

Plasma Heating & Acceleration in Collisionless Magnetic Reconnection

Masahiro HOSHINO University of Tokyo

Solar & Stellar Flare, Magnetosphere, Accretion Disks, Pulsar Wind-Nebula, Astrophysical Jets,...

> **Rapid Energy Dissipation & Nonthermal Particle Acceleration**

Magnetoluminescence, Blandford+, SSR, 2017

Magnetic Reconnection

magnetic field energy (B)

Inflow and outflow around Xtype region, associated with inductive electric field (*E*) $E = B \times \frac{V_{in,out}}{c}$

Giovaneli, Nature, 1949; Sweet 1958; Parker 1957; Petschek 1964; Furth, Killeen & Rosenbluth (FKR)1964;... Alfvénic outflow jet (V_A)

$$V_{out} = V_A$$

magnetic energy dissipation at X-type region

$$E = \eta J$$

Reconnection signatures

- flow reversal (Vx)
- weak magnetic field (Bx)
- hot electron & ion plasmas (Te,Ti)

Oieroser et al. 2002

Observations of Ti/Te

magnetosphere

$$T_i/T_e = 5 \sim 10$$

Hot ions are believed to be generated during magnetic reconnection...

(cf. Baumjohann+ JGR 1989; Eastwood+ PRL 2013; Phan+ GRL 2013)

Wang+ JGR 2012

$T_i \& T_e$ Heating in PIC simulation

Motion of flux tube in 2D

$$\vec{B}(x,y) = \nabla \times A_z(x,y)\vec{e}_z + B_z(x,y)\vec{e}_z$$
$$\frac{dx}{B_x(x,y)} = \frac{dy}{B_y(x,y)} \Leftrightarrow dA_z(x,y) = 0$$

If
$$\vec{E} + \frac{1}{c}\vec{v} \times \vec{B} = 0$$
,
then $\left(\frac{\partial}{\partial t} + \vec{v} \cdot \nabla\right) A_z(x, y, t) = 0$.

Time History of N in Flux Tube

before reconnection

25

ל ∧

35

V

с Т

25

35

t V

T-V Relations

(V : Volume of Flux Tube)

Plasma Heating (Equation of State)

$$\frac{D}{Dt}\left(\frac{p}{\gamma-1}\right) = \left(\frac{p}{\gamma-1}\right)\frac{\gamma}{\varrho}\frac{D\varrho}{Dt} + Q_{heat}$$
Adiabatic Non-Adiabatic

$$Q_{heat} = \eta J^2 + \text{others}$$

Ohmic Heating Slow Shock, Turbulence etc.

(V : Volume of Flux Tube)

Time history of Ti and Te

Mass dependence

Thermodynamics of Reconnection

Effective Ohmic heating model

$$\frac{\Delta T_i}{\Delta T_e} = \frac{Ion \, Heating}{Electron \, Heating} = \frac{E \cdot J_i \Delta_i d_i}{E \cdot J_e \Delta_e d_e}$$

meandering motion in diffusion region

Joule heating model (I)

 $\frac{\Delta T_{i}}{\Delta T_{e}} = \frac{Ion \, Heating}{Electron \, Heating} = \frac{E \cdot J_{i} \Delta_{i} d_{i}}{E \cdot J_{e} \Delta_{e} d_{e}} = \frac{J_{i} \Delta_{i}}{J_{e} \Delta_{e}} \left(\frac{m_{i}}{m_{e}} \frac{T_{i0}}{T_{e0}}\right)^{1/4}$

Joule heating model (II)

$$\frac{\Delta_i}{\Delta_e} = \left(\frac{\nu_{ix}}{\Omega_i} \frac{\Omega_{ce}}{\nu_{ex}}\right)^{1/2} \quad \therefore \quad \frac{J_i \Delta_i}{J_e \Delta_e} = 1$$

Joule heating model (III)

$$\frac{\Delta T_i}{\Delta T_e} = \frac{Ion \,Heating}{Electron \,Heating} = \frac{E \cdot J_i \Delta_i d_i}{E \cdot J_e \Delta_e d_e} = \left(\frac{m_i}{m_e} \frac{T_{i0}}{T_{e0}}\right)^{1/4}$$

. .

Initial temperature dependence

Thermodynamics of Reconnection

Summary (Plasma Heating)

Energy Partition of Ion & Electron during Magnetic Reconnection

Two distinct heating stages:
 Effective Ohmic heating

$$\frac{\Delta T_i}{\Delta T_e} = \left(\frac{m_i}{m_e} \frac{T_{i0}}{T_{e0}}\right)^{1/4}$$

Adiabatic Compression

$$\frac{D}{Dt}(TV^{\gamma-1}) = 0$$

Energetic particles in Solar flares

(GOES class X4.8)

Emslie+ JGR 2004

electrons up to tens of MeV, ions up to tens of GeV Lin+ ApJ 2003

Gamma ray flares in Crab

Enhancement of gamma ray flux ($E_{\gamma} > 100 \text{MeV}$)

Fermi LAT/R. Buehler

Radiation-reaction limit for synchrotron photon energy

Acceleration
$$F_e = eE$$

Radiation loss $F_{rad} \approx \frac{2}{3}r_e^2\gamma^2 B_{\perp}^2$
 $F_e = F_{rad}$ $\gamma_{rad} = \left(\frac{3eE}{2r_e^2 B_{\perp}^2}\right)^{1/2}$
Synchrotron photon energy
 $\varepsilon_{max} = \frac{3he}{4\pi mc}B_{\perp}\gamma_{rad}^2 = \frac{9}{4}\frac{mc^2}{\alpha_F}\frac{E}{B_{\perp}}$
 $E = B_{\perp} \rightarrow \varepsilon_{max} = 160 \text{ MeV}$
 $a_F \approx 1/137$
fine structure const.

Particle acceleration in X-type region

Pritchett PoP 2005

- Linear X-line acceleration
 - Direct resonance of particle with inductive electric field in weak magnetic field region
 - Almost free from radiation loss
 - Energetic particle flux is low because of the limited size of Xline

Speiser 1965

Acceleration in magnetic field pileup region

- Acceleraton in B-file pileup region
 - gradB & curvB drift acceleration around the magnetic field 2pileup region
 - If adiabatic, $p_{\perp}^2/B=const$.
 - Energetic particle flux is high

Acceleration inside magnetic island

Drake+ Nature 2006

- Shrinking Island Acceleration
 - trapped particles inside the magnetic island
 - If adiabatic, p_{//}L=const.

Maximum attainable energy
$$E_{max} = eEL$$

Relativistic Reconnection (electron & positron)

Non-thermal particle acceleration due to relativistic Speiser motion

Zenitani & MH, ApJ 2001

Large-Scale Evolution of MRX

Power-Law Spectrum in Reconnection

• Acceleration rate

 $\frac{d\varepsilon}{dt} \approx eEc$

• Loss rate

$$\frac{1}{N}\frac{dN}{dt} \approx -\frac{1}{\tau(\varepsilon)} \approx -\frac{m_0 c^2}{\varepsilon} \frac{eB}{m_0 c}$$

• Energy Spectrum

$$N \propto \varepsilon^{-s}$$
 $s \approx E / B \approx 1$

Plasmoid-dominated Reconnection

Sironi & Spitkovsky ApJL 2014

Harder Energy Spectrum for large σ

Sironi & Spitkovsky ApJL 2014

(cf. Cerutti+ ApJ 2012; Melzani+ AA 2014; Guo+ ApJ 2015,....)

Main Acceleration occurs around X-type neutral point,

In addition, stochastic acceleration during the interaction with many plasmoids

Acceleration in many magnetic islands

Acceleration in Many Magnetic Islands

Reconnection in Striped Pulsar Wind

0.4

0.2

0.0

 σ problem: High σ (inner magnetosphere) -> Low σ (Nebula) , magnetic field dissipation is necessary

Simulation Setup: 2D PIC, Split-Monopole B model, Radiation reaction,

Cerutti & Philippov AA 2017

Reconnection in Accretion Disk

Courtesy of Kato

MRI and Reconnection in PIC simulation

β=1536, Kepler rotation Ω
300^3 grids 40 particles/cell,
periodic shearing box, electron-positron plasma

MH ApJ 2013, Shirakawa & MH ApJ 2014, MH PRL 2015

Basic Equations

Local, non-inertia frame rotating with angular velocity Ω

$$\begin{aligned} \frac{1}{c} \frac{\partial \vec{B}}{\partial t} &= -\nabla \times \vec{E}, \\ \nabla \cdot \vec{B} &= 0, \\ \frac{1}{c} \frac{\partial}{\partial t} \left(\vec{E} - \frac{\vec{v}_0}{c} \times \vec{B} \right) &= \nabla \times \vec{B}^* - \frac{4\pi}{c} \vec{J}, \\ \nabla \cdot \left(\vec{E} - \frac{\vec{v}_0}{c} \times \vec{B} \right) &= 4\pi \rho_c, \\ & \text{where } \vec{v}_0(r) = \Omega_0 \vec{e}_z \times \vec{r} \\ \frac{d\vec{x}}{dt} &= \vec{v}, \\ \frac{d\vec{p}}{dt} &= e(\vec{E} + \frac{\vec{v}}{c} \times \vec{B}) - m\gamma(2\vec{\Omega}_0 \times \vec{v} - 2q\Omega_0^2 x \vec{e}_x). \end{aligned}$$

Keplerian disk with a tidal expansion

Particle Acceleration in Accretion Disks

Energy and Stress Tensor Evolutions

Initial plasma $\beta = 1540$, active phase $\beta \sim O(1)$ quasi-steady-state $\beta \sim O(10)$

 α (kinetic) ~ O(0.1) α (kinetic)/ α (MHD) > 10 -100

Summary (Particle Acceleration)

- Many astrophysical objects suggest that magnetic reconnection can generate nonthermal particles
- Plasmoid-dominated reconnection with many magnetic islands (X-type acceleration, 1st order Fermi acceleration, rapid energy dissipation,...)
- Reconnection in global astrophysical systems such as accretion disks & pulsar wind (nonthermal particles, enhanced angular momentum transport,...)

