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0. Motivation for fast RF diagnostics

To understand the role of radiative dissipation and viscous damping† in 
magnetic reconnection (MR) and subsequent macroscopic transport events in 
high-temperature magnetized plasmas (e.g. burst of edge-localized modes, 
sawtooth, disruptions in tokamaks)

Patchy MR induces field-aligned localized current filaments = shear Alfven 
waves and/or whistler waves [1]

 Radiation [2] and Viscous damping [3] of 
the waves  Fast reconnection. 

[1] Bellan, PoP 1998. [2] Yoon and Bellan, PoP 2018.
[3] Yun and Ji, arXiv
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Tokamak plasmas often form an 
edge transport barrier called 
pedestal just inside the last 
closed flux surface, resulting in 
an overall enhancement of the 
confinement (so called H-mode).

I. Edge-localized mode (ELM)
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 Edge-localized instability mode (ELM)†
can occur driven by large 𝛻𝑝0 (ballooning, 
interchange), 𝐽0 (kink), and/or 𝛻𝑉0
(d’Angelo) in the pedestal.

† Kaye (PBX), 1984;    Keilhacker (Asdex), Physica Scripta 1984;
Kamiya (JT-60U), Sci. Rep. 2016
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† Yun, PRL 2011; 
Yun, PoP 2012; 
Kim M, NF 2014; 

Lee J, PRL 2016;

‡ Lee JE, NF 2015
Lee JE, Sci. Rep. 2017

(1) Nonlinear saturation of eigenmode

(2) Abrupt structural transition into nonmodal state ‡

(3) Explosive localized burst and collapse of the pedestal.

Common features in the ELM dynamics † on the KSTAR

KSTAR #4431.
Images taken by a 
mm-wave camera 
called electron 
cyclotron emission 
imaging (ECEI)
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3rd burst during the ELM crash event

• Fast burst < 10 µs
• Localized burst (both poloidally and toroidally)
• Convective transport

*Yun, PRL 2011;
Lee JE, Sci. Rep. 2017

𝛿𝑇ECE
𝑇ECE

Burst of the nonmodal (solitary) filament
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1) Why does the ELM saturate? †

2) What triggers the transition to 
nonmodal filament? †

3) Why is the burst so rapid and 
localized?

† Oh YM, AIP Adv. 2018;
Leconte M, Contrib. Plasma Phys. 2016;
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Band-pass 
filter

Amp. ~ 30dB

Spiral antenna_S:
2 – 6 GHz
VSWR ~ 1.8 typ.

Bowtie antenna: 
100 – 800 MHz
VSWR ~ 2 typ.

Band-pass 
filter

Amp. ~ 30dB

Amp. ~ 30dB

Band-pass 
filter

Fast digitizer

(5 GSa/s,

1 GHz bandwidth)

Filter–bank 
RF spectrometer

(16 Ch, 500 kSa/s, 
30 – 800 MHz)

Fast digitizer

(40 GSa/s, 

20GHz bandwidth)

Spiral antenna_L:
100 – 800 MHz
VSWR ~ 2 typ.EM wave

II. Fast RF diagnostics* assisted by ECEI

* Thatipamula SG, PPCF 2016;
Leem J, JINST 2012
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Bowtie antenna

Spiral antenna

RF antennas installed in KSTAR (2017)
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Dynamic RF spectrum at the ELM burst

Shot #11475. H-mode discharge
𝐵0 = 2.3 T, 𝐼𝑃 = 500 kA, 𝑛e0~2.5e19 m

−3,
Wtot = 240 kJ, NBI = 1.5 MW
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A. Harmonic Ion cyclotron emission (ICE) 
before the appearance of nonmodal 
filament

B. Intensified high-harmonic ICE with the 
appearance of nonmodal filament

C. Rapid transition into wide-band
emission at the onset of the filament 
burst

D. Short burst with frequency chirp during 
the pedestal collapse

III. RF emission spectra during ELM evolution

* Kim Minho, NF 2018

(t0 = 2.760179 s: onset of the collapse)

KSTAR#16176, RF spectra
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Stage A: Harmonic ICE

The spacing between the peaks is deuterium cyclotron frequency (fcD) at the 
outboard edge region. (R = 221 ± 2.3 cm, fcD = 11.1 ± 0.1 MHz for this example)

t0 – 150 ~ t0 – 100 μs

* Kim Minho, NF 2018

Harmonic number
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Phase relationship among the harmonics? YES

• Amplitude modulation with 𝑓𝑐𝐷
• Peaks spaced by 𝜏𝑐𝐷 = Τ1 𝑓𝑐𝐷 in auto-

correlation
 Temporally (or spatially) localized 

excitation
Δ𝑡 = 0.5 𝜇s
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ECE images of (1) and (2), 
(0.5 – 60 kHz FFT band-pass filter)

Magnified Fast RF spectrogram
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Stage →B: Intensification of high-harmonic ICEs

coincides with the 
emergence of a 
nonmodal filament.

* Kim Minho, NF 2018



(3)           (4)            (5)            (6)           (7)            (8)
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Stage →C: Rapid transition into wide-band emission 

coincides with the burst of the 
nonmodal filament.

t0

* Kim Minho, NF 2018
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Stage D: Additional short bursts with chirping

• During the pedestal collapse, 
additional filament bursts occur 
several times with rapid up/down 
chirp in RF spectrum.

• The chirping occurs in step of fcD at 
outboard mid-plane edge region.

• Sometimes, chirpings with fcH are also 
observed.*

* Thatipamula SG, PPCF 2016
Chapman B, NF 2017
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What is causing the harmonic ICE?

• Energetic beam ions or fusion-born ions Magneto-
acoustic Cyclotron Instability (MCI)

• Finite 𝐸𝑟 IC waves (w/ finite 𝑘𝑧)

• Parallel shear flow (Mikhailenko PoP2017)

IV. Discussion
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Candidate #1: Magneto-acoustic ion cyclotron 
instability (MCI)

• In 1990s, harmonic ICEs were 
observed in JET deuterium-tritium 
(D-T) experiments:

1) Harmonics of fcα (or half-
harmonics of fcH) in the outboard 
edge region are detected. 

2) ICE intensity (2nd harmonic) 
linearly proportional to the 
neutron source rate.

• These observations imply that the 
fusion-born α particles may be 
associated with ICE in JET D-T 
experiments.

Cottrell GA, NF, 1993

(left) ICE spectrum measured by ICRH antenna 
(right) ICE intensity vs. neutron source rate
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• Fast ions with large radial excursion can make the 
population inversion in velocity space at the outer 
mid-plane edge region. This can drive a fast-Alfvénic
instability called magneto-acoustic cyclotron 
instability (MCI)†.

† Dendy RO, NF 1994; 
Dendy RO, EPS 2017

* Chapman B, NF 2017 

Poloidal projection of 3 MeV fusion 
proton orbits (produced by D-D fusion)

(Stage D) The rapid fcH chirping can be caused 
by the rapid decrease/increase of local electron 
density during the pedestal collapse.*
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Candidate #2: IC waves driven by Er

• In H-mode discharges, strong radial electric field 
(𝐸𝑟 ~ 10 kV/m, 𝑉𝐸 ~ 10 km/s) with large 
gradient (𝜕𝑉𝐸~ 1 MHz) is formed near the 
plasma periphery(1,2).

• 𝐄 × 𝐁 velocity and its shear can be intensified 
near the onset of the pedestal collapse(3).

• Experiments(4) and modeling(5) for ionospheric 
plasma suggested that localized 𝐄 × 𝐁 flow can 
drive IC waves.

(1) Kamiya, Sci. Rep 2016; (2) Lee KC PoP 2017.
(3) Morales JA, NF 2016
(4) Tejero EM, PRL 2011
(5) Peñano, J. Geophys. Res. 2002
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Maxwell-Boltzmann distribution + Integration along the unperturbed trajectory

 For given 𝐸0 𝑥 , 𝜔𝑟 , and 𝑘𝑦 , the 

wavenumber 𝑘𝑧 can be determined 

from the dispersion relation.

Spectrum at 

(calculated where                        )
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V. Summary

• Ion cyclotron harmonic waves are easily excited in the 
boundary of tokamak plasma. 

Strongly correlated with edge MHD instabilities: 

- Intensified high harmonic ICE ~ Nonmodal filament

- Wide-band emission ~ Filament burst (magnetic 
reconnection)

• Useful for study (diagnostic) of edge MHD instabilities and 
energetic ions in magnetized plasma.
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Implication of whistler waves and ICEs on magnetic reconnection

In high-temperature magnetized plasma, typically 𝜂𝜋 ∼ 𝜂rad ≫ 𝜂coll Fast reconnection.

e.g. For a magnetic reconnection event with length and time scales 𝜆|| = 1 m,  𝜏𝑟𝑒𝑐 = 10 𝜇𝑠 in high-temperature 

hydrogen plasma with 𝑇𝑒 = 2 keV and 𝑛𝑒 = 5 × 1019 m−3 (→ 𝛿𝑒 ≈ 1 mm, 𝜏|| ≈ 0.015 𝜇𝑠,≫ 𝜏𝑒𝑖 ≈ 40 𝜇𝑠)

𝜂𝜋 ∼ 5 × 10−5 Ω ⋅ m
𝜂rad ∼ 10 × 10−5 Ω ⋅ m

: viscous resistivity

: radiative resistivity

: collisional resistivity

≫ 𝜂coll ∼ 2 × 10−8 Ω ⋅ m

† Yun and Ji (to be upload to ArXiv)

Viscous dissipation Work done by 𝐽 × 𝐵 force
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