid-plane: a = ¢

Bounce phase: ¥ = + sgn(v) lsin‘1 <sm(e/2)) + /2]

=>» Ignorable variable, averaged out

Bounce invariant: I = 2qR,./meuBok;;

Qi, Kwon, Hahm, Jo, Phys. Plasmas 23, 062513(2016)
Kwon, Qi, Yi, Hahm, Comput. Phys. Commun. 177, 775(2017)

34



Bounce-Averaged Kinetic Model

e Hamiltonian and equations of motion:

K \ 1B
HQB,a,L,w) = uBy| 1+ 4 —e+— I + g
B a1, 1) uo( £ 2q€> TR (D)p
ag _ 9P da _ cOHy (Pl a_o H_,
it~ ¢ oa dt e 0p a8 dt dt

 Bounce averaged kinetic equation:

dF OF d,BaF da OF

dr ot dtop " dtoa =0

35 NERI:: 5,



Bounce-Averaged Kinetic Model

 Numerical calculation of bounce average

A
dl

$OT 1 di

(D) =— TjgﬁbT
$T

Approximation of bounce orbit by

unperturbed guiding center motion

36 NERL:S 52,



Reduced Problem Size

* Problem size for KSTAR plasma

Number of grids: N, X N, X N, X N,, X Ny, X Ny,
> 256 X 256 X 256 X 128 x 128 x 128 ~ 1013

-

Number of grids: Ny X Ny, X N, X N, X N,
> 256 X 256 X 256 x 32 X 16 ~ 10°

Electron-lon mass ratio ~ 1:3600
=>» time scale disparity ~ 100

-

Atcrp ~ At forions only

National Fusion
37 NFRI Research Instituts



Fluid Model with

Kinetic Closure
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Kinetic Phase Mixing

v«»
N -

v |
1 l
|
|
|
|
|
fA

on(t) < 6n(0)

Decay rate?

39
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Kinetic Closure: How to mimic kinetic process?

 Fluid Model

on 0 , : on
— For neutral gas Fri e (Vn) = 0 with particle flux I' = nV = _DE
(Fick’s law)

9 PE
— Then, we have = = D->—n
ot 0x?2

— Let's assume a stationary solution n(x, t) = ny and put a perturbation

att =0 as én(x,0) = n e,

— Then, the solution of the equation becomes &n(x, t) = dn(x, 0)e Pkt

40 NFRI ' M1 Ineoti



Kinetic Closure: How to mimic kinetic process?

Kinetic Model

— For neutral gas —f + vgi 0

p2

— With a stationary solution, f,(v) = —=> e 2% (note that f dvf, = ng)

/vaf

p2

itkx ———5
— Let's putaperturbation at t = 0, fi(x,v) = 2= e 2% (notethat [ dvf; = nje*™)
/vaf

— Then the solution of the kinetic equation becomes

. 1
flx,v,t) = (ng + ne*G70) —— e~V?/2v¢

\ 21}

41 N o fusen



Kinetic Closure: How to mimic kinetic process?

e Kinetic Model

— flx,vt) = ("0 4 nleik(x—vt)) _L  p-v?/2vf
2mv?

— The density evolution becomes

, 2
ikx v

. Y . 2
n(x,t) = fdvf =ny+ny fdve—Lkvte 207 _ ng + Tllelkxe_kzvt t2/2

2TV{
ie. Sn(x t) = on(x,0)e *’vit?/2
e Kinetic vs Fluid

kinetic fluid

e~ KPvit? /2 e~ DKt

Mational Fusion
42 NFR'| search Institute



Kinetic Closure: How to mimic kinetic process?

Joodt e KPvitt/2 _ ! T
kinetic 0 k2?2 2
e—kzv%tz/z
0 1
dt e—Dkzt —_
) or
—
2 v,

Match two time responses ~ match the two areas > D = 1kl

Hammett et al, Phy Rev Lett 64, 3019(1990)
Hammett et al, Phys Fluids B 4, 2052(1992)

43 NERions fusion



Kinetic Closure: How to mimic kinetic process?

 With D, = 2 IVtI the particle flux can be written as I}, = —Dyikn;
. _ 1 rtox ikxpr _— +o ikx,, Lk
In real space, I' = Nor- J_ dke"™™ T, = Ff_w dke™*n, T

Using delta function identities

€
07T62+k2 I2

= f+oo5(kx )dx', §(kx") = 11

= — V2v; f dox ,n(x+x’)xn(x x")

: on
37 ( c.f. conventional closure I' = —D E)

l.e. D is a non-local integral operator

44 N o fusen



45

4-moment (3 parallel, 1 perpendicular) equations:

dn 9 o .5 .
E + utv”U" {] + %Vl]mﬁp+{3 +Evl)md‘¥+lwd(p” + pJ_) =

dD ¥ 1 a4
" m 1(futPy = 1) + T 39 - ,{,+n”+n_v )m=w+{4+5?1]ma‘¥

+de(7p” +p.L —4I'] . -r” +V1T

dp
dtJ- +]k”| (futh_ —n)+f1V”u” —I[ - oy V +r|J_(I+ V‘ + V7 ] w, ¥V
+imd(3 +%Vi - Vi]’qi+ imd(SpJ_ +Py - 3n nvﬂ'" - v4T =
duu
at + 91 (Py + ) + diwoguy + Plog|ysuy =0
Closure coefficients:
v) =(1.232,0.437) v2 = (-0.912,0.362) v3 =(-1.164,0.294)
v4 = (0.478,-1.926) vs =(0.515,-0.958)

Hammett et al, Phys Fluids B 4, 2052(1992)
Beer, Hammett, Phys. Plasmas 3, 4046(1996)
P. Snyder, Ph.D. Thesis (1999)
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Numerical Methods for Kinetic Plasma Simulation

e Continuum (Eulerian) Method

— Discretize 5D/4D phase space, and apply FDM, FVM, FEM

— Computationally expensive, but enable high quality simulation
« Particle-in-Cell (Lagrangian) Method
— Computationally cheap (relative to continuum method)

— Noise issues

e Semi-Lagrangian Method

46 NERI o fusion



Particle-in-Cell Method

for Kinetic Simulation

C.K. Birdsall and A.B. Langdon, “Plasma Physics via Computer Simulation”, McGraw-Hill, 1985
R.W. Hockney and J.W. Eastwood, “Computer Simulation using Particles”, IPP, 1988
W.W. Lee, J. Comput. Phys. 72, 243 (1987)

'
Mational Fusion
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From Klimontovich Equation to PIC

N

0 4 (om Y pm
aF+v-|7F+E(E +E><B )-VUF=O F(x,v,t)=215[x—xp(t)]5[v—vp(t)]
p=

d d
ZXp () =Y (®) gV (6) = GE™[X,(0),¢] + TV (6) x B[, (0),1]

We want simulate N-particle system with Ny < N, G = Zgil 8[x — X,(O]8[v — ()]
N
FrWvG = ) W,6[x— X,y - ()]
p=1

{W,} depends on marker particle loading scheme i.e. how to set {X,,(0), 1},(0)}

— For example, if G(x,v,t =0) < F(x,v,t = 0) -)szl

Ns e _°
&

— More sophisticated schemes to minimize loading noise: \. | ‘/. &
quite starting scheme, optimal loading scheme etc. (J. /.\ o.\‘f
Denavit and J.M. Walsh, Plasma Phys. Control. Fusion 6, f .i' \

BS
209 (1981)) —9




Poisson Equation: —V%¢ = 4mwe/[ dvf

P(x,t) = Z ¢;()S;(x) = Z ¢;(OS(x — x;) a,’l [ N
j J X; ‘

I\
oy
I | WARN
1 | Y
/\k' Ny~ b 1
/ Iy - AN
__,’ P TR TAR A )"/\/ Py “_

If we write electrostatic potential as ¢ (x,t) = X; $;(t)S;(x) using a set of basis function {S; (x)},

the Poisson equation becomes

N
=Y $;(O72S;(x) = 4ref dv F(x,v,0) = dmef dv ) Wys[x = X,®)]8[v - (0]
J p=0

P.M. Prenter, “Splines and Variational Methods”, John Wiley & Sons



Poisson Equation: —V2%¢ = 4me/ dvf

N
_ Z $,(OV2S;(x) = 4mef dv F(x,v,t) = 4me dv 2 W,6[x — X, (0)]8[v — V, (®)]
J p=0

«  Appling [ dx S;(x) on both sides,

Z[ [ dx 75;(x) - 7S;(x)]b; (£) = 4me Z w,s; (X,(®)
J p

* Note that if S is spline function, it satisfies S, (y) = S, (x) A \

D WS (X,0) = D WSk, = dv ) WSy, (08 [x — X,@)]8[v = ()]
p p

p

i.e. the distribution function can be interpreted as a set of particles with spatial shape S(x)

P.M. Prenter, “Splines and Variational Methods”, John Wiley & Sons



Collision in PIC Simulation

« Fokker-Planck equation

2

0 0 0
5. f W) == la@)f W, O] + — [FW)f (v, t)]

* |t can be interpreted as a distribution function for particles with characteristic equation

dv

= a@ )+ w050,  EENED) =8¢~ 1)

* Due to the drag and diffusion on the right hand side, particle trajectories are scattered as
Av = aAt + 2v/3 (R — 0.5)/2B8At

R is a random number in [0, 1]

J. Grasman and O.A. van Herwaarden,
“Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications”, Springer



Example: 2" order Runge-Kutta

dz
— =7(z, @

Diagnosis

Calculate charge density using 2{}

Solve Poisson equation for ®"

Push Particles

1
n+s

2 =n At"-’n n
Z = Zp +7Z(zp,cb )

p

1

Tl+2

Calculate charge density using z,

1
Solve Poisson equation for ™2

Push Particles
1

> _Nnts 1
n+l _ 2n =02 n+=
Zy " =2zZy +AtZ(z, °, P 2)
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N-Particle System

* Fourier representation of potential and distribution function

L ~ 1 .
d(x) = Ze‘kxcpk, b, = T [ dxe ™ *g(x)

k

flx,v,t) = Z Wp(S(x — xp)(S(v —vp), fk(t) = % f dxe‘ikxf(x, v, t) = % Z Wpe_ikxp6(v — vp)
D P

* Poisson equation in Fourier space
—V2® = 4np = 4me[ dvf

- 41re

k2d, = - wye~*xp

 Apply afilter S, on RHS

4mte
"' — —ikx
——Sk E wpe P

~ 2 (4me —ik(xp—x, 1)
- | =(m) St ), 0 e

p p/



N-Particle System

p D
For randomly scattered particles and N > 1, we can simplify RHS

_ 2 4re e 2, o
[P z(LkZ) ZWF(W) Sk(W*)N

4me?\* 4mne?\* 1 L §2 (y?

e@k ?
T

fluctuation energy 1

thermal energy VN



Dielectric Response Function and
Fluctuation Dissipation Theorem

Suppose we put an external test charge

Pext (X, 1) = 2 Pext (k, w) exp[i(kx — wt)]
k,w
Then, plasma will respond to this external perturbation and generate density fluctuation p(k, w)
If we write the total charge density as p;,:(k, w), dielectric response function is defined as

Pext (k, w)
Prot(k, w) = pexi(k, w) + p(k, w) = eex(tk w) €(k, w)pror(k, ) = pexe(k, w)

Fluctuation Dissipation Theorem tells us how system responds to small fluctuations and

provides useful information for fluctuation spectrum

L T
—|8E(w, k)|? = —— Im
21 0]

=>» Lower bound of fluctuation (or noise) for N-body system



Fluctuation and Dissipation Theorem:
Implication for PIC simulation

PIC simulation employs finite number of particles, actually far fewer than the real number

of particles (e.g. in medium fusion device N,.q ~ 10?1 > N, = 10°~ 1012)
Fluctuation (or noise) from simulation should be much bigger than physical ones
However, we have numerical tools to control too big fluctuation (or noise):

— Number of particles 2

S (w?)

ea)k
Apk* N

T

— Particle shape function S
— Spatio-temporal discretization Ax, At

The strategy is to employ these to suppress noise to a level not to affect key physics



Nreal > Nsimulation

particle shape,
filtering, smoothing, errors etc.



Summary

* Reduced kinetic models for magnetized plasma

— 5D gyrokinetic, 4D bounce-averaged kinetic, 3D fluid with kinetic closure

— These enable us to perform kinetic simulation with reasonable computing cost
* Numerical methods for kinetic simulation of magnetized plasma

— Particle-in-Cell method

— Fluctuation dissipation theorem to understand discrete particle noise

« Verification and benchmark test are necessary, and experimental validation

should be the next step = very active area of on-going research in fusion
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