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Chorus Emission due to Injection of Energetic Electrons 

[Santolik, Gurnett, Pickett, Parrot, Cornilleau-Wehrlin, JGR, 2003]

Cluster observation
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[Kletzing, 2014]
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[Santolik et al. GRL 2014]



Whistler-mode Triggered Emissions

EMIC Triggered Emissions

[Pickett et al., GRL, 
2010]

[Kimura et al., JGG, 
1990]



[Summers et al., JGR, 1998]
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HISS



Test Particle Simulation of Nonlinear Wave Trapping and 
Acceleration of Trapped Particles (10 – 100 keV)

Wave
Electrons

[ Omura and Summers, JGR, 2006 ]



 Inhomogeneity Factor 

Nonlinear Dynamics of Resonant Electrons

[Omura et al., JGR, 2008]







Wave Equations

JE > 0 JE < 0





Nonlinear Wave Growth due to Formation of 
Electromagnetic Electron Hole

[Omura et al., JGR, 2008]
Maximum  -
JE



[Katoh and Omura, 2011]

Frequency Sweep Rate Dependence on Wave Amplitude at Equator, 
which is controlled by  Energetic Electron Density



Electron Hole for Nonlinear Wave Growth 

[Hikishima and Omura,  JGR, 2012]



Rising-Tone Emissions Triggered by Waves with Different Amplitudes

[Hikishima and Omura, JGR 2012]



 ( > 0  : Electron Hole)

Linear Dispersion Relation

Nonlinear Dispersion Relation

whereAssuming

Nonlinear Frequency Shift

Optimum Wave Growth Condition

Nonlinear Transition Time



Optimum Wave Amplitude and Threshold Amplitude

Electron Hybrid Simulation            
[Katoh and Omura, 2007]



h
Equator

Nonlinear Wave Growth through Propagation : Convective Instability

Self-sustaining Mechanism



Frequency and Amplitude Variation of Chorus: Model 1

[Omura et al., JGR, 2008, 2009]
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Threshold Amplitude

Optimum Amplitude

[Kurita et al.,　JGR, 2012 ]
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Wave Observation, Van Allen Probe A, 8 June 2014 
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[Kletzing, 2014]



[Foster et al., JGR, 2017]

Subpacket Structure in Chorus Element

 Subpackets



Reproducing chorus sound
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[藤田素子 提供]



Dawn Chorus in Indonesia

Subpacket Structure in Dawn Chorus in Indonesia 
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Formation of Electron Hole and 
Bump

 [Hikishima et al., JGR, 2010 ]





Chorus emissions

~ 50 keV electrons

~ 150 keV electrons

2.6 MeV electrons

[Foster et al., 2017]

Rapid-acceleration of MeV Electrons

!36



Relativistic Turning Acceleration （RTA) Ultra-Relativistic Acceleration (URA)

[Omura,et al., 2007] [Summers and Omura, 2007]

Two Nonlinear Acceleration Processes

!37



Chorus Waves

[Foster et al., 2017]
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Numerical Green’s Functions

[Omura et al., 2015]

!39



Test particle simulation: 
Linearity

Green’s function

[Omura et al., 2015]

Numerical Green’s Function Method

!40
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[Li et al., JGR, 2011]
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Constant influx: 10 – 30 keV electrons

!43[Kubota and Omura, JGR, 2018]



(3000 cycles) (6000 cycles)

Differential Electron Flux (Simulation and Observation)



EMIC Rising-tone Emissions

  [Omura et al.,JGR, 2010 ]   [Shoji and Omura, JGR, 2011,2012, 2013,2014 ]

Hybrid Code SimulationsNonlinear Wave Growth Theory

  [Nakamura et al., JGR,  2014]

Outside PlasmapauseRadiation Belt Slot Region 

  [Sakaguchi et al.,GRL, 2013 ]

[Pickett et al., GRL, 2010] 

Akebono
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EMIC Rising Tone 
Emissions 
with Sub-packets

[Shoji and Omura, JGR, 2013]



[Engebretson et al., JGR, 2015]

EMIC rising-tone emissions



Anomalous Cyclotron Resonance

The second-order resonance condition 

The first-order resonance condition 

[Omura and Zhao, JGR, 2012.2013]



Depletion Echo



Electron Hill  
for Falling Tone

Electron Hole  
for Rising Tone     

[Nunn and Omura, JGR, 2012; Omura, Nunn, Summers, AGU Monograph, 2012]

Equator

Nonlinear Wave Growth near Equator

h

S > 0 S < 0



[Summers et al., JGR, 2014]



[Tobita and Omura, PoP, 2018]



Incoherent Waves Coherent Waves

[Tobita and Omura, PoP, 2018]



Separability Criterion
Assuming a hiss emission comprising n coherent waves, we have n trapping 
potentials in the velocity phase space.

25

15

5

We assume that the frequencies are 
separated so that there is no overlap 
of the trapping potentials.



Optimum and Threshold Amplitudes Nonlinear Transition Time

Linear Growth Rate Nonlinear Growth Rate

[Omura et al., JGR, 2015]



[Nakamura et al., GRL, 2016]



Formation of Electron Hole (rising tone) and Hill (falling tone)   

hiss element  
= chorus subpacket

[Omura et al., JGR, 2015]



Case 1: near Equator Case 2: off Equator



Summary 1

• Absolute Instability:  
　　　　Rising Tone: Electron Hole 
          Falling Tone: Electron Hill 
• Optimum Amplitude 
• Threshold Amplitude 
• Sub-packet Formation 
• Convective Instability 

HISS

[Summers et al., JGR, 1998]



1. Rapid formation of the relativistic 
electron  flux (0.5 - 6 MeV) takes place 
through nonlinear wave trapping by 
whistler-mode chorus emissions near the 
equator. 

2. A substantial amount of relativistic 
electrons (0.5 – 6 MeV) is precipitated 
through nonlinear wave trapping by EMIC 
rising-tone emissions.

Summary 2
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