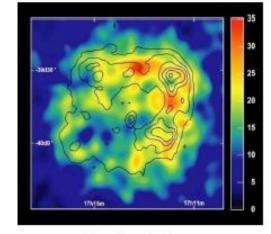
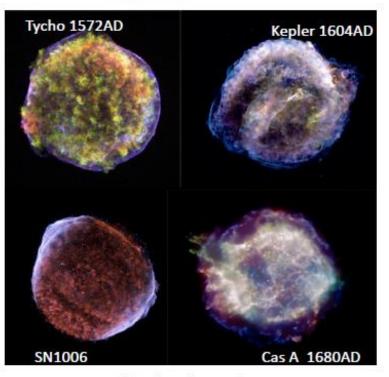
Turbulent acceleration in astrophysics - galaxy clusters & radio galaxies-

Gianfranco Brunetti

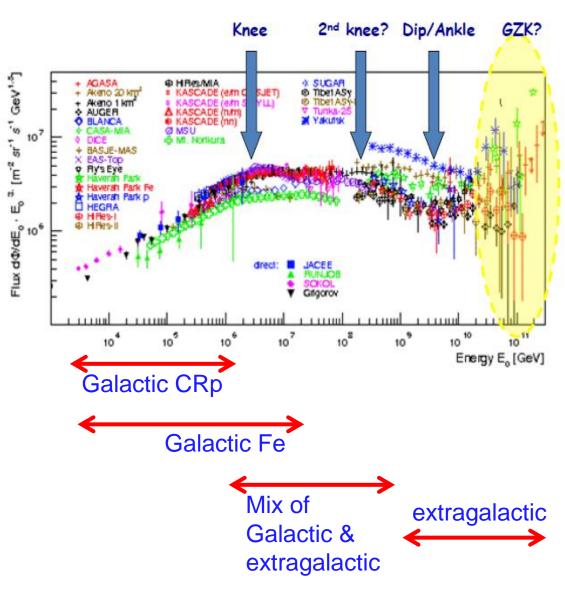
SNR RX J1713.7-3946



Aharonian et al Nature (2004)



Cosmic Accelerators

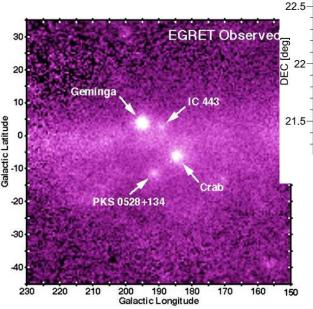


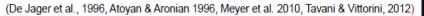
Chandra observations

Cosmic Accelerators



Crab nebula





MAGIC telescopes, 60 - 400 GeV

Crab Pulsar

5.6

RA [h]

Phase [0.00 - 0.10]

900

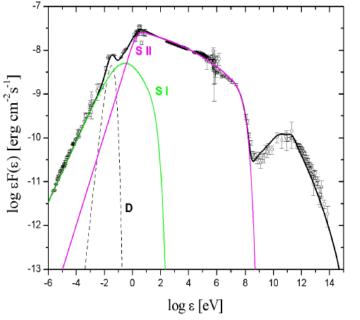
800

700 600

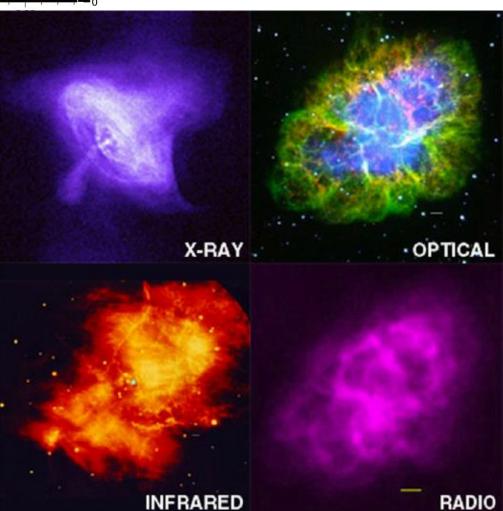
500

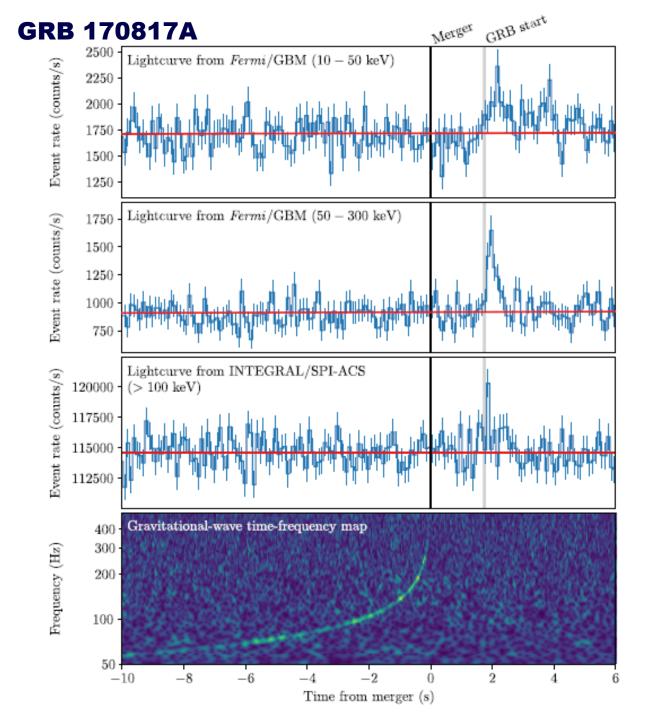
400

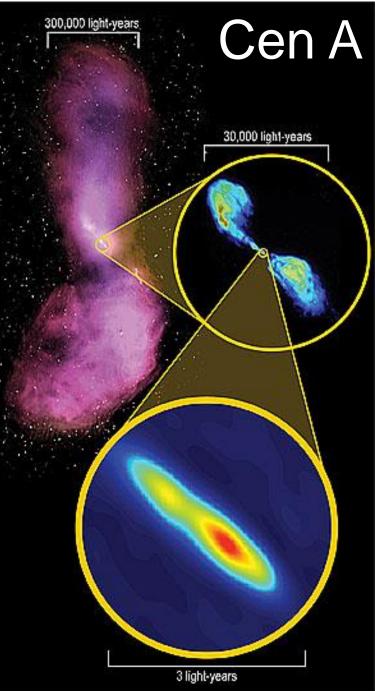
200

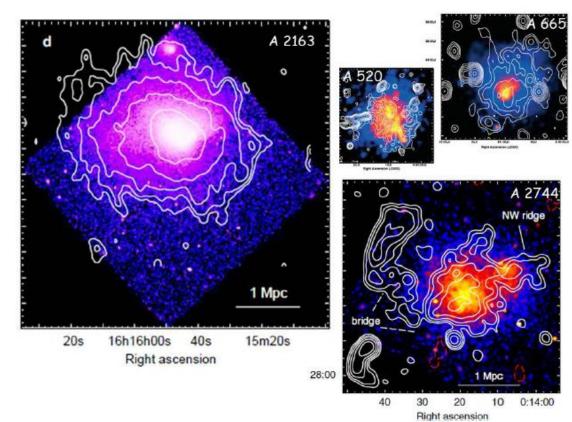


Pulsar WN _{pc} ≈ 100-300 µG CRe with $E_{max} \approx 10^{14} - 10^{15} \text{ eV}$ 300 $T_{SYN} \approx 10 \text{ yrs}$ 100









In addition to powerful and fast accelerators there is also evidence for gentle mechanisms operating on long timescales and large volumes Turbulent (some kind of) acceleration is a natural candidate.

OUTLINE

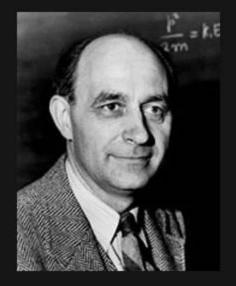
Turbulent acceleration: from Fermi to Gyroresonance and diffusion coefficients

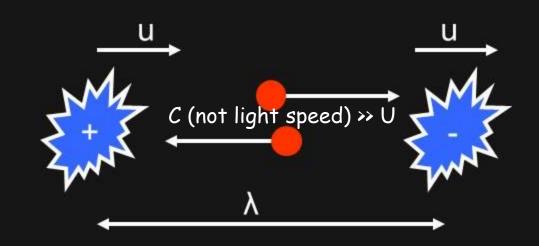
Complications and acceleration models using large-scale turbulence

Turbulent acceleration in galaxy clusters: Radio Halos, models and observations at low radio frequencies

Turbulent acceleration in head tail radio galaxies: evidences from observations at low radio frequencies

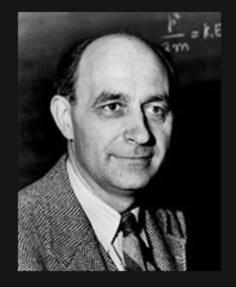
□ APPENDIX: Fokker-Planck equation and coefficients

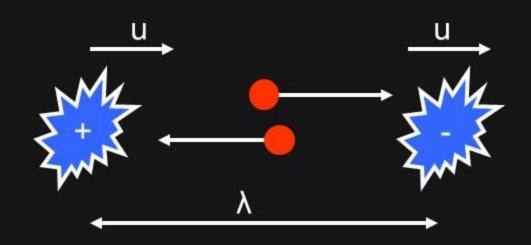




Energy gain per collisions:

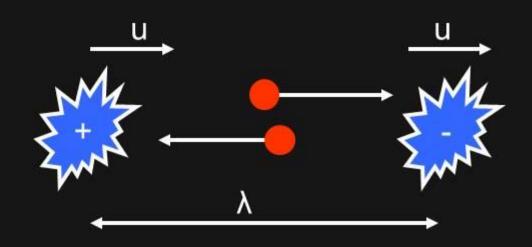
△p≈±² p 쓷





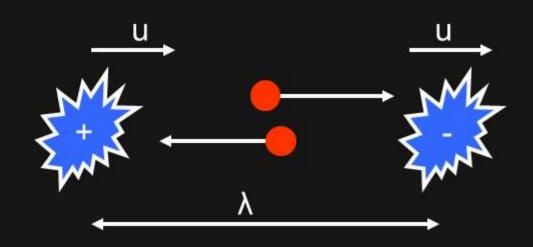
△p ≈±2 p 쓴 Energy gain per collisions: Frequency of collisions: $V_+ = \underbrace{\mathcal{M}_+ \mathcal{L}}_{\lambda}$ $V_- = \underbrace{\mathcal{L}_- \mathcal{M}}_{\lambda}$

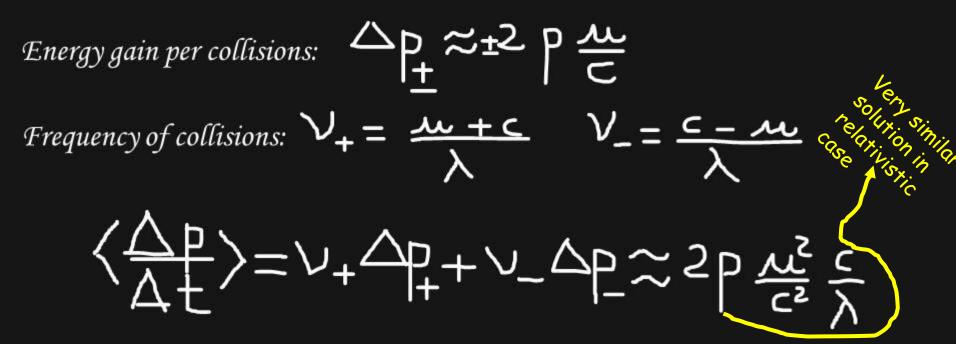




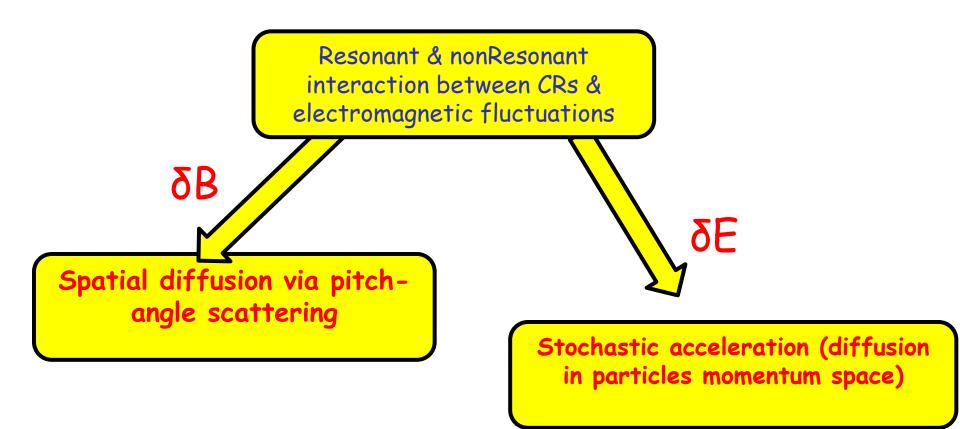
Energy gain per collisions: $\bigtriangleup_{+} \approx \pm 2 P \stackrel{\text{de}}{=}$ Frequency of collisions: $\lor_{+} = \underbrace{\underset{\lambda}{\leftarrow} \pm c}_{\lambda} = \underbrace{\lor_{-} \underbrace{\checkmark}_{\lambda}}_{\lambda}$



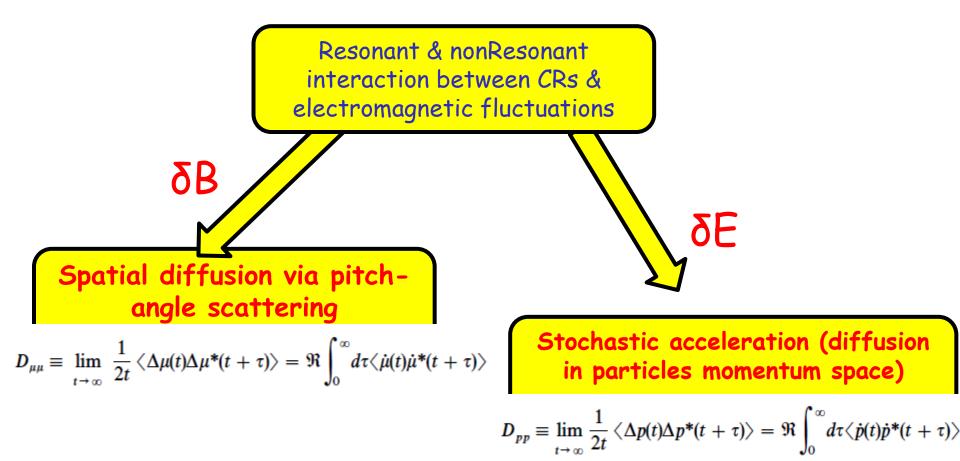




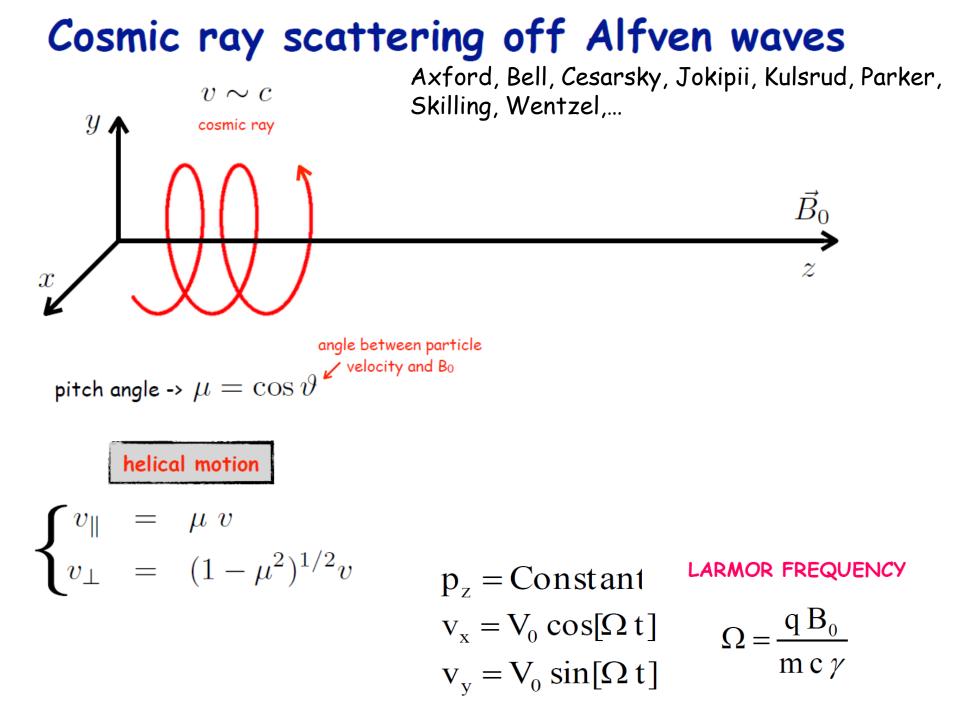
- Particles in a turbulent medium -



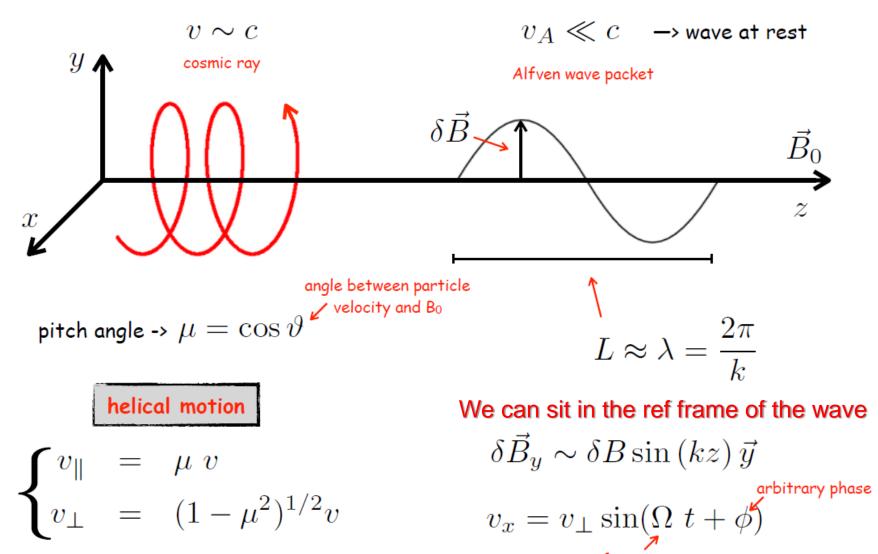
- Particles in a turbulent medium -



In the limit of small pitch-angle and momentum changes (ie. $\delta p \leftrightarrow p$) the process can be described as a diffusion in the angle and momentum space

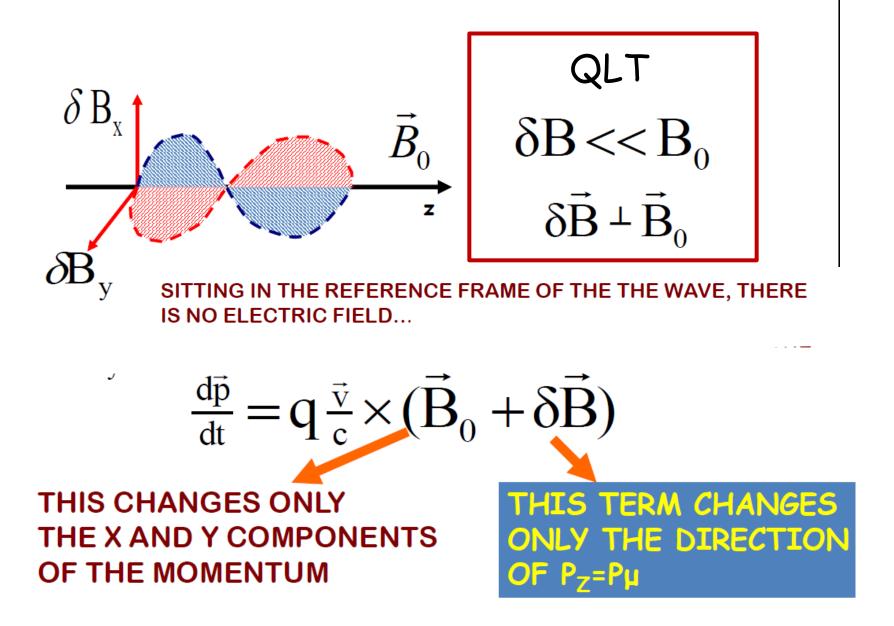


Cosmic ray scattering off Alfven waves

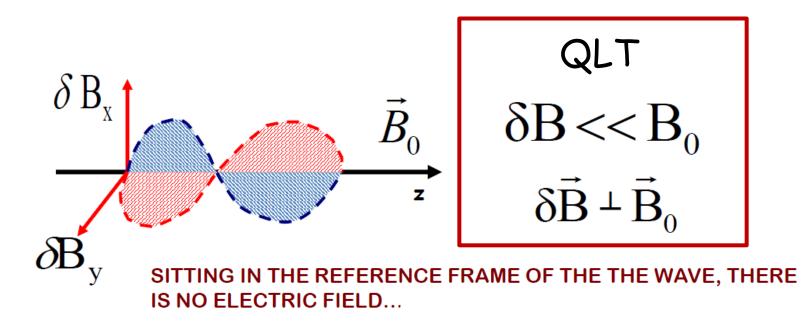


gyration frequency

Cosmic ray scattering off Alfven waves

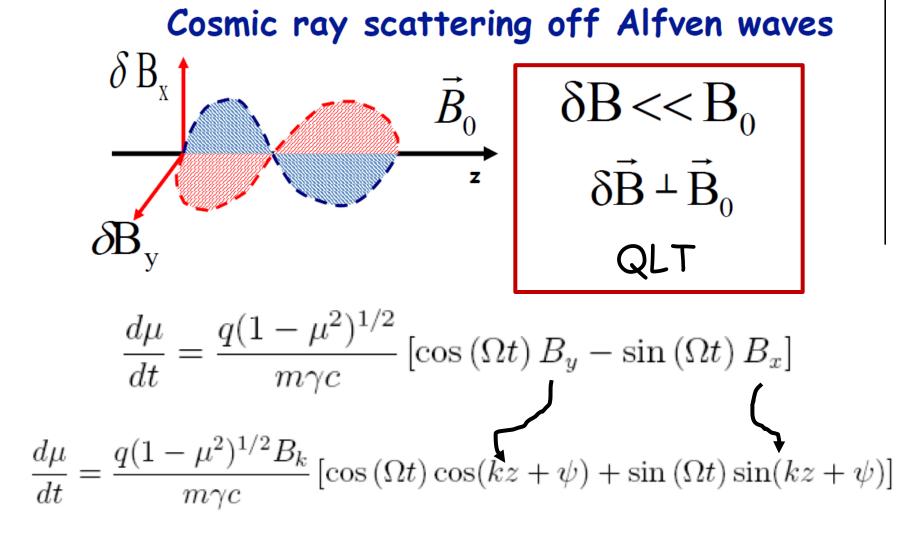


Cosmic ray scattering off Alfven waves



EQUATION OF MOTION FROM LORENTZ FORCE :

$$\frac{dp \parallel}{dt} = \frac{q}{c} |\vec{v}_{\perp} \times \delta \vec{B}| \qquad p_{\parallel} = p \ \mu$$



$$\frac{d\mu}{dt} = \frac{q(1-\mu^2)^{1/2}B_k}{m\gamma c}\cos\left[(\Omega-kv\mu)t+\psi\right]$$

Diffusion in pitch angle : diffusion coefficient

$$\frac{d\mu}{dt} = \frac{q(1-\mu^2)^{1/2}B_k}{m\gamma c}\cos\left[(\Omega-kv\mu)t+\psi\right]$$
$$\left\langle\frac{d\mu}{dt}\right\rangle = 0$$

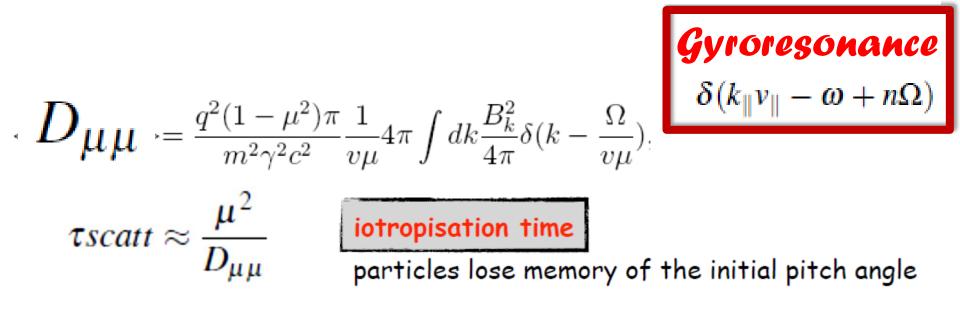
$$\Delta\mu\Delta\mu = \frac{q^2(1-\mu^2)B_k^2}{m^2\gamma^2c^2}\int dt\int dt'\cos\left[(\Omega-kv\mu)t+\psi\right]\cos\left[(\Omega-kv\mu)t'+\psi\right]$$

$$< \frac{\Delta\mu\Delta\mu}{\Delta t} >_{\psi} = \frac{q^{2}(1-\mu^{2})\pi B_{k}^{2}}{m^{2}\gamma^{2}c^{2}}\frac{1}{v\mu}\delta(k-\frac{\Omega}{v\mu})$$

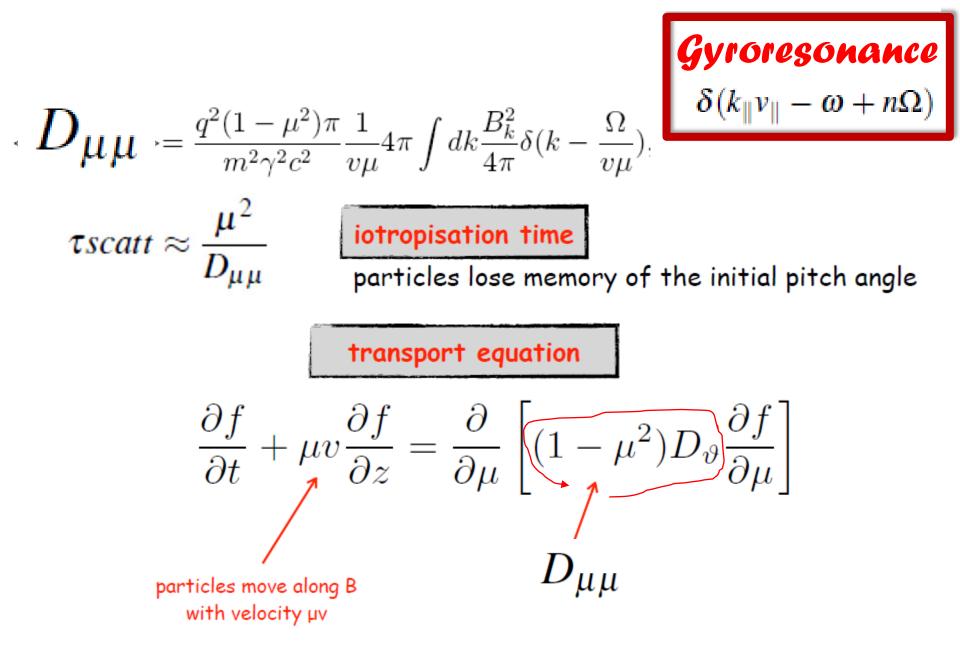
$$CORRECTION FOR LAB FRAME$$

$$CORRET$$

Diffusion in pitch angle : timescale and spatial diff



Diffusion in pitch angle : timescale and spatial diff



Diffusion in pitch angle : timescale and spatial diff

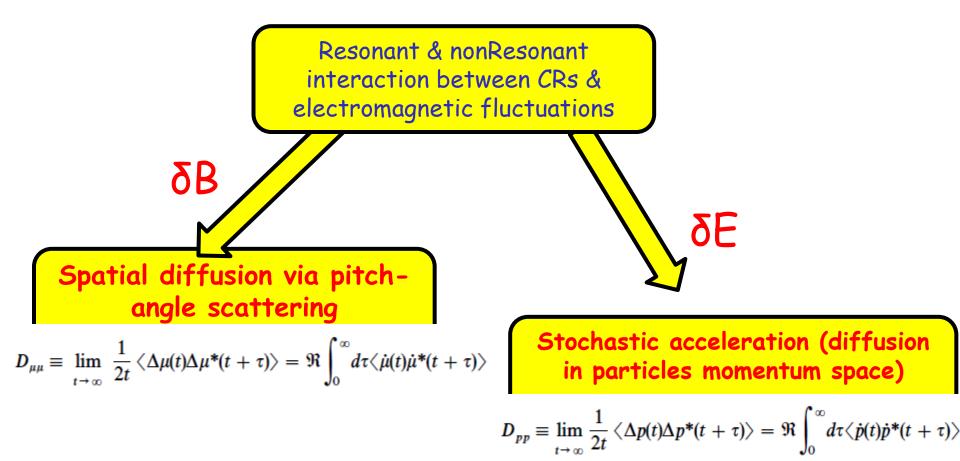
$$D_{\mu\mu} = \frac{q^2(1-\mu^2)\pi}{m^2\gamma^2c^2} \frac{1}{v\mu} 4\pi \int dk \frac{B_k^2}{4\pi} \delta(k-\frac{\Omega}{v\mu}).$$

$$f(k_{\parallel}v_{\parallel}-\omega+n\Omega)$$

$$\tau scatt \approx \frac{\mu^2}{D_{\mu\mu}}$$
iotropisation time
particles lose memory of the initial pitch angle
$$mean free \qquad particle \\ velocity \\ D \sim \lambda v \sim (\tau_s v)v \sim \frac{v^2}{D_{\mu\mu}}$$

$$D = \frac{v^2}{8} \int_{-1}^{1} d\mu \frac{(1-\mu^2)^2}{D_{\mu\mu}}$$

- Particles in a turbulent medium -



In the limit of small pitch-angle and momentum changes (ie. $\delta p \leftrightarrow p$) the process can be described as a diffusion in the angle and momentum space

Momentum diffusion : coefficient

$$\begin{split} D_{\mu\mu} &= \frac{q^2(1-\mu^2)\pi}{m^2\gamma^2c^2} \frac{1}{v\mu} 4\pi \int dk \frac{B_k^2}{4\pi} \delta(k-\frac{\Omega}{v\mu}) \\ \tau_{scatt} &\approx \frac{\mu^2}{D_{\mu\mu}} \quad \begin{array}{c} \text{iotropisation time} \\ \text{particles are isotropized in the rest frame of the wave} \end{array}$$

Gvroresonance

Now we come back to to the Lab frame where there is an Electric field associated with the moving waves [long MHD waves ($\omega < \Omega/\beta_{pl}$)] $(\frac{\delta B}{\delta E})^2 \approx (\frac{c}{V_A})^2$

Momentum diffusion : coefficient

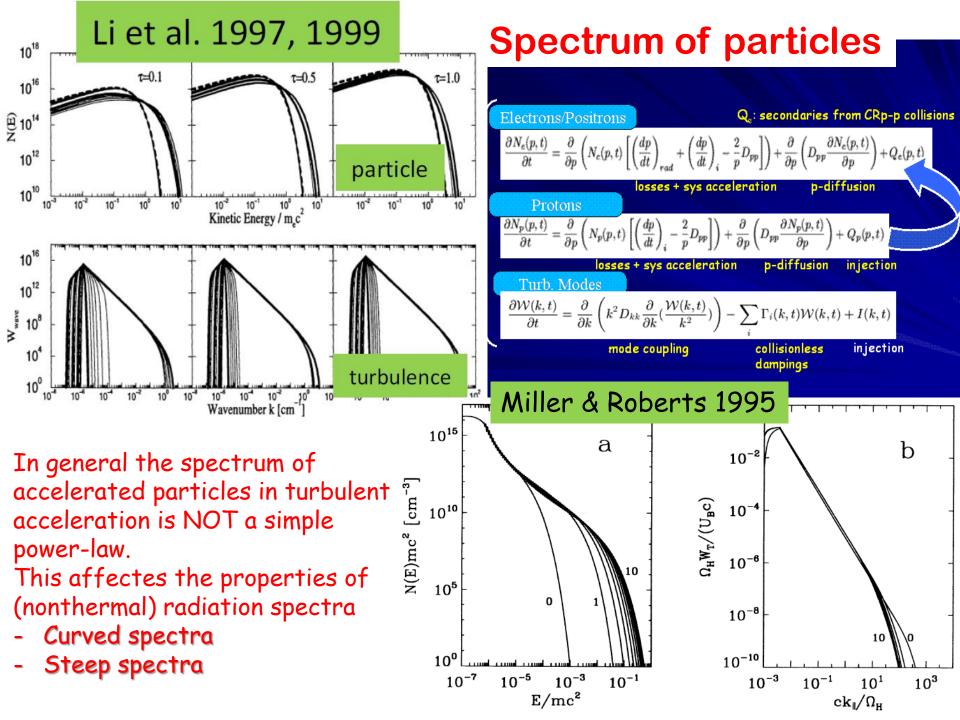
$$D_{\mu\mu} = \frac{q^2(1-\mu^2)\pi}{m^2\gamma^2c^2} \frac{1}{v\mu} 4\pi \int dk \frac{B_k^2}{4\pi} \delta(k-\frac{\Omega}{v\mu}) \qquad \delta(k_{\parallel}v_{\parallel}-\omega+n\Omega)$$

$$Tscatt \approx \frac{\mu^2}{D_{\mu\mu}} \quad \text{iotropisation time} \\ \text{particles are isotropized in the rest frame of the wave} \\ \text{Now we come back to to the Lab frame where there is an Electric field} \\ \text{associated with the moving waves} \\ [long MHD waves (\omega < \Omega/\beta_{\rm pl})] (\frac{\delta B}{\delta E})^2 \approx (\frac{c}{V_A})^2 \\ \text{In the same timescale particles change momentum} \\ D_{pp} = \frac{2\pi^2 c^2 v_A^2}{c^3} \int_{k_{\rm min}(p)}^{k_{\rm max}} W_A(k) \frac{1}{k} \left[1 - \left(\frac{v_A}{c} + \frac{\Omega m_e}{pk} \right)^2 \right] dk \\ \frac{k_{\rm min} = \frac{\Omega m}{p} \frac{1}{(1 \pm v_A/v)}} \\ \end{array}$$

Evolution of particles interacting with Alfven waves

$$\begin{split} \underline{D}_{\mu\mu} &= \frac{q^2(1-\mu^2)\pi}{m^2\gamma^2c^2} \frac{1}{v\mu} 4\pi \int dk \frac{B_k^2}{4\pi} \delta(k-\frac{\Omega}{v\mu}). \\ D(p) &= \frac{2\pi^2 e^2 v_A^2}{c^3} \int_{k_{\min}(p)}^{k_{\max}} W_A(k) \frac{1}{k} \left[1 - \left(\frac{v_A}{c} + \frac{\Omega m_e}{pk} \right)^2 \right] dk \\ \end{split}$$

$$\begin{split} \mathbf{Fokker-Planck Equation} \\ \frac{\partial f}{\partial t} &+ \mu v \frac{\partial f}{\partial z} = \frac{\partial}{\partial \mu} \left[\left(D_{\mu\mu} \frac{\partial}{\partial \mu} + D_{\mu p} \frac{\partial}{\partial p} \right) f(p,\mu,t) \right] + \frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \times \left(D_{\mu p} \frac{\partial}{\partial \mu} + D_{p p} \frac{\partial}{\partial p} \right) f(p,\mu,t) \right] \end{split}$$



OUTLINE

Turbulent acceleration: from Fermi to Gyroresonance and diffusion coefficients

Complications and acceleration models using large-scale turbulence

Turbulent acceleration in galaxy clusters: Radio Halos, models and observations at low radio frequencies

Turbulent acceleration in head tail radio galaxies: evidences from observations at low radio frequencies

□ APPENDIX: Fokker-Planck equation and coefficients

Complication : scale anisotropy

neglecting factors of order unity:

$$\begin{array}{c} \textbf{Gyroresonance} \\ \delta(k_{\parallel}v_{\parallel} - \omega + n\Omega) \end{array} \not \Rightarrow kv_{z} \approx \Omega = \frac{v_{\perp}}{R_{L}} \Rightarrow R_{L} \approx \frac{1}{k} \end{array}$$

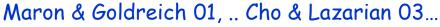
Complication : scale anisotropy

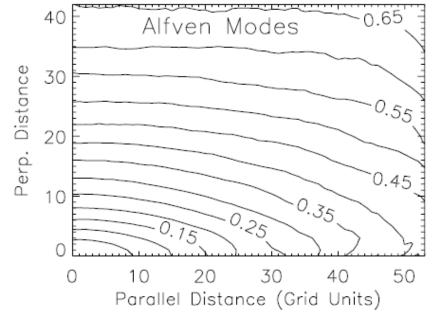
neglecting factors of order unity:

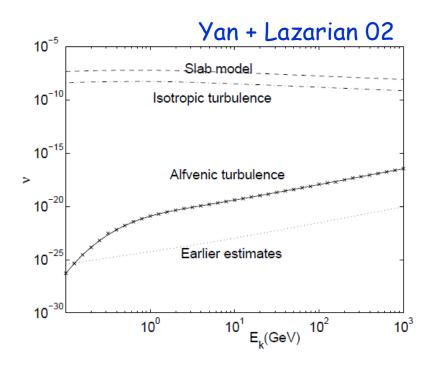
$$\begin{array}{c} \textbf{Gyroresonance} \\ \delta(k_{\parallel}v_{\parallel} - \omega + n\Omega) \end{array} \not \Rightarrow kv_{z} \approx \Omega = \frac{v_{\perp}}{R_{L}} \Rightarrow R_{L} \approx \frac{1}{k} \end{array}$$

 $\begin{array}{lll} Galaxy: & \mathsf{R}_{res} \approx \mathsf{Mm} \ , \, \mathsf{R}_{\mathsf{A}} \approx 1 \ \mathsf{pc} \ \ldots \ 10 \ \mathsf{dex} \\ Galaxy \ \mathsf{Clusters}: \, \mathsf{R}_{res} \approx \mathsf{Mm} \ , \, \mathsf{R}_{\mathsf{A}} \approx 1 \ \mathsf{kpc} \ \ldots \ 13 \ \mathsf{dex} \\ \end{array}$

Goldreich & Sridhar 95, Maron & Goldreich 01 Cho & Laza







Complication : scale anisotropy

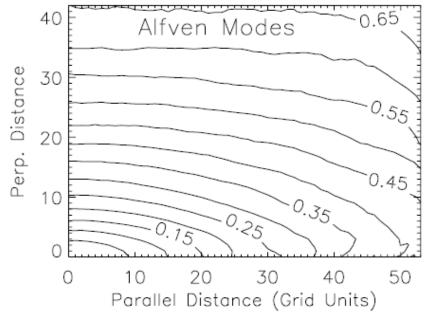
neglecting factors of order unity:

$$\begin{array}{c} \textbf{Gyroresonance}\\ \delta(k_{\parallel}v_{\parallel}-\omega+n\Omega) \end{array} \not \Rightarrow kv_{z} \approx \Omega = \frac{v_{\perp}}{R_{L}} \Rightarrow R_{L} \approx \frac{1}{k} \end{array}$$

 $\begin{array}{lll} Galaxy: & \mathsf{R}_{res} \approx \mathsf{Mm} \ , \ \mathsf{R}_{\mathsf{A}} \approx 1 \ \mathsf{pc} \ \ldots \ 10 \ \mathsf{dex} \\ Galaxy \ \mathsf{Clusters}: \ \mathsf{R}_{res} \approx \mathsf{Mm} \ , \ \mathsf{R}_{\mathsf{A}} \approx 1 \ \mathsf{kpc} \ \ldots \ 13 \ \mathsf{dex} \\ \end{array}$

Goldreich & Sridhar 95,

Maron & Goldreich 01, .. Cho & Lazarian 03...



Possible solution :

Waves must be generated at small, quasi-resonant scales Self-generated waves, instabilities :

- Streaming instability (Kulsrud,Blasi, Amato, Lazarian, Yan, Wiener, Zweibel, Oh)
- Many other instabilities....

Transit-Time-Damping (TTD, magnetic Landau Damping)

[Fisk 76, Schliskeiser+Miller 98,...Yan+Lazarian 04, Brunetti+Lazarian 07...] Coupling between particles magnetic moment and magnetic field gradients

ω-k_{//}v_{//}=0

Magnetic Pumping

[Swann 33, .. Melrose 80, ..] Particles compressions and rarefactions in B (betatron), coupled with an effective scattering mechanism .

 $D_{pp} \approx \alpha_B \frac{\omega_{\Delta B}^2}{v_{SC}} \left(\frac{\Delta B}{B}\right)^2 p^2$

Compression by large-scale trubulence

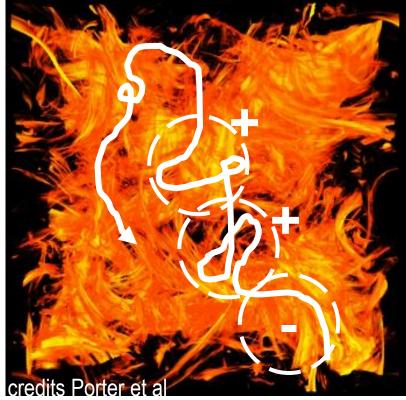
[Ptuskin 88, ... Cho+Lazarian 06, ... Brunetti 16..] Particles diffusing through turbulence (acoustic) in a $\frac{\partial p}{\partial t} = -\frac{\nabla u}{3}p$ medium experience stochastic compressions/rarefactions and are statistically accelerated at a rate depending on spatial diffusion coefficient and turbulence

$$D_{pp} = \frac{2}{9}p^2 D \int_k \frac{dy y^2 \mathcal{K}(y)}{c_s^2 + y^2 D^2}$$

Reacceleration in super-Alfvenic turbulent reconnection

[Brunetti & Lazarian 16, Xu & Zhang 18, ..]

Particles diffusing in super-Alfvenic turbulence experience cycles of positive and negative acceleration via interaction with collapsing (in reconnection regions) and expanding (in dynamo regions) magnetic field lines.

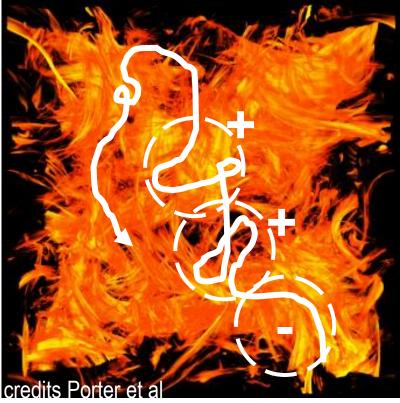


Reacceleration in super-Alfvenic turbulent reconnection

[Brunetti & Lazarian 16, Xu & Zhang 18, ..]

Particles diffusing in super-Alfvenic turbulence experience cycles of positive and negative acceleration via interaction with collapsing (in reconnection regions) and expanding (in dynamo regions) magnetic field lines.

(1) $\frac{dp}{dt} \sim \phi \frac{V_A}{\lambda_{mfp}} p$ V_A $V_$

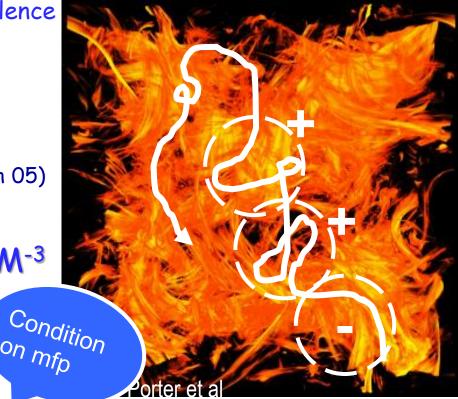


Reacceleration in super-Alfvenic turbulent reconnection

[Brunetti & Lazarian 16, Xu & Zhang 18, ..]

Particles diffusing in super-Alfvenic turbulence experience cycles of positive and negative acceleration via interaction with collapsing (in reconnection regions) and expanding (in dynamo regions) magnetic field lines.

V_A
 (2) particles diffuse faster than eddy turnover time ≈l_A/V_A



Reacceleration in super-Alfvenic turbulent reconnection

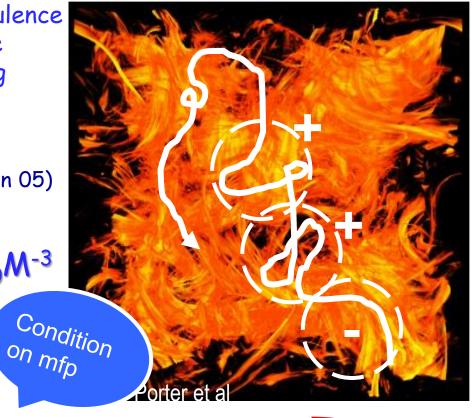
[Brunetti & Lazarian 16, Xu & Zhang 18, ..]

Particles diffusing in super-Alfvenic turbulence experience cycles of positive and negative acceleration via interaction with collapsing (in reconnection regions) and expanding (in dynamo regions) magnetic field lines.

(1) $\frac{dp}{dt} \sim \phi \frac{V_A}{\lambda_{mfp}} p$ (LV99, deGouveia+Lazarian 05) $A = V_A$ $A = V_A$ $B = A = L_0 M^{-3}$

(2) particles diffuse faster than
 eddy turnover time ≈l_A/V_A

(3) Case: $p >> \Delta p$ $\Delta p = p\phi \frac{V_A}{\lambda_{mfp}}$ X $\frac{l_A^2}{D}$



Fermi-like mechanisms using large scale turbulence

Reacceleration in super-Alfvenic turbulent reconnection

[Brunetti & Lazarian 16, Xu & Zhang 18, ...]

Particles diffusing in super-Alfvenic turbulence experience cycles of positive and negative acceleration via interaction with collapsing (in reconnection regions) and expanding (in dynamo regions) magnetic field lines.

> (LV99, deGouveia+Lazarian 05) V

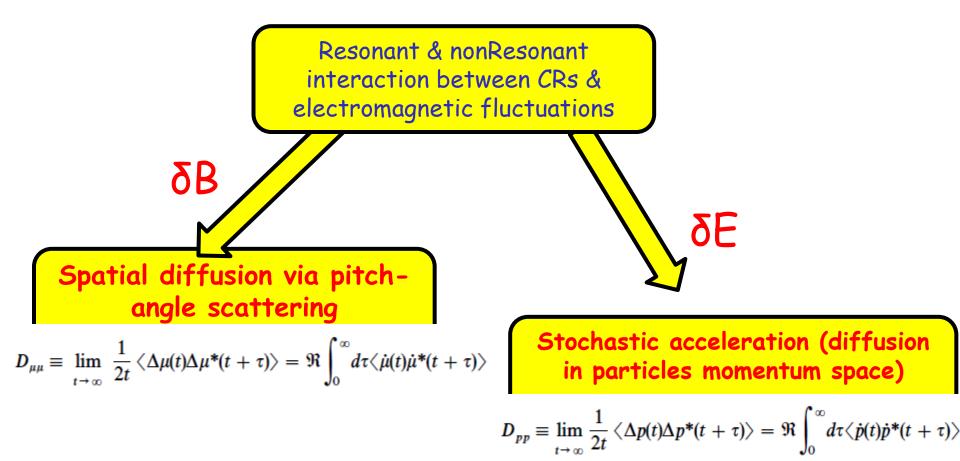
(1) $\frac{dp}{dt} \sim \phi \frac{V_A}{\lambda_m t_n} p$

(2) particles diffuse faster than eddy turnover time ≈l_A/V_A $D_{pp} = \left\langle \frac{\Delta p \Delta p}{2\Delta t} \right\rangle \sim 3\sqrt{\frac{5}{6}} \frac{c_s^2}{c} \frac{\sqrt{\beta_{pl}}}{L_z} M_t^3 \psi^{-3} p^2$

(3) Case: $p >> \Delta p$

where $\lambda_{mfp} = \psi l_A$

- Particles in a turbulent medium -



In the limit of small pitch-angle and momentum changes (ie. $\delta p \leftrightarrow p$) the process can be described as a diffusion in the angle and momentum space

OUTLINE

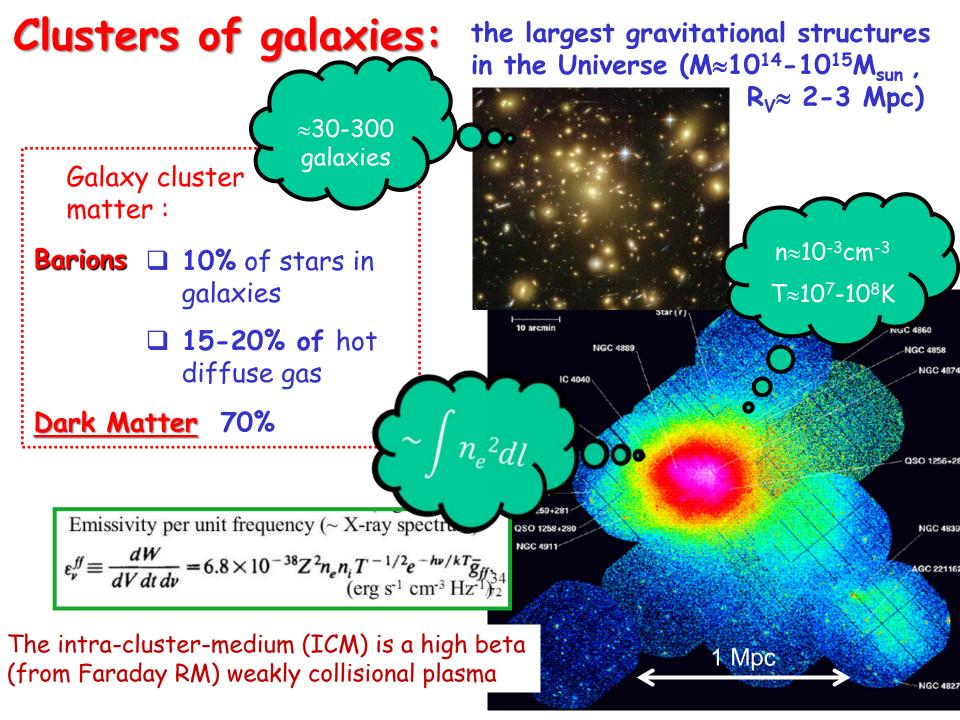
Turbulent acceleration: from Fermi to Gyroresonance and diffusion coefficients

Complications and acceleration models using large-scale turbulence

Turbulent acceleration in galaxy clusters: Radio Halos, models and observations at low radio frequencies

Turbulent acceleration in head tail radio galaxies: evidences from observations at low radio frequencies

□ APPENDIX: Fokker-Planck equation and coefficients



Galaxy clusters formation : mergers

187x187x187Mpc/h

187x187Mpc/h

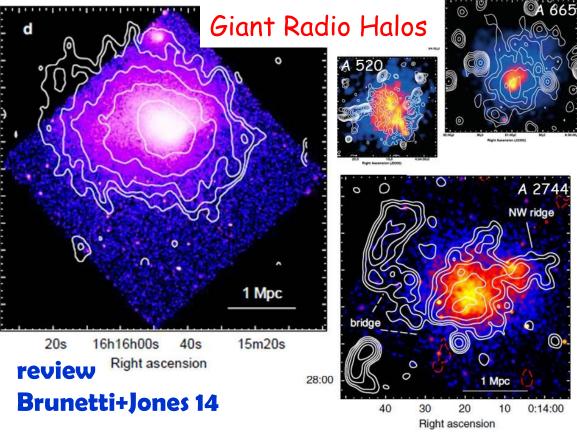
12x12Mpc/h

Mergers

in 1 Gyr

2

dissipate 10⁶³⁻⁶⁴ erg



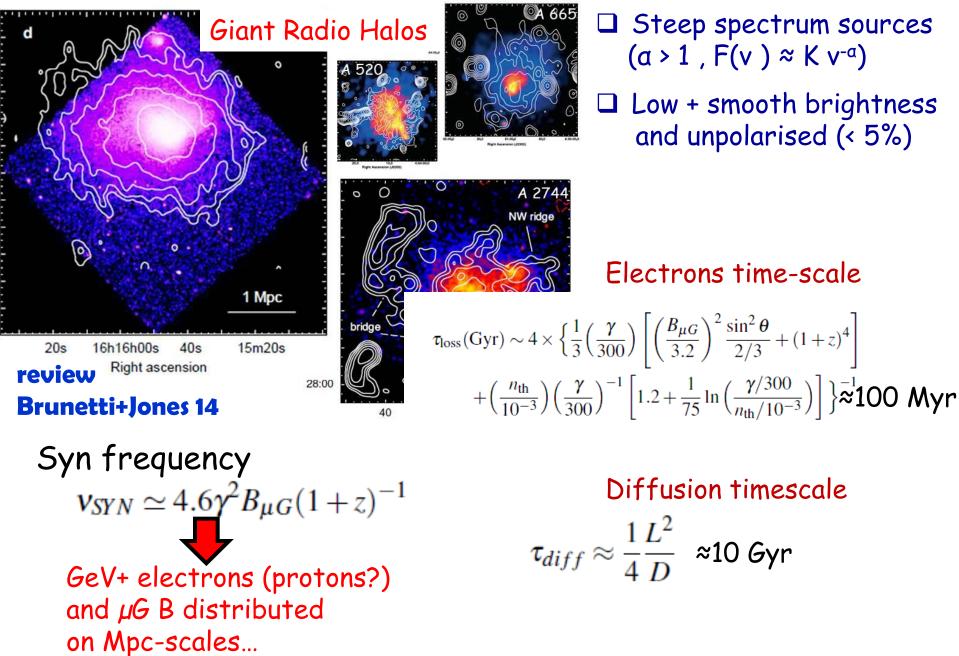
Syn frequency

$$v_{SYN} \simeq 4.6\gamma^2 B_{\mu G} (1+z)^{-1}$$

GeV+ electrons (protons?)

GeV+ electrons (protons? and μ G B distributed on Mpc-scales... □ Steep spectrum sources (a > 1, F(v) ≈ K v^{-a})

Low + smooth brightness and unpolarised (< 5%)</p>



665

A 274

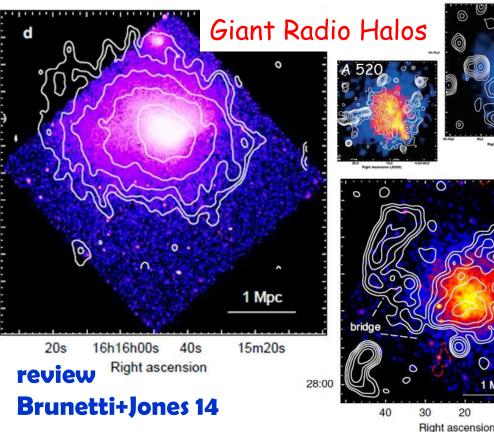
NW ridge

1 Mpc

10

0:14:00

20

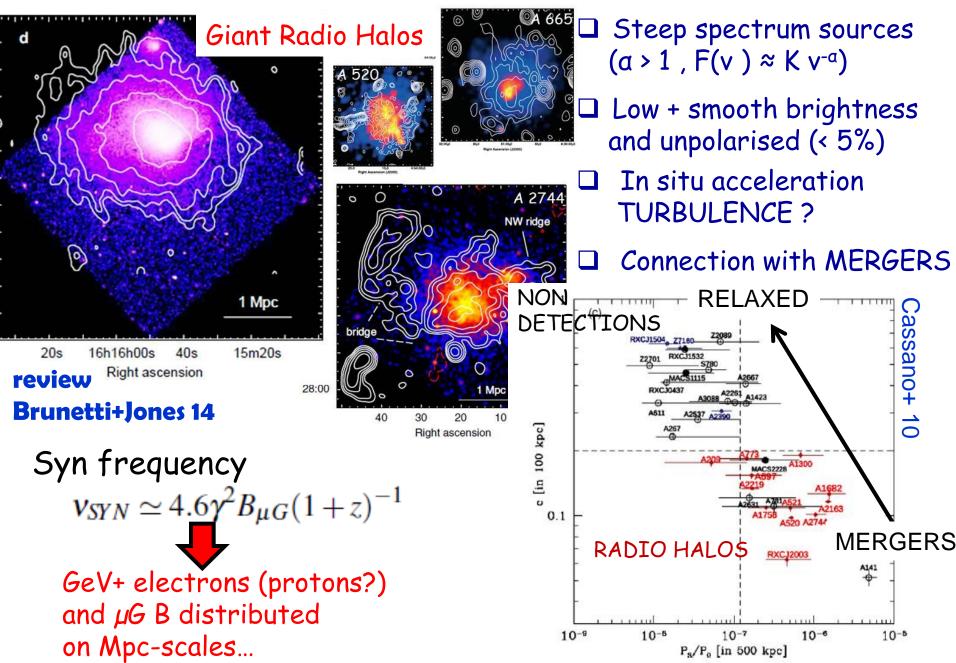


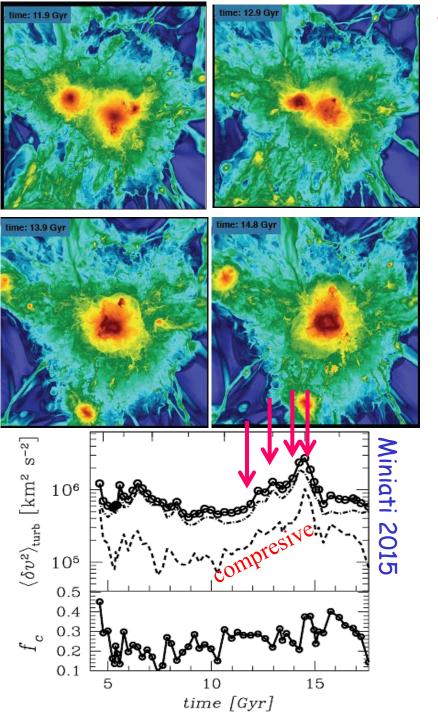
Syn frequency $v_{SYN} \simeq 4.6\gamma^2 B_{\mu G} (1+z)^{-1}$

GeV+ electrons (protons?) and μG B distributed on Mpc-scales...

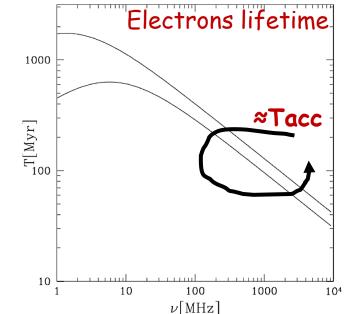
Steep spectrum sources $(a > 1, F(v) \approx K v^{-a})$

- Low + smooth brightness and unpolarised (< 5%)
 - In situ acceleration TURBULENCE?





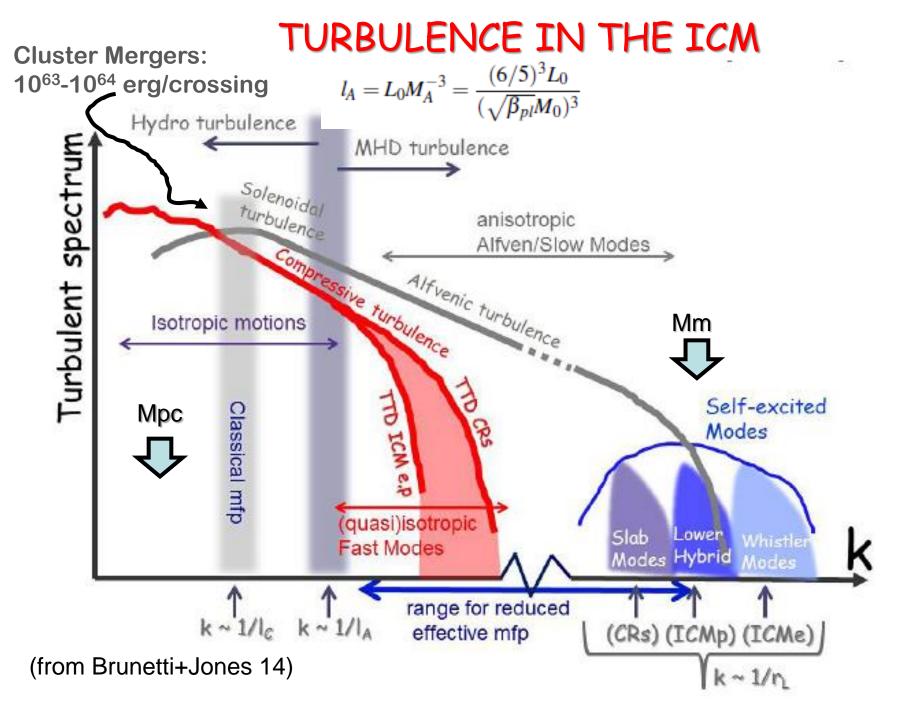
TURBULENT ACCELERATION

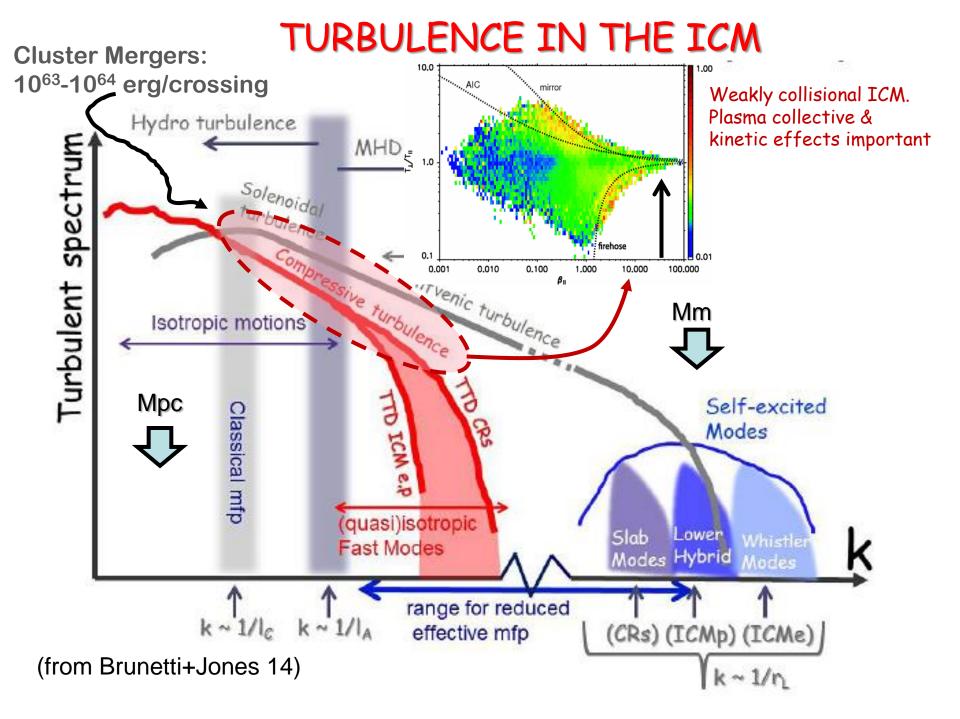


□ Tm ≈ 1-3 Gyr
 □ Tt ≈ L/δV ≈ 200-500 Myr
 □ Tescape > Gyr

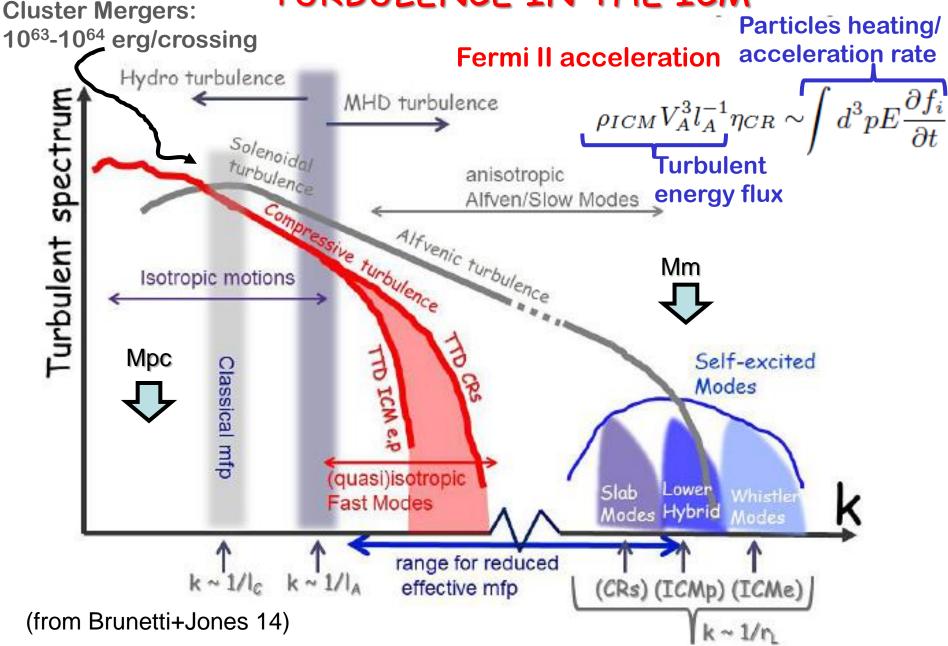
Tacc < Tt < Tes ≈ Tm

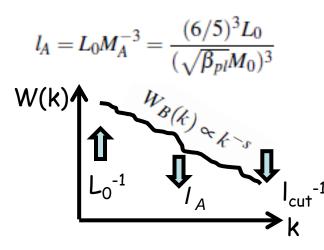
- Energy is transported from Mpc to Mm scales into non-thermal particles.
- This requires a hierarchy of complex mechanisms and plasma/kinetic effects !

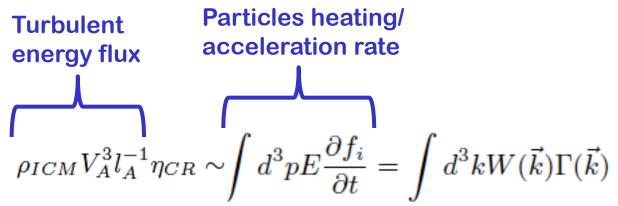




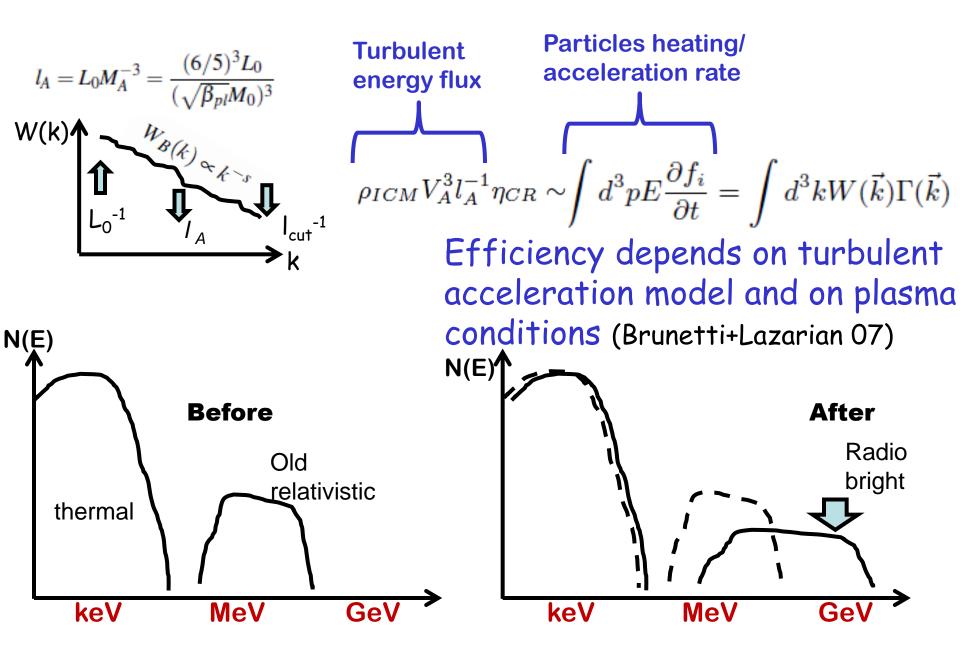
TURBULENCE IN THE ICM

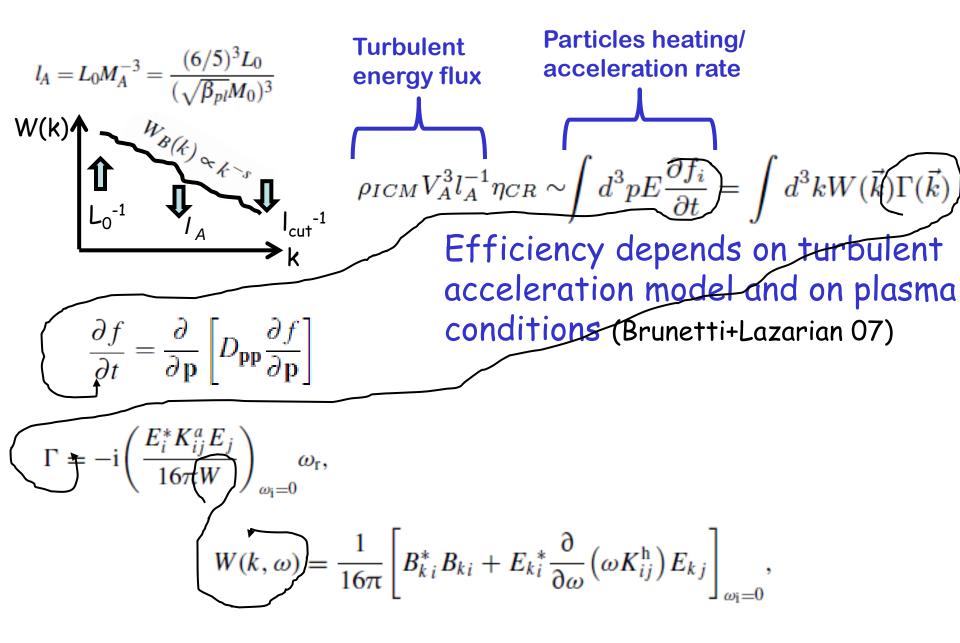




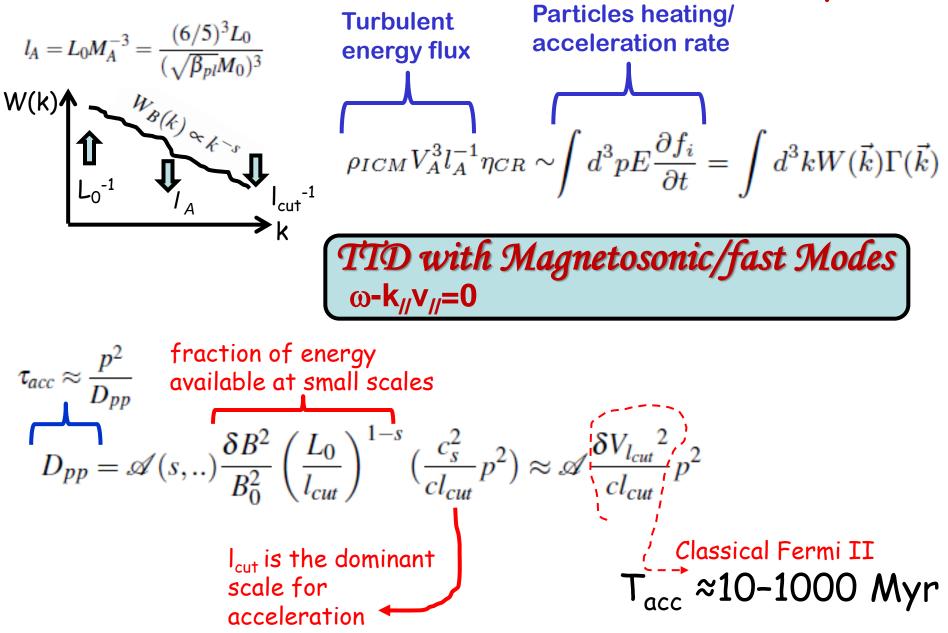


Efficiency depends on turbulent acceleration model and on plasma conditions (Brunetti+Lazarian 07)





$$\begin{split} & \left(\begin{array}{c} k_{ij} = \delta_{ij} + 2\pi \sum_{a} m_{a} \left(\frac{\omega_{p,a}}{\omega} \right)^{2} \int \int dp_{1} p_{1} dp_{1} \left[\frac{v_{1}}{v_{L}} \left(v_{1} \frac{\partial}{\partial p_{1}} - v_{1} \frac{\partial}{\partial p_{L}} \right) \hat{f}_{a}(p) b_{i} b_{j} + \sum_{a=-\infty}^{\infty} \frac{(V,V)_{a}}{\omega - n\Omega_{a} - k_{1}v_{1}} \right) \\ & \times \left(\frac{\omega - k_{1}v_{1}}{\omega_{1}} \frac{\partial}{\partial p_{1}} + k_{1} \frac{\partial}{\partial p_{1}} \right) \hat{f}_{a}(p) \right], \quad (16) \\ & \text{where } \omega_{p,a} = \sqrt{4\pi N_{c}} e_{a}^{2} i_{a}(a) \quad i \frac{\sigma^{2}}{2} \mathcal{I}_{a}(z) \mathcal{I}_{a}(a) \quad i \frac{\sigma^{2}}{2} \mathcal{I}_{a}(z) \mathcal{I}_{a}(a) \\ & (v,V_{j})_{a} = \left(-\frac{(w_{1}-1)^{2}}{(-\frac{1}{2} \frac{\lambda}{4} \mathcal{I}_{a}(z) \mathcal{I}_{a}(a) \quad w^{2} \frac{\omega^{2}}{2} \mathcal{I}_{a}^{2}(z) \\ & (v,V_{j})_{a} = \left(-\frac{(w_{1}-1)^{2}}{(-\frac{1}{2} \frac{\lambda}{4} \mathcal{I}_{a}(z) \mathcal{I}_{a}(a) \quad w^{2} \frac{\omega^{2}}{2} \mathcal{I}_{a}^{2}(z) \\ & \frac{\omega^{2}}{2} \frac{\sigma^{2}}{2} \mathcal{I}_{a}^{2}(z) \quad w^{2} \mathcal{I}_{a}^{2}(z) \\ & \frac{\omega^{2}}{2} \mathcal{I}_{a}^{2}(z) \quad w^{2} \mathcal{I}_{a}^{2}(z) \quad w^{2} \mathcal{I}_{a}^{2}(z) \\ & \frac{\omega^{2}}{2} \mathcal{I}_{a}^{2}(z) \quad w^{2} \mathcal{I}_{a}^{2}(z) \\ & \frac{\omega^{2}}{2} \mathcal{I}_{a}^{2}(z) \quad w^{2} \mathcal{I$$



$$\frac{\partial f(p,t)}{\partial t} + (\mathbf{V} \cdot \mathbf{v}_{f} - \nabla \cdot \{\mathbf{n}D \cdot \mathbf{n} \cdot \nabla\} f\} = \frac{1}{p^{2}} \frac{\partial}{\partial p} \left(p^{2} \mathscr{D}_{pp} \frac{\partial f}{\partial p} - p^{2} |\frac{dp}{dt}|_{loss} f \right) + \mathbf{v}_{p,t}$$

$$D_{pp} = \mathscr{A}(s,..) \frac{\delta B^{2}}{B_{0}^{2}} \left(\frac{L_{0}}{l_{cut}} \right)^{1-s} \left(\frac{c_{s}^{2}}{cl_{cut}} p^{2} \right)$$

$$\frac{\mathsf{SED from primary + secondary electrons}}{(\mathsf{GB+Lazarian 11, Pinzke+ 17, \mathsf{GB+17})}} \xrightarrow{\mathsf{FERMI}} \xrightarrow{\mathsf{GB+Lazarian 07}} \xrightarrow{\mathsf{FERMI}} \xrightarrow{\mathsf$$

TURBULENT ACCELERATION IS A GENTLE MECHANISM

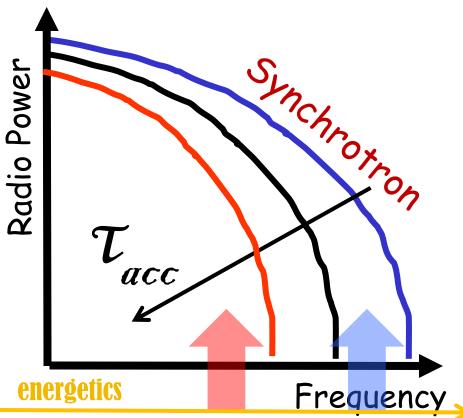
$$T_{acc} \approx p^2/D_{pp} \approx 10-1000 \text{ Myr}$$

Reacceleration time is of the same order of magnitude of the energy-losses time-scale of the electrons emitting Syn radiation in the radio band !

Max Syn Frequency

 $\nu_s/\mathrm{GHz} \sim (\tau_{\mathrm{acc}}/400\mathrm{Myr})^{-2}$

[assuming rough equipartition between Syn and inverse Compton losses]



Radio Halos predicted to be a mix of different populations including with very steep spectrum sources «invisible» at classical frequencies. (Cassano, Brunetti, Setti 06 Brunetti + al 2008 Nature 455,944)

TURBULENT ACCELERATION IS A GENTLE MECHANISM

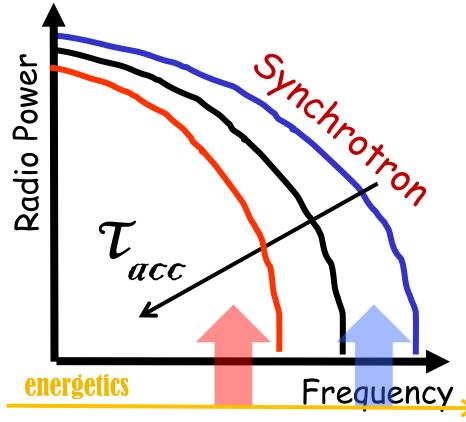
$$T_{acc} \approx p^2/D_{pp} \approx 10-1000 \text{ Myr}$$

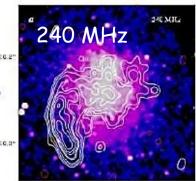
Reacceleration time is of the same order of magnitude of the energy-losses time-scale of the electrons emitting Syn radiation in the radio band !

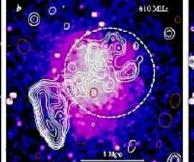
Max Syn frequency

 $u_s/{
m GHz} \sim (au_{
m acc}/400{
m Myr})^{-2}$

[assuming rough equipart between Syn and inverse Compton losses]







a (.12030)

738'

Brunetti et al 08 Nature 455, 944

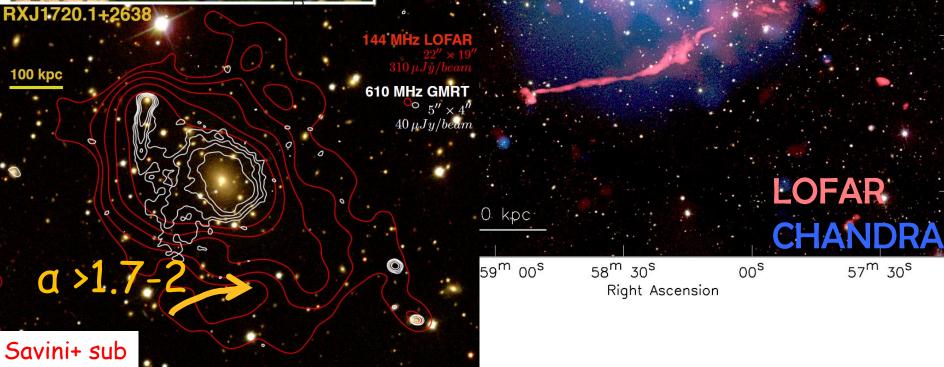
8' 735' a (2006)

6 (hsuce) 19 H.

The largest radio telescope on the way to the SKA : 25000 antennae # 10-80 MHz # 120-240 MHz

LOFAR

Ultra-steep spectrum radio halos



A1132

Wilber+17

a⁽¹⁵⁰⁻³³⁰⁾~1.8

OUTLINE

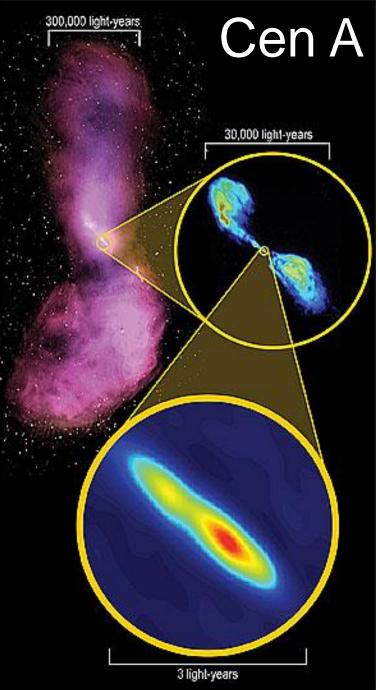
Turbulent acceleration: from Fermi to Gyroresonance and diffusion coefficients

Complications and acceleration models using large-scale turbulence

Turbulent acceleration in galaxy clusters: Radio Halos, models and observations at low radio frequencies

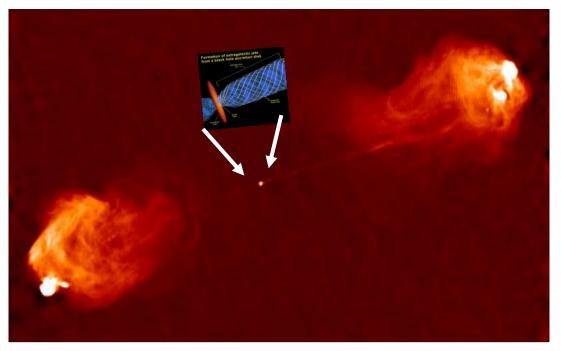
Turbulent acceleration in head tail radio galaxies: evidences from observations at low radio frequencies

□ APPENDIX: Fokker-Planck equation and coefficients

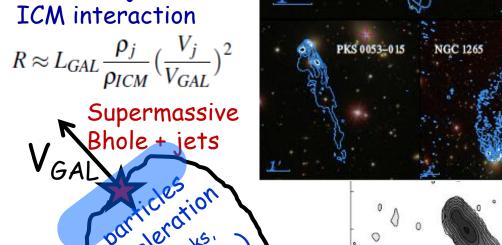


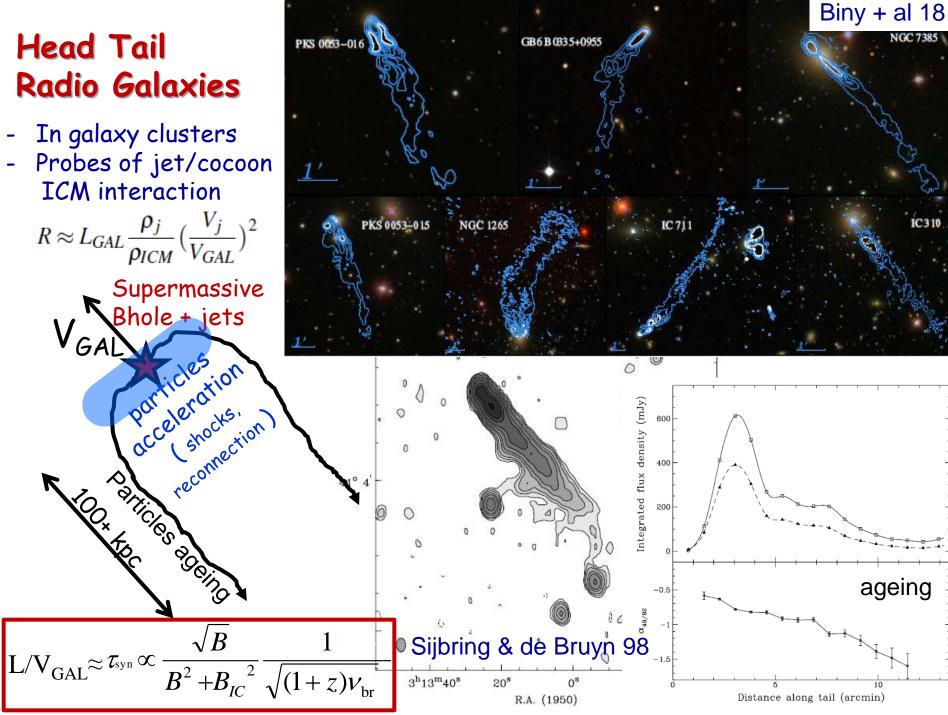
en A Radio Galaxies

- Energy is extracted from a supermassive BH
- Relativistic jet : kinetic + Poynting flux
- Particle acceleration : shocks , reconnection
- Hot spots : shocks
- Backflow : reacceleration ? Mixing ?

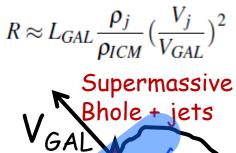


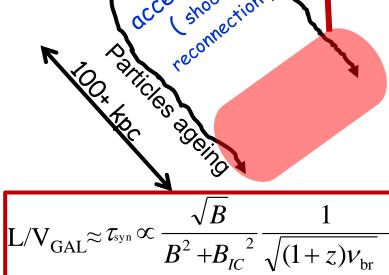
- In galaxy clusters
- Probes of jet/cocoon ICM interaction



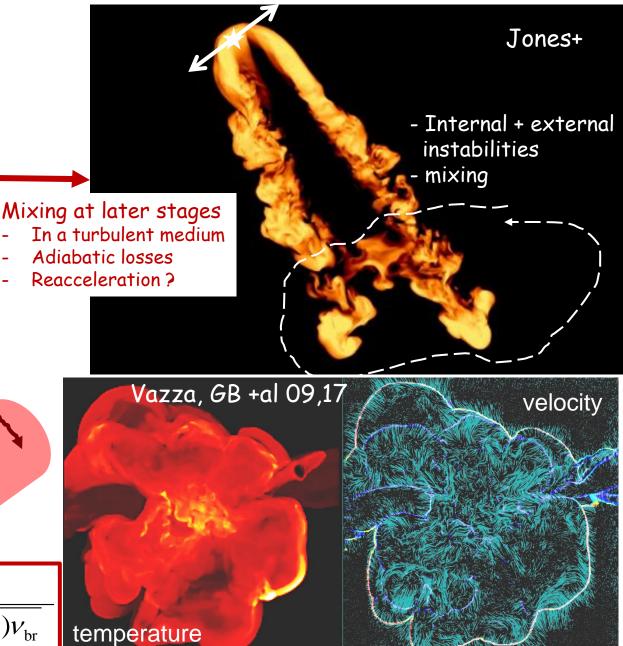


- In galaxy clusters
- Probes of jet/cocoon
 ICM interaction

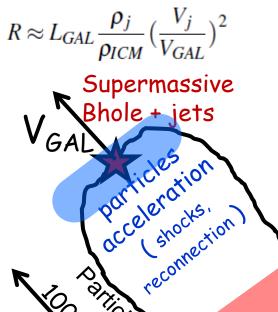




porticles occeleration acceleration reconnection



- In galaxy clusters
- Probes of jet/cocoon ICM interaction



to articles ageing

 $L/V_{GAL} \approx \tau_{syn} \propto \frac{\sqrt{B}}{B^2 + B_{IC}^2} \frac{1}{\sqrt{(1+z)\nu_{br}}}$

fow long does it take ??

$$\left(\delta x\right)^2 \approx x \delta V_x \Delta t \approx x \left(\frac{x}{L_0}\right)^{\frac{1}{3}} \delta V_0 \Delta t$$

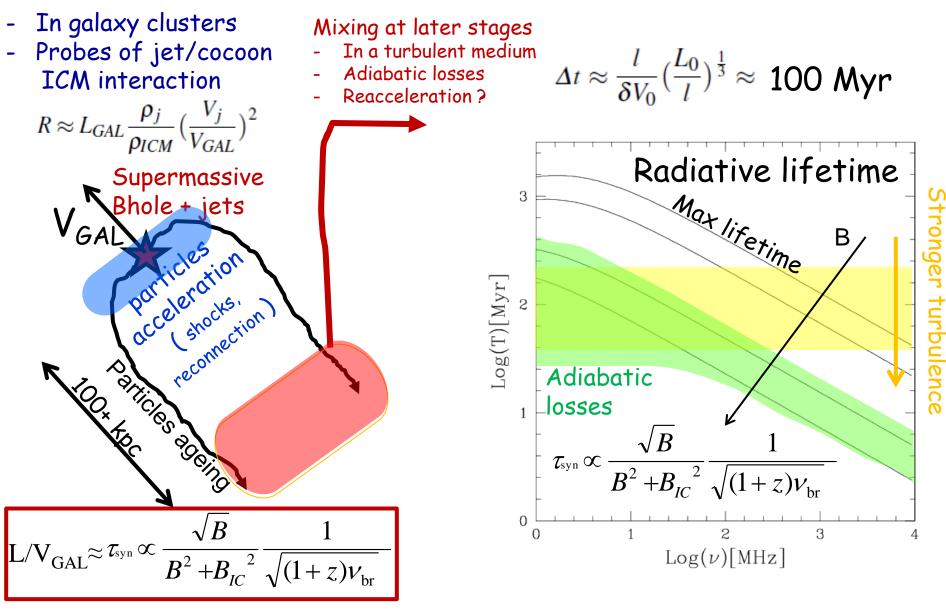
 $\Delta t \approx \frac{l}{\delta V_0} \left(\frac{L_0}{l}\right)^{\frac{1}{3}} \approx 100 \text{ Myr}$

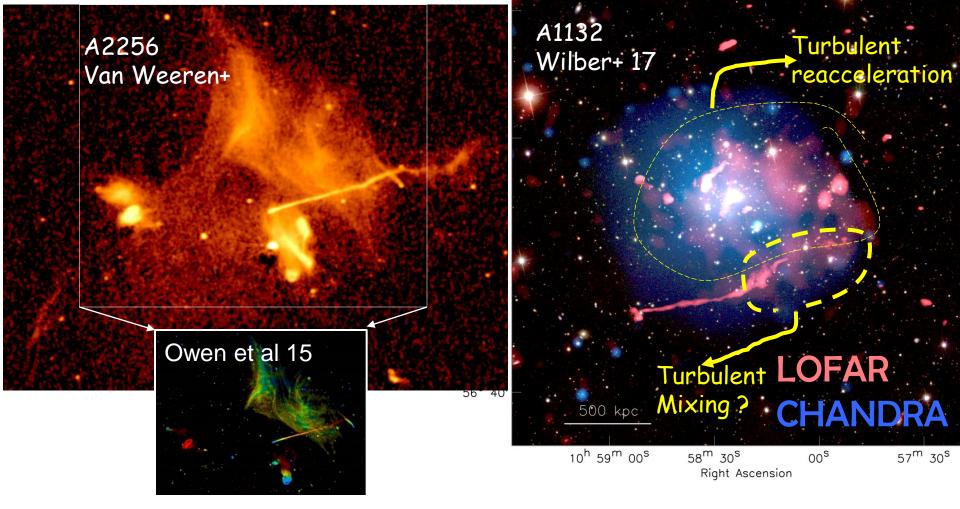
Mixing at later stages

- In a turbulent medium
- Adiabatic losses
- Reacceleration?

Richardson diffusion

Where (frequency) we have to observe ??

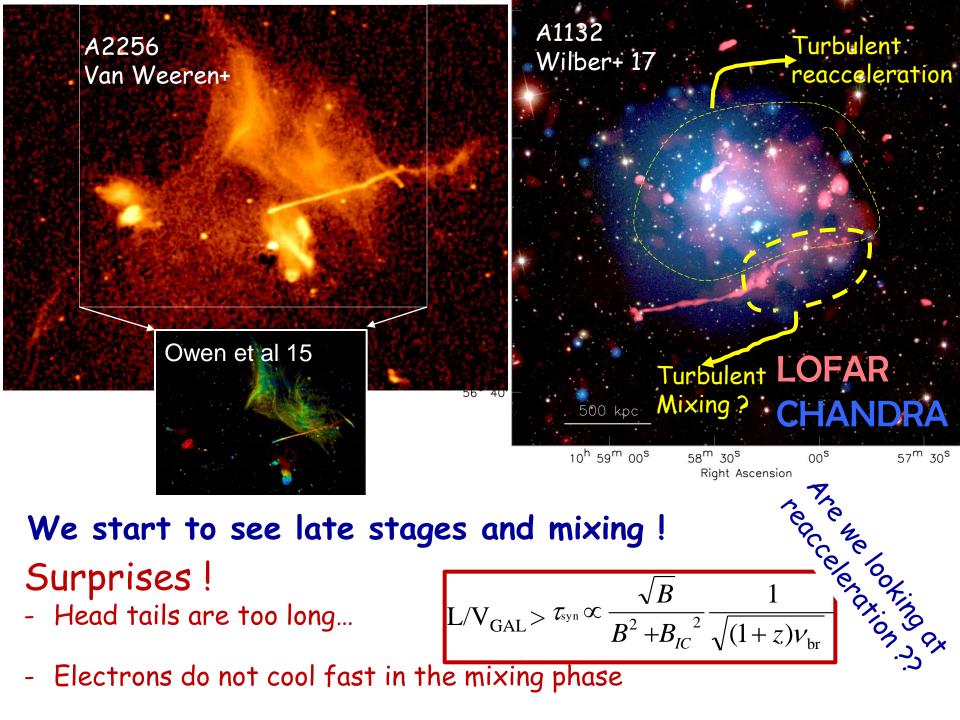




We start to see late stages and mixing !

- Surprises!
- Head tails are too long...

- $L/V_{GAL} > \tau_{syn} \propto \frac{\sqrt{B}}{B^2 + B_{IC}^2} \frac{1}{\sqrt{(1+z)\nu_{br}}}$
- Electrons do not cool fast in the mixing phase



PHYSICAL SCIENCES

Gentle reenergization of electrons in merging galaxy clusters

Francesco de Gasperin,^{1,2}* Huib T. Intema,¹ Timothy W. Shimwell,¹ Gianfranco Brunetti,³ Marcus Brüggen,² Torsten A. Enßlin,⁴ Reinout J. van Weeren,^{1,5} Annalisa Bonafede,^{2,3} Huub J. A. Röttgering¹

10 11 12 13 14 15 16 17 18 19 20 VLA Spectral index - $B = 1 \mu G$ = 5 µG Model brightness LOFAR 8=23pG $B = 1 \mu G$ 8=5µG Model Model + projection 700 5 a . 480

BIG SURPRISE

PHYSICAL SCIENCES

Gentle reenergization of electrons in merging galaxy clusters

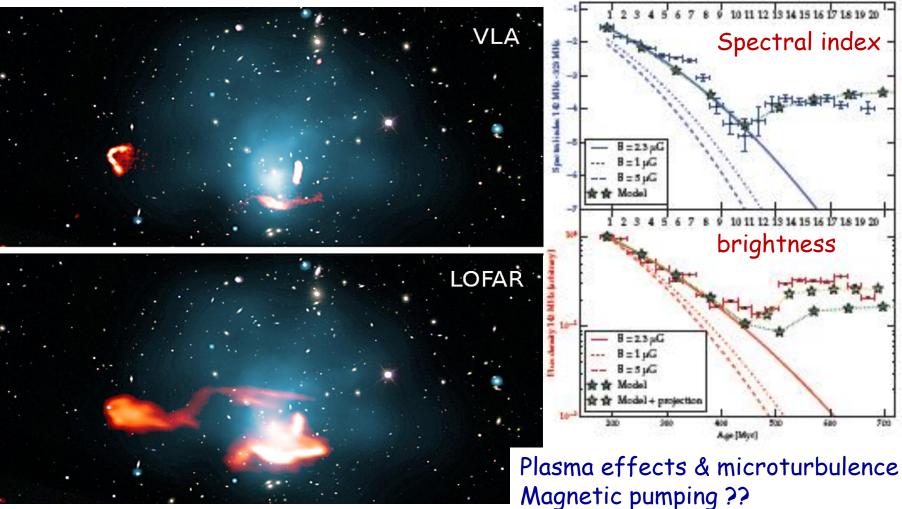
Francesco de Gasperin,^{1,2}* Huib T. Intema,¹ Timothy W. Shimwell,¹ Gianfranco Brunetti,³ Marcus Brüggen,² Torsten A. Enßlin,⁴ Reinout J. van Weeren,^{1,5} Annalisa Bonafede,^{2,3} Huub J. A. Röttgering¹

$$\frac{\partial N_e(p,t)}{\partial t} = \frac{\partial}{\partial p} \Big[N_e(p,t) \Big(\left| \frac{dp}{dt} \right|_{\rm r} - \frac{1}{p^2} \frac{\partial}{\partial p} (p^2 D_{\rm pp}) \Big) \Big] + \frac{\partial^2}{\partial p^2} \Big[D_{\rm pp} N_e(p,t) \Big]$$

adding physics

700

$$\tau_{acc} = p \left(\langle \frac{dp}{dt} \rangle \right)^{-1} = p^3 \left(\frac{\partial p^2 D_{pp}}{\partial p} \right)^{-1} \sim 500-700 \text{ Myr}$$



Revision of life-cycle of rel plasma !

OUTLINE

Turbulent acceleration: from Fermi to Gyroresonance and diffusion coefficients

Complications and acceleration models using large-scale turbulence

Turbulent acceleration in galaxy clusters: Radio Halos, models and observations at low radio frequencies

Turbulent acceleration in head tail radio galaxies: evidences from observations at low radio frequencies

□ APPENDIX: Fokker-Planck equation and coefficients

Evolution of particles interacting with Alfven waves

$$\begin{split} \underline{D}_{\mu\mu} &= \frac{q^2(1-\mu^2)\pi}{m^2\gamma^2c^2} \frac{1}{v\mu} 4\pi \int dk \frac{B_k^2}{4\pi} \delta(k-\frac{\Omega}{v\mu}). \\ D(p) &= \frac{2\pi^2 e^2 v_A^2}{c^3} \int_{k_{\min}(p)}^{k_{\max}} W_A(k) \frac{1}{k} \left[1 - \left(\frac{v_A}{c} + \frac{\Omega m_e}{pk} \right)^2 \right] dk \\ \end{split}$$

$$\begin{split} \mathbf{Fokker-Planck Equation} \\ \frac{\partial f}{\partial t} &+ \mu v \frac{\partial f}{\partial z} = \frac{\partial}{\partial \mu} \left[\left(D_{\mu\mu} \frac{\partial}{\partial \mu} + D_{\mu p} \frac{\partial}{\partial p} \right) f(p,\mu,t) \right] + \frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \times \left(D_{\mu p} \frac{\partial}{\partial \mu} + D_{p p} \frac{\partial}{\partial p} \right) f(p,\mu,t) \right] \end{split}$$

particle distribution in phase-space $f(\mathbf{x}, \mathbf{p}, t) dx dy dz dp_x dp_y dp_z$

The aim is to derive an equation describing the 6D+1 evolution of f(..) subject to stochastic changes in **p**

e.

particle distribution in phase-space

 $f(\mathbf{x},\mathbf{p},t)dxdydzdp_xdp_ydp_z$

The aim is to derive an equation describing the 6D+1 evolution of f(..) subject to stochastic changes in **p**

Probability density that particles change momentum by Δp in a time Δt . Assume this is a Markov process...

 $\mathcal{P}(\mathbf{p}, \Delta \mathbf{p})$

$$d\Delta \mathbf{p}\mathscr{P}(\mathbf{p},\Delta \mathbf{p}) = 1$$

particle distribution in phase-space $f(\mathbf{x}, \mathbf{p}, t) d\mathbf{r} d\mathbf{r} d\mathbf{r} d\mathbf{r} d\mathbf{r} d\mathbf{r}$

 $f(\mathbf{x},\mathbf{p},t)dxdydzdp_xdp_ydp_z$

The aim is to derive an equation describing the 6D+1 evolution of f(..) subject to stochastic changes in **p**

Probability density that particles change momentum by Δp in a time Δt . Assume this is a Markov process...

 $\mathcal{P}(\mathbf{p}, \Delta \mathbf{p})$

$$\int d\Delta \mathbf{p} \mathscr{P}(\mathbf{p}, \Delta \mathbf{p}) = 1$$

 $f(\mathbf{p}, \mathbf{x} + \mathbf{V}\Delta t, t + \Delta t) = \int d\Delta \mathbf{p} f(\mathbf{p} - \Delta \mathbf{p}, \mathbf{x}, t) \mathscr{P}(\mathbf{p} - \Delta \mathbf{p}, \Delta \mathbf{p})$

particle distribution in phase-space $f(\mathbf{x}, \mathbf{p}, t) dx dy dz dp_x dp_y dp_z$

Probability density that particles change

The aim is to derive an equation describing the 6D+1 evolution of f(..) subject to stochastic changes in **p**

momentum by $\Delta \mathbf{p}$ in a time Δt . Assume this is a Markov process... $\mathscr{P}(\mathbf{p},\Delta\mathbf{p})$ $\langle \mathbf{p},\mathbf{\Delta p} \rangle = 1$ $f(\mathbf{p}, \mathbf{x} + \mathbf{V}\Delta t, t + \Delta t) = \int d\Delta \mathbf{p} f(\mathbf{p} - \Delta \mathbf{p}, \mathbf{x}, t) \mathscr{P}(\mathbf{p} - \Delta \mathbf{p}, \Delta \mathbf{p})$ make a Taylor expansion $f(\mathbf{p} - \Delta \mathbf{p}, \mathbf{x}, t) = f(\mathbf{p}, \mathbf{x}, t) - \frac{\partial f}{\partial \mathbf{p}} \Delta \mathbf{p} + \frac{1}{2} \Delta \mathbf{p} \Delta \mathbf{p} \frac{\partial^2 f}{\partial \mathbf{p}^2} + \dots$ $\mathscr{P}(\mathbf{p} - \Delta \mathbf{p}, \Delta \mathbf{p}) = \mathscr{P}(\mathbf{p}, \Delta \mathbf{p}) - \frac{\partial \mathscr{P}}{\partial \mathbf{p}} \Delta \mathbf{p} + \frac{1}{2} \Delta \mathbf{p} \Delta \mathbf{p} \frac{\partial^2 \mathscr{P}}{\partial \mathbf{p}^2} + \dots$

particle distribution in phase-space $f(\mathbf{x}, \mathbf{p}, t) dx dy dz dp_x dp_y dp_z$

Probability density that particles change

momentum by $\Delta \mathbf{p}$ in a time Δt .

The aim is to derive an equation describing the 6D+1 evolution of f(..) subject to stochastic changes in **p**

Assume this is a Markov process... $\mathscr{P}(\mathbf{p},\Delta\mathbf{p})$ $\langle \mathbf{p},\mathbf{\Delta p} \rangle = 1$ $f(\mathbf{p}, \mathbf{x} + \mathbf{V}\Delta t, t + \Delta t) = \int d\Delta \mathbf{p} f(\mathbf{p} - \Delta \mathbf{p}, \mathbf{x}, t) \mathscr{P}(\mathbf{p} - \Delta \mathbf{p}, \Delta \mathbf{p})$ $f + \left[\frac{\partial f}{\partial t} + (\mathbf{V} \cdot \nabla)f\right]\Delta t =$ $= \int d\Delta \mathbf{p} \left(f - \frac{\partial f}{\partial \mathbf{p}} \Delta \mathbf{p} + \frac{1}{2} \Delta \mathbf{p} \Delta \mathbf{p} \frac{\partial^2 f}{\partial \mathbf{p}^2} + \dots \right) \left(\mathscr{P} - \frac{\partial \mathscr{P}}{\partial \mathbf{p}} \Delta \mathbf{p} + \frac{1}{2} \Delta \mathbf{p} \Delta \mathbf{p} \frac{\partial^2 \mathscr{P}}{\partial \mathbf{p}^2} + \dots \right)$

particle distribution in phase-space

 $f(\mathbf{x},\mathbf{p},t)dxdydzdp_xdp_ydp_z$

 $\mathscr{P}(\mathbf{p}, \Delta \mathbf{p}) \qquad \checkmark \qquad \int d\Delta \mathbf{p} \mathscr{P}(\mathbf{p}, \Delta \mathbf{p}) = 1$

The aim is to derive an equation describing the 6D+1 evolution of f(..) subject to stochastic changes in **p**

Probability density that particles change momentum by Δp in a time Δt . Assume this is a Markov process...

$$f + \left[\frac{\partial f}{\partial t} + (\mathbf{V} \cdot \nabla)f\right]\Delta t =$$

$$= \int d\Delta \mathbf{p} \left(f - \frac{\partial f}{\partial \mathbf{p}}\Delta \mathbf{p} + \frac{1}{2}\Delta \mathbf{p}\Delta \mathbf{p}\frac{\partial^2 f}{\partial \mathbf{p}^2} + \ldots\right) \left(\mathscr{P} - \frac{\partial \mathscr{P}}{\partial \mathbf{p}}\Delta \mathbf{p} + \frac{1}{2}\Delta \mathbf{p}\Delta \mathbf{p}\frac{\partial^2 \mathscr{P}}{\partial \mathbf{p}^2} + \ldots\right)$$
some tedious algebra...
$$\frac{1}{2}\Delta \mathbf{p}\Delta \mathbf{p}f\frac{\partial^2 \mathscr{P}}{\partial \mathbf{p}^2} + \frac{\partial \mathscr{P}}{\partial \mathbf{p}}\frac{\partial f}{\partial \mathbf{p}}\Delta \mathbf{p}\Delta \mathbf{p} + \frac{1}{2}\Delta \mathbf{p}\Delta \mathbf{p}\frac{\partial^2 f}{\partial \mathbf{p}^2} = \frac{1}{2}\frac{\partial^2 (\mathscr{P}f)}{\partial \mathbf{p}^2}$$

$$\mathscr{P}\frac{\partial f}{\partial \mathbf{p}}\Delta \mathbf{p} + f\frac{\partial \mathscr{P}}{\partial \mathbf{p}}\Delta \mathbf{p} = \frac{\partial (\mathscr{P}f)}{\partial \mathbf{p}}\Delta \mathbf{p}$$
.....

particle distribution in phase-space

 $f(\mathbf{x},\mathbf{p},t)dxdydzdp_xdp_ydp_z$

The aim is to derive an equation describing the 6D+1 evolution of f(..) subject to stochastic changes in **p**

Probability density that particles change momentum by Δp in a time Δt . Assume this is a Markov process...

$$\mathscr{P}(\mathbf{p},\Delta\mathbf{p})$$
 $\int d\Delta\mathbf{p}\mathscr{P}(\mathbf{p},\Delta\mathbf{p}) = 1$

$$f + \left[\frac{\partial f}{\partial t} + (\mathbf{V} \cdot \nabla)f\right]\Delta t =$$

$$= \int d\Delta \mathbf{p} \left(f - \frac{\partial f}{\partial \mathbf{p}}\Delta \mathbf{p} + \frac{1}{2}\Delta \mathbf{p}\Delta \mathbf{p}\frac{\partial^2 f}{\partial \mathbf{p}^2} + \ldots\right) \left(\mathscr{P} - \frac{\partial \mathscr{P}}{\partial \mathbf{p}}\Delta \mathbf{p} + \frac{1}{2}\Delta \mathbf{p}\Delta \mathbf{p}\frac{\partial^2 \mathscr{P}}{\partial \mathbf{p}^2} + \ldots\right)$$

$$\frac{\partial f}{\partial t} + (\mathbf{V} \cdot \nabla)f = -\frac{\partial}{\partial \mathbf{p}} \left[f \left(\frac{\Delta \mathbf{p}}{\Delta t}\right)\right] + \frac{1}{2}\frac{\partial}{\partial \mathbf{p}} \left[\frac{\partial}{\partial \mathbf{p}} \left(f \left(\frac{\Delta \mathbf{p}\Delta \mathbf{p}}{\Delta t}\right)\right)\right]$$

$$definitions: \qquad \left(\frac{\Delta \mathbf{p}\Delta \mathbf{p}}{\Delta t}\right) = \frac{1}{\Delta t} \int d\Delta \mathbf{p} \mathscr{P}(\mathbf{p},\Delta \mathbf{p})\Delta \mathbf{p}\Delta \mathbf{p}$$

particle distribution in phase-space $f(\mathbf{x}, \mathbf{p}, t) dx dy dz dp_x dp_y dp_z$

Probability density that particles change

momentum by $\Delta \mathbf{p}$ in a time Δt .

The aim is to derive an equation describing the 6D+1 evolution of f(..) subject to stochastic changes in **p**

 $f(\mathbf{x}, \mathbf{p}, t) dx dy dz dp_x dp_y dp_z$ Probability density that particles change momentum by $\Delta \mathbf{p}$ in a time Δt . Assume this is a Markov process... $\mathscr{P}(\mathbf{p}, \Delta \mathbf{p})$ \checkmark $\int d\Delta \mathbf{p} \mathscr{P}(\mathbf{p}, \Delta \mathbf{p}) = 1$ definitions: $\int d\Delta \mathbf{p} \mathscr{P}(\mathbf{p}, \Delta \mathbf{p}) = 1$ $\left\{ \begin{array}{c} \Delta \mathbf{p} \Delta \mathbf{p} & \Delta \mathbf{p} \\ \Delta \mathbf{p} & \Delta$

$$\frac{\partial f}{\partial t} + (\mathbf{V} \cdot \nabla) f = -\frac{\partial}{\partial \mathbf{p}} \left[f \langle \frac{\Delta \mathbf{p}}{\Delta t} \rangle \right] + \frac{1}{2} \frac{\partial}{\partial \mathbf{p}} \left[\frac{\partial}{\partial \mathbf{p}} \left(f \langle \frac{\Delta \mathbf{p} \Delta \mathbf{p}}{\Delta t} \rangle \right) \right]$$

particle distribution in phase-space The aim is to derive an equation $f(\mathbf{x},\mathbf{p},t)dxdydzdp_xdp_ydp_z$ describing the 6D+1 evolution of f(..)subject to stochastic changes in p Probability density that particles change momentum by $\Delta \mathbf{p}$ in a time Δt . Assume this is a Markov process... $\mathcal{P}(\mathbf{p},\Delta\mathbf{p}) \qquad \qquad \int d\Delta\mathbf{p} \mathcal{P}(\mathbf{p},\Delta\mathbf{p}) = 1$ **b** $\int d\Delta\mathbf{p} \mathcal{P}(\mathbf{p},\Delta\mathbf{p}) = 1$ **c** $\int d\Delta\mathbf{p} \mathcal{P}(\mathbf{p},\Delta\mathbf{p}) = 1$ **c** $\left(\frac{\Delta\mathbf{p}\Delta\mathbf{p}}{\Delta t} \geqslant \frac{1}{\Delta t} \int d\Delta\mathbf{p} \mathcal{P}(\mathbf{p},\Delta\mathbf{p})\Delta\mathbf{p}\Delta\mathbf{p}\right)$ $\left(\frac{\Delta\mathbf{p}}{\Delta t} \geqslant \frac{1}{\Delta t} \int d\Delta\mathbf{p} \mathcal{P}(\mathbf{p},\Delta\mathbf{p})\Delta\mathbf{p}\Delta\mathbf{p}\right)$ $\left(\frac{\partial f}{\partial t} + (\mathbf{V}\cdot\mathbf{\nabla})f = -\frac{\partial}{\partial\mathbf{p}} \left[f\langle\frac{\Delta\mathbf{p}}{\Delta t}\rangle\right] + \frac{1}{2}\frac{\partial}{\partial\mathbf{p}} \left[\frac{\partial}{\partial\mathbf{p}} (f\langle\frac{\Delta\mathbf{p}\Delta\mathbf{p}}{\Delta t}\rangle)\right]$ Relation between FP-coefficients $\frac{\partial}{\partial \mathbf{p}} \langle \frac{\Delta \mathbf{p}}{\Delta t} \rangle = \frac{1}{2} \frac{\partial}{\partial \mathbf{p}} (\frac{\partial}{\partial \mathbf{p}} \langle \frac{\Delta \mathbf{p} \Delta \mathbf{p}}{\Delta t} \rangle)$ Consequence of detailed balance : $\mathscr{P}(\mathbf{p}, -\Delta \mathbf{p}) = \mathscr{P}(\mathbf{p} - \Delta \mathbf{p}, \Delta \mathbf{p})$

particle distribution in phase-space

 $f(\mathbf{x},\mathbf{p},t)dxdydzdp_xdp_ydp_z$

Probability density that particles change momentum by Δp in a time Δt . Assume this is a Markov process... The aim is to derive an equation describing the 6D+1 evolution of f(..) subject to stochastic changes in **p**