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Among many possible applications of plasmas. ..
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Simplifying the picture to obtain a physical picture
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Stmplified picture for the interested issues
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* Plasma confined by magnetic field
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Stmplified picture for the interested issues
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* Plasma confined by magnetic field
* Temperature profile:
hot in the core, cold at the edge
* Goal:
- Maintain the profile (confinement)
- Make it as sharp as possible
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Plasma turbulence seems to relax the sharp profile
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v Effect of macroscale profiles on turbulence (closing the loop)
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Raise valid and well-defined questions to achieve building an economical fusion reactor

T
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Core edge 7

(magnetic axis)

* What is the spatial structure of turbulent “eddies”? Amplitude vs. scale.

* How does it change under shear? Does amplitude decrease? And/or shape changes?

* What combination of rotation profile and magnetic geometry gives minimum transport?
(Careful: shear can drive turbulence!)
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Critically balanced turbulence

> (Critical balance

v If a medium can support parallel (to the B-field) propagation of waves (and/or particles)
and nonlinear interactions in the perpendicular direction, the turbulence in such a medium
would normally be “critically balanced,” meaning that the characteristic time scales of
propagation and nonlinear interaction would be comparable to each other and (therefore)
to the correlation time of the fluctuations.

VT, =1 ( U iy )

-
L If critically balanced.
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Critically balanced turbulence has been observed in . ..

> Gyrokinetica numerical simulation of 1on-temperature-gradient turbulence
v Barnes et al. PRL, 107, 115003 (2011)
> Theory
v Goldreich et al. Astrophys. J. 438, 763 (1995)
v Cho et al. Astrophys. J. 615, 141 (2004)
v Schekochihin et al. Astrophys. J. Suppl. 182, 310 (2009)
v Nazarenko et al. . Fluid Mech. 677, 134 (2011)
> Observations and simulations of MHD
Horbury et al. PRL 101, 175005 (2008)
Podesta, Astrophys. J. 698, 986 (2009)
Wicks et al. Mon. Not. R. Astron. Soc. 407, .31 (2010)
Cho et al. Astrophys. J. 539, 273 (2000)
Maron et al. Astrophys. J. 554, 1175 (2001)
v Chen et al. Mon. Not. R. Astron. Soc. 415, 3219 (2011)
> Kinetic plasma turbulence in space
v Cho et al. Astrophys. J. 615, .41 (2004)
v TenBarge et al. Phys. Plasmas 19, 055901 (2012)
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Use various time scales for turbulence characteristics

> Fluctuations in a magnetized toroidal plasma are subject to a number of physical effects, which can
be classified in terms of various #me scales:

1. Drift time (associate with the temperature/density gradients): 7.

2. Particle streaming time (along the B-field as it takes around the torus): 7,

3. Turbulence correlation time (in the moving frame, 1.e., Lagrangian approach): 7,

4. Nonlinear time (of the fluctuations advected across the B-field by fluctuating v,): 7,
5. Magnetic drift time: 7,

6. Collision (ion) time: v;1

7. Shear (perpendicular) time of the plasma rotation: 7, (y1)

NQe oo
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Some thoughts on turbulecne: what 1. ..

1 _PiVYmi. 1 _VYmi VY.
Ty =75 Tg = ~ > Te

i
QJ’J’%ME 5l /\(the connection length)

What IF (so far mere assumptions). ..

T ~ At the “energy injection scale”; the linear driving time is comparable
¢ *I o the turbulence correlation time.

T o~ T o Critical balance

Then, we have

A A

T y ~T Stwhose consequence 1s ~
P, L;

We found zbased on local equilibrium quantities!!!
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Al starts from careful OBSERLVATIONS!

From MAST tokamak

2D BES system
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An example of the observation by 2D BES system

Channels: 8 (radial) x 4 (poloidal)
Radial span: ~ 16 cm (dR = 2 cm): scannable
Poloidal span: ~ 8cm (dZ = 2 cm)

dt: 0.5 microsecond
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Turbulence correlation time vs. drift time
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1 1 10 100 measured turbulence
T, lusec] knows #he linear drive!
100 1 1000 -
Note:
g § 100 For 7, < 10us, T+, ~ T«
= 10 = For 7. 210us, ts, ~ T4,
e L: 10 Thus, we cannot rule out ion-scale
electron drive. However, we find
1. | 1, | no clear correlation of 7., with 7,
1 10 100 1 10 100 1000 or with any of the other time
T [usec] T [usec] scales discussed later.
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Turbulence correlation time vs. parallel streaming time
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T, ~ Ty > the

measured turbulence
knows the parallel system
size. (perhaps through the

critical balance?)

Note: Although, this result cannot
be used to state (conclusively) that
we have ‘critical balance’, the
result is at least consistent with it.
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Turbulence correlation time vs. magnetic dyift time
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T.~ Ty >

unexpected result. But,

this sets 2

Note: As we will see later, a
consequence of this result is
anisotropic structure of turbulence in
the perpendicular plane which
clashes with many reported results

of 2]~ [2
Spherical vs. Conventzonal? 1 don’t
know.
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How about the perpendicular shearing time?
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shearing rate was not
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Note: Most of our points satisfy
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Summary

> We have
\ TCNT*NTSINTM

v 7.1s not correlated with 7., (v is at least an order of magnitude longer than other times).

> Let’s see what this means.

T, ~Ty= Pi Vi Vo :@va where L, =min{Lp, L }, Aqur—~
AL A |p, L A

7
This is really an assumption.

SV, U, 2] A
T*NTszI thi . —th y=d 7~

2R A |p, R

> And, we have an anisotropic structure of turbulence in the perpendicular plane
whose ratio is set by

2 R
2 L
NQe: oo
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2D BES system measures local density fluctuations.

“ Detector: 8 radial x 4 poloidal channels
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Radially: scannable
Polidally fixed (Z=-3,-1,1, 3 cm)
k, k. < 27/(2X2cm) ~ 1.6 cm, i.e. ion-scale.

But, point spread functions will correct this
numbet,

Digitization frequency: 2 MHz
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Spatio-temporal correlation function

C(4r =0, AZ, Ar)
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Spectrogram & poloidal correlation function
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Radial correlation function
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Lemporal correlation function
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Obtaining density fluctuation level on/n

(@)
0.85
<
s
0.70 L - Photon noise is measured to
0.205 0.205 0.207 0.203 0.209 . :
Time [sec] remove it from the signal.
3/ (b) .
T We discard data when the
_ UI background level is
o significant. (‘Significan? is a
5 1 HHD JH' ﬂ‘ /1 - ”H“'B [:[Hﬂlﬂt qualitative word. If you want
i il ‘E ;ﬂﬁjf | ] (' to know how I do it, ask me

g - at some other time as

Ph. noise subtracted BES .. . .
-3/ : explaining 1t takes time.)
-4 =20 0 20 40
Ar [user]
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What about parallel correlation length?

P

I make a bold (or could sound audacious to some of you) assumption, but an educated
one, I believe.

I conjecture that “at the energy injection scale, [Fknows either zhe system size (in parallel
direction) or perpendicular shearing rate of mean flow.”

r

B .
5L - BP Note: in conventional tokamak A ~ 7gR
v, .| -
(S (= ’h”) ift y.>1
Te
NQe: o
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So, the physical quantities we have from experiments are

> e measure

v From BES: (2] (2] T, On/n (~eq/T,) and g from my conjecture.

v From Thomson: n, T,

v From CXRS: Uy, T, (assumed to equal the C¢* temperature and flow velocity.)
v From MSE: magnetic pitch angle a

v From pressure- and MSE-constrained EFIT: B-field information

> Using 39 double-null-diverted discharges.
v With no pellet injection and no RMP (because I do not know what they do to turbulence.)
v Every 5 ms.

v During the MHD free periods only (as the employed statistical techniques becomes less reliable).
Aging, I do this ‘quantitatively’, not with my eyeballs.

N Qe\fﬁu;;‘f & Quantum
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Nonlinear time estiziation

Nonlinear term the equation: bVon

T_1=6L;V CXVCP .V = 1 Uthlap Uthlplap
B o, T RBIEIT

/ /

> Since we do not have measurements of e@/T,, assume e@/T, = on/n.

1. This assumption is just for the ‘magnitude only.” (surely, if they are in-
phase, then we have no turbulent transport!)

2. Above assumption ignores trapped particles and, more importantly, also
does not apply to ion-scale zonal flows (because on/n associated with zonal
component ¢ is zero at the mid-plane).

> Thus, with the assumption we have

P T,on
( ) Zl’g, T n

NFP Lab. 2 NGe
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Non-zonal component of nonlinear time vs. turbulence correlation time

1000 @

= ’
) . T
» 100 ™ /
7 ,
= /
= 10 ! z .
( , | T,V 1s always larger than 7, and
. m L/L, observed to have inverse rather than
1./ 0.0 5.0 ] direct correlation with 7...
110 100 1000
T [usec]
c

* Since turbulence clearly cannot be saturated by linear physics alone, our estimation does not
capture the correct nonlinear time of the system.

*  So, we conjecture that the coupling to the zonal flows, invisible (directly) to BES, dominates over the
nonlinear interaction between the drift-wave-like fluctuations represented by 7, N

NQe: oo
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Amplitude of zonal flow as a function of collistonality
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Estimate turbulent flux (strictly speaking for Ty, < 1)

A iftye<l Bl B R &
vt itgye>l  p, L p, R

ZF ZF
-1 _ | ViniPi ap -1 _ | VmiPi |, @ ~0.8+0.1
T C - ~ T % - ) NZ ‘/*I
) T, 2 | g
Turbulent diffusivity
X turb 6 UZ,E c >
v 0 NZ
where oU~ C (note: zonal component has no net radial transport.)

B
Turbulent heat flux

3
Q ~ nf% (very approximately!) o (Lﬂ) Stff transport!

Ti Ti
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