Solar Coronal Plasmas

Jörg Büchner

Max-Planck-Institute for Solar System Research & Georg-August-University both in Göttingen & (from Winter semester 2018-19 also at Technical University Berlin), all in Germany Max-Planck-Princeton Center for Plasma Physics

J. Büchner Solar Coronal Plasmas EASW-8, Daejeon, Korea, August 2nd, 2018 *With many thanks to the collaborating members and students of the TSSSP group (P. Munoz, N. Jain, P. Kilian, F. Widmer, X. Zhou …)*

MPI Solar System Research (MPS): New building, Göttingen 2014

MPS: buildings for scientists, laboratories, workshops

Left (glass) building: for scientists; Right: administration & facilities like clean rooms, balloon hall, coelostat/ heliostat…

Thermal-Vacuum Chamber and Clean Room

Research

Planetary Atmospheres Planetary Interiors Small BodiesComets

Planetary Surfaces

Planetary Plasma

Environments

Planets and Comets Solar and Stellar Interiors

Helioseismology Asteroseismology

The TSSSP-(Theory and Simulation of Solar System Plasmas) moves to the

J. Büchner Solar Coronal Plasmas EASW-8, Daejeon, Korea, August 2nd, 2018 TU Berlin in winter semester 2018-2019

Sun and Heliosphere

Coronal Spectroscopy and Imaging; Solar Lower Atmosphere and Magnetism Solar and Stellar MHD Plasma instabilities, waves, turbulence; reconnection; Numerical simulations: kinetic (PIC & Vlasov), hybrid & MHD models

- \bullet **Coronal plasmas & fields**
- •**Eruptions & reconnection**
- •**Turbulence and dissipation**
- •**Electron acceleration**

- \bullet **Coronal plasmas & fields**
- •**Eruptions & reconnection**
- •**Turbulence and dissipation**
- •**Electron acceleration**

Solar corona in the plasma Universe

Typical plasma parameters

-> the solar coronal plasma is still mainly collisioness, -> kinetic effects might be crucial

Magnetoplasma parameters

-> the magnetic pressure dominates the solar corona -> force free B fields can be extrapolated

Ideal <-> nonideal solar magnetoplasma

The coronal magnetic fields can grow or become annihilated according to the induction equation:

Convection >>> Diffusion

Magnetic Reynolds- and Lundquist numbers

$$
R_m = \frac{\mu_0 l v}{\eta} \qquad S \equiv \frac{\mu_0 L_{CS} V_A}{\eta}
$$

Reynolds- / Lundquist numbers of (Spitzer-) collisional plasmas are huge ~10 6-12 for large scales (L) and typical *V* **!**

At smaller scales: two-fluid Ohms law

Two-fluid electron equation of motion: -> "Ohm's law":

$$
\frac{4\pi}{\omega_{pe}^2}\frac{d\vec{J}}{dt} = \left[\vec{E} + \vec{v}_i \times \vec{B}\right] - \frac{1}{ne}\vec{J} \times \vec{B} + \frac{1}{ne}\nabla p_e - \eta \vec{J}
$$

In case of strong guide fields -> to the lowest order onedimensional balance equation for Epar

$$
E_{\parallel} = -\frac{m_e}{ne} \frac{d(nv_e)}{dt} - \frac{1}{ne} \frac{dp_e}{dx_{\parallel}} + \frac{1}{ne} f_{eff}
$$

Electric field ⇔ Electron inertia + Pressure + *fef***f ⁼"drag force" gradient due to collective waveparticle interaction**

Plasma phenomena in the Solar corona

- \bullet **Coronal plasmas & fields**
- •**Eruptions & reconnection**
- •**Turbulence and dissipation**
- •**Electron acceleration**

Typical evolution

Three phases (in outward velocities and soft X-ray fluxes): Flux **-> 1: slow rise of X-ray the prominence, magnetic energy** Soft **accumulation -> 2: fast rise of** Flare **flare emissions and CME acceleration -> 3: CME propagation / decreasing X-ray flare activity**

e.g. B-field line-tied equilibria

- Primary magnetic field components:
	- Internal poloidal field B_{pi} (plasma)
	- External "strapping" field $B_{\rm c}$ (vacuum) \bullet
	- Internal toroidal field $B_{\tau i}$ (plasma) \bullet
	- External "guide" field B_{α} (vacuum)
- At low- β , $J \times B$ forces dominate:
	- Poloidal hoop force: $f_h = +J_T \times B_{pi}$
	- Strapping field force: $f_s = -J_T \times B_s$
	- Toroidal field forces: $f_T = -J_P \times (B_q + B_{T_i})$ \bullet

J. Chen, ApJ, 1989

Are eruptions due to ideal instabilities?

Flux ropé catastrophe at a final point in a sequence of equilibria; here: 2D case [see, e.g., Forbes & Isenberg 1991]

Helical kink (KI) instability m=1, [see, e.g., Gerrard et al. 2001]

Lateral kink or torus-instability

[see, e.g. [Kliem & Török, 2006]

Ideal instability criteria

Winding due to footpoint motion -> flux rope kink?

1.) Windings cause a kink instability

[Kruskal & Schwarzschild, 1954] Instability criterion: "Edge safety factor" (inverse winding number) :

$$
q_a = \tfrac{2\pi a}{L} \tfrac{B_{Ta}}{B_{Pa}} < 1.
$$

2.) Quickly decaying magnetic fields -> "torus" instability ? [Kliem & Török, 2006] Instability criterion: quick decrease of the magnetic downward directed "strapping" Lorentz force

$$
n(z) = \frac{z}{|\mathbf{B}_{pot}|} \frac{\partial |\mathbf{B}_{pot}|}{\partial z} > \frac{3}{2}
$$

Saturation of lateral kink instability

Above: A [Török and Kliem, 2005]-result. However: the ideal instabilities saturate quickly -> failed eruptions [Aulanier et al., 2010]. It still may be behind confined ("failed") eruptions.

MRX experiment of a coronal loop

Goals:

Formation of quasistatic flux ropes in a static potential field arcade

Study of the force balance and transition between equilibria, toward loss-ofequilibrium and a kink instability

In a sheared arcade, both strapping and tension forces confine the flux rope

Laboratory experiment to better understand the role of the tension force.

MRX laboratory experimental results

J. Büchner Solar Coronal Plasmas EASW-8, Daejeon, Korea, August 2nd, 2018 I.e. it seems that both instability conditions - for kink and torus instability have to be fulfilled necessarily - but they what is sufficient? E.g. they do not to take into account, e.g. the distanc e between the footpoints, which was observed to play a role, the current distribution over the small radius et c. Which criterion is sufficient? Role of footpoint distance?

Equilibrium flux ropes -> stability ?

Stability of equilibrium flux ropes [Titov & Demoulin, 1999] (Plasma beta (<< 1); height-stratified density and pressure, the footpoint distance and rope inclination (R,d), ratio of radii.

Rising flux rope due to twisting

Helicity is injected from below -> The flux rope rises and twists Stabilitiy investigations for R = 4; 6; 8 and $t_{\rm rot}$ = 0.5; 5; 10; 15; 20 $\mathbf{t}_\mathsf{Alfven}$ when the Alfvenic perturbation reaches the flux rope apex)

R=4 footpoints distance as in MRX

Shown is the rising height of the flux-rope apex driven during different times trot. The trailing Alvenic perturbation reaches the apex at t e (dashed lines); Instability for $q < 0.7$ and $N(z) \sim 1.0...$ 1.4 at the apex

R=6 –> medium footpoint distance

Shown is again the apex height evolution for different driving times trot; Instability if $q < 0.6$ but larger $N(z) > 2.0$ at the apex position required

R=8 –> large footpoint distance

J. Büchner Solar Coronal Plasmas EASW-8, Daejeon, Korea, August 2nd, 2018 Shown is the apex-height evolution for different driving times trot; Instability still for $q < 0.7$ but now only after $N(z) > 2.6$ at the apex -> **Larger distance between footpoints -> flux ropes are more stable!**

-> Lorentz forces due to returncurrents inhibit eruptions!

Parallel current $J.B$

In almost ideal plasma conditions (here eta=10^-8 Rm=10^8) return currents around the flux rope and the strapping field result in downward directed Lorentz forces -> eruptive instability inhibited!

Eruption only if the return current is dissipated, e.g. by reconnection !

Red line: results for eta ~ 10-8 (Rm=10 8-ideal plasma). Green line: eta ~ 10-5:enhanced resitivity->Rm=10 5 reconnection. (compare: MRX experiment: eta ~ 10-3, Rm=10 3)

Similar in Lab. Experiment of Madison Wisconsin

Line-tied University of Wisconsin-Madison pinch experiment: currents cpmpensate via return currents -> Instability only after small CS formation&turbulence [from Brookhart et al., PRL, 2015]

Data driven Simulations of CME cases, e.g. of 24.4.12 ideal and non-ideal 6.-7.3.12

SDO/HMI HMI_FRONT2 6173 6-Mar-2012 23:35:44.600

The following simulations are based on observations of the SDO s/cLeft: original B-field (magnetogram), obtained March 6, 2012 at 23:35 UT (AR 11429). About 60 minutes later a strong X5.4-class Flare took place in this AR area and a CME was launched. The photospheric plasma velocity for the simulation is also derived using SDO observations.

Preparation of observed B-field data

Original magnetogram.

Preprocessed magnetogram.

Preparation of real magnetograms (this example is for AR 11520 on July 7, 2012) by filtering away small scale structures, B fields near the boundaries and balancing the B flux in accordance with the MHD boundary conditions.

Preparation of initial conditions & grid

SDO-observation basedextrapolated coronal B-field

Initial density and temperature distribution photosphere -> corona

Ideal plasma instability simulation

A torus instability can be reached only after long time or for 4 times too fast winding speed at the footpoints is assumed!

Non-ideal MHD simulation

Non-ideal run with a realistic (smaller) winding speed on March 7, 2012. Epar isosurfaces 0.5 mV/m indicatethat after 3740 s and after only 0.7 windings, fast reconnection has begun. Indeed, at 00:30 UT AR 11429 released a strong X5.4-class flare (SDO observation).

Evolution of the energies

Fast reconnectionstarts at t=500 s t=500 -> accumulatedmagnetic energy is released and -> thermal energy is enhanced. -> Then the kinetic energy takes over which carries most of the energy away

[Santos, Büchner, Otto, 2011]

Evolution of magnetic helicity

$$
\frac{dH_{\mathbf{R}}}{dt} = -2 \int_{V} (\mathbf{E} \cdot \mathbf{B}) dV - 2 \int_{S} ((\mathbf{A}_{\mathbf{p}} \cdot \mathbf{V}) \mathbf{B} - (\mathbf{A}_{\mathbf{p}} \cdot \mathbf{B}) \mathbf{V}) \cdot \mathbf{n} dS.
$$

Helicity in the simulation box $(10^{42}$ MX²) 5 4 3 \mathbf{Z} (a) 100 200 300 400 500 700 600 ∩ time (s)

Crosses: Temporal evolution of the relative \mathbf{m} agnetic helicity \mathbf{H}_{R} in the **simulation box according to the time-integrated [Berger and Field, 1984] formula**

derived by

[Berger and

Field, 1984]

Diamonds: Relative magnetic helicity H Robtained from simulation[Yang, Büchner, Santos and Zhang 2013]

New data driven CME eruption simulation confirmed: reconnection required to erupt

J. Büchner Solar Coronal Plasmas EASW-8, Daejeon, Korea, August 2nd, 2018 [from Inoue, Kusanao, JB, Skala, 2018 Nature Comm]. More tomorrow by Kusanao-san towards possibilities of prediction for space weather applications

Summary

Ideal plasma instabilities alone do not cause flux rope eruptions, in addition dissipation / reconnection is needed. After that even helicity is dissipated!

- \bullet **Coronal plasmas & fields**
- •**Eruptions & reconnection**
- •**Turbulence and dissipation**
- •**Electron acceleration**

Unstably sel f-generated plasma waves change the 3D velocity space distributions

Ion distribution function

Electron distribution function

Nature of , anomalous resistivity"

Representing $f_j = f_{0j} + \delta f_j$ $E_{\parallel} = \langle E_{\parallel} \rangle + \delta E_{\parallel}$ $\vec{B} = \delta \vec{B}$ **for an appropriate averaging -> the Vlasov equation reveals:** $\langle \delta f_j \rangle = \langle \delta \vec{E} \rangle = \langle \delta \vec{B} \rangle = 0.$

$$
\frac{\partial f_{0e}}{\partial t} + \vec{v} \cdot \frac{\partial f_{0e}}{\partial \vec{r}} + \frac{e}{m_e} \vec{E} \cdot \frac{\partial f_{0e}}{\partial \vec{v}} = -\frac{e}{m_e} \left\langle \left(\delta \vec{E} + \vec{v} \times \delta \vec{B} \right) \cdot \frac{\partial \delta f_e}{\partial \vec{v}} \right\rangle
$$

after velocity-space integration, the momentum exchange rate is

$$
\left(\frac{d}{dt}nm_{e}v_{y,e}\right)_{eff}=\langle \delta E_{y}\delta\rho_{e}+\delta j_{z,e}\delta B_{x}-\delta j_{x,e}\delta B_{z}\rangle
$$

-> What fluctuations / turbulence is generated in the corona?

-> The correlations above have to be determined by kinetic numerical simulations!

Quantification o f collisionless dissipation by effective collision rate

Ensemble averaged $f_j = f_{0j} + \delta f_j$. **Vlasov equation for reveals**

$$
\langle \delta f_j \rangle = \langle \delta \vec{E} \rangle = \langle \delta \vec{B} \rangle = 0.
$$

$$
\frac{\partial f_{0j}}{\partial t} + \vec{v} \cdot \frac{\partial f_{0j}}{\partial \vec{r}} + \frac{e_j}{cm_j} \left(\vec{v} \times \vec{B} \right) \cdot \frac{\partial f_{0j}}{\partial \vec{v}} = \left(\frac{\partial f_j}{\partial t} \right)_{an}
$$

$$
= -\frac{e_j}{m_j} \left\langle \left(\delta \vec{E} + \frac{\vec{v} \times \delta \vec{B}}{c} \right) \cdot \frac{\partial \delta f_j}{\partial \vec{v}} \right\rangle.
$$

$$
\left(\frac{\partial}{\partial t}n_jm_jv_{y,j}\right)_{an}=\left\langle \delta E_y\delta\rho_j+\frac{\delta j_{z,j}\delta B_x-\delta j_{x,j}\delta B_z}{c}\right\rangle.
$$

$$
\nu_{eff,j} = \frac{1}{\langle n_j m_j v_{y,j} \rangle} \left(\frac{\partial}{\partial t} n_j m_j v_{y,j} \right)_{an}.
$$

Often used theoretical estimate of the anomalous collision frequency based on waves and their dispersion (quasilinear approximation):

$$
\nu=\sum_k \frac{\Delta k |\delta E(k)|^2 \omega_{pe}}{k v_{te}^2 m_e n v_d} Im \xi_e Z(\xi_e)
$$

In a simulation one can directly determine the momentum exchange rate

$$
\nu(t+\delta t/2)=\frac{2}{\delta t}\frac{p(t+\delta t)-p(t)}{p(t+\delta t)+p(t)}
$$

Current sheet "quasi-collisions"

Effective ,,collision rates": Solid (electric) $\delta\rho \delta E$, and dashed (magnetic fluctuations) $\delta i \times \delta B$ lines; **(Upper - thicker lines: electrons; Lower - thinner lines: ions**

Summary "Anomalous resistivity"

- **Neglible: binary particle collision [Spitzer 56, Härm–Braginski 63] Magnetic diffusivity expressed via an effective ,,collision frequency":**
	- **There is no indication for the estimate of [Bunemann 1958] in the solar corona**

PIC and Vlasov code simulations revealed for the solar corona:

[Büchner, Kuska, Silin, Elkina, 99-08]

- **–1D small beta: IA / double layers**
- **– 2D higher beta – LH turbulence**
- **- 3D highest beta: LH/kink sausage**

$$
\nu_c \approx \omega_{pi}/2\pi
$$

$$
\nu_c \sim \omega_{\text{LH}}
$$

$$
\nu_c \approx \omega_{pi}
$$

But, use "anomalous resistivity": with care!

Better would be an "SGS" description, as demonstrated for MHD turbulence models

$$
\mathbf{E}_\text{M} = -\beta \mathbf{J} + \gamma \mathbf{\Omega} + \alpha \mathbf{B}
$$

Reynolds averaging Mean field approximation [e.g. Yokoi et al, 2010] [e.g.

$$
\beta = \frac{5}{7}\nu_{\rm K} = C_{\beta}\tau K,
$$

where with the turbulent energy

$$
K \left(\equiv \langle \mathbf{u}'^2 + \mathbf{b}'^2 \rangle / 2 \right)
$$

the turbulent cross-helicity and $W (\equiv \langle \mathbf{u}' \cdot \mathbf{b}' \rangle)$

the turbulent residual helicity $H(\equiv \langle -\mathbf{u}'\cdot \boldsymbol{\omega}' + \mathbf{b}'\cdot \mathbf{j}' \rangle)$

$$
\alpha = C_{\alpha} \tau H,
$$

 $\gamma = \frac{5}{7} \nu_{\rm M} = C_{\gamma} \tau W,$

Modified MHD equations (MFM)

$$
\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \mathbf{U}) + \chi \nabla^2 \rho
$$
\n
$$
\frac{\partial \rho \mathbf{U}}{\partial t} = -\nabla \cdot \left[\rho \mathbf{U} \otimes \mathbf{U} + \frac{1}{2} (\rho + B^2) \mathbf{I} - \mathbf{B} \otimes \mathbf{B} \right] + \chi \nabla^2 (\rho \mathbf{U})
$$
\n
$$
\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{U} \times \mathbf{B}) - (\nabla (\eta + \beta)) \times \mathbf{J} + (\eta + \beta) \nabla^2 \mathbf{B}
$$
\n
$$
+ \nabla \times (\gamma \sqrt{\rho} \Omega)
$$
\n
$$
\frac{\partial h}{\partial t} = -\nabla \cdot (h \mathbf{U}) + \frac{\gamma - 1}{\gamma h^{\gamma - 1}} (\eta \mathbf{J}^2 - \frac{\rho K}{\tau_t}) + \chi \nabla^2 h
$$
\n
$$
\frac{\partial K}{\partial t} = -\mathbf{U} \cdot \nabla K + C_{\beta} \tau_t K \frac{\mathbf{J}^2}{\rho} - C_{\gamma} \tau_t W \frac{\mathbf{\Omega} \cdot \mathbf{J}}{\sqrt{\rho}} + \frac{\mathbf{B}}{\rho} \cdot \nabla W - \frac{K}{\tau_t}
$$
\n
$$
\frac{\partial W}{\partial t} = -\mathbf{U} \cdot \nabla W + C_{\beta} \tau_t K \frac{\mathbf{\Omega} \cdot \mathbf{J}}{\sqrt{\rho}} - C_{\gamma} \tau_t W \Omega^2 + \frac{\mathbf{B}}{\sqrt{\rho}} \cdot \nabla K - C_W \frac{W}{\tau_t}
$$

(… according to a mean field turbulence model, e.g. of Yoshikava and Yokoi)

MHD turbulence reveals fast reconnection

[from Widmer, JB, Yokoi, Hoshino 2016] But: No model for kinetic scale "SGS" turbulence, yet!

Dissipation (as needed for non-ideal coronal instabilities - eruptions) can be provided by collisioness plasma mechanisms. However, their description via anomalous resistivity is of limited use.

Way out: mean field turbulence models. They already reproduce high reconnection rates for MHD.

But no good model for kinetic turbulence, yet.

- \bullet **Coronal plasmas & fields**
- •**Eruptions & reconnection**
- •**Turbulence and dissipation**
- •**Electron acceleration**

X-ra y flare ribbon observations

TRACE and RHESSI-observations of flare-ribbons of X-rays due to energetic electron precipitation [Nishizuka et al., 2009, 2014]

Radio observations of Flares

Moving flare-ribbons structures – solar radio observations by the Ondrejov Radio Spectrograph [Kotrč et al. 2009, 2015]

Conditions for reconnection in the corona

Lsp is the system size, RHOi the ion Larmor radius, S the Lundquist number

$$
S \equiv \frac{\mu_0 L_{CS} V_A}{\eta}
$$

(Obtained for a H+-plasma $\beta = 0.2$

)

[Ji, Daughton, Roytershteyn, Space Sci. Rev., 2012]

-> Collisionless, kinetic reconnection

Cascading reconnection -> plasmoid rec.

Upper movie: Evolution over500 t A of the CME-trailing current sheet: plasmoid instability Lower movie: higher resolved current sheets (300 to 400 t A), [Barta, JB, Karlicky, 2011]

Cascading reconnection->plasmoids

Current sheet breakup into plasmoids by cascading reconnection: adaptive mesh MHD simulation by [Bárta, JB, Karlicky, Skala, 2011] -> high reconnection rates with transitions to turbulent reconnection -> possible in (observed) wide trailing current sheets

-> corresponds well to radio burst fine structures [Nishizuka et al., 2012]

Plasmoid rec. -> electron acceleration

Electrons are accelerated in the plasmoids, ejected out of the islands parallel to B, precipitate down to the chromosphere.

e - spectrum at reconnection site

J. Büchner Solar Coronal Plasmas EASW-8, Daejeon, Korea, August 2nd, 2018

0.100

Self-consistent (PIC-code) simulations of finite Bg reconnection needed

Harris current sheets (CSs)

$$
\vec{B}(x) = B_{\infty y} \left[\tanh\left(\frac{x - L_x/4}{L}\right) - \tanh\left(\frac{x - 3L_x/4}{L}\right) - 1 \right] \hat{y} + B_z
$$

Physical parameters

$$
b_g = B_z/B_{\infty y} = 0...8 \dots 50
$$

$$
L/d_i = 0.5, M_i/m_e = 100
$$

$$
\omega_{pe}/\Omega_{ce}=4.16, T_i/T_e=1.0
$$

$$
n_b/n_0=0.2, d_{i/e}=c/\omega_{pi/pe}
$$

$$
v_{th,e}/c=0.12
$$

Initial perturbation:

$$
\delta A_z = \delta P B_{\infty y} \frac{L_y}{2\pi} \sin\left(\frac{2\pi (y + L_y/4)}{L_y}\right) \sin^2\left(\frac{2\pi x}{L_x}\right)
$$

3D – force free CSs

200 ppc (e+i) everywhere L_x x L_y x $L_z = (4 \times 8 \times 16) d_i^3$ 512x512x1024 grid points

2 x 10^10 particles **2D-Harris CS for comparison**

 $L_x \times L_y = (20.9 \times 12.6)d_i^2$ 2500×1500 grid points $\Delta x = 0.7 \lambda_{De}$ $\rho_{e,ba} = v_{th,e}/(b_a \Omega_{ce})$ $\Delta x/\rho_{e,bq}=0.166b_q$ $\Delta t = (1/23.9)\omega_{pe}^{-1}$ $CFL: c\Delta t/\Delta x = 0.5.$

Resulting turbulence (Bg=3)

Ey: frequency spectrum: obliquely propagating, broadband, up to the lower hybrid frequency. Reason: countersteaming electron beams

Ey: kx-wave-number spectrum: broadband in $0.3 < k$ di < 4 ; $kx \sim kpar$ -> U \sim 6-81 Vthi -> resonance with electron beams

Solid line: evolution of the reconnection rate [Munoz&JB, 2018b]

Nonlinear stage of reconnection

Here: two methods used to determine the reconnection rate. Result: the reconnection rate is strongly enhanced during the non-linear evolution of reconnection – permitted by selfgenerated turbulence ! [from Munoz& JB, 2018a]

Free energy that causes the turbulence

Mean values along the X-line of reconnection, averaged along z**direction of streaming Vrel,z (solid line) & shear flow |dVrel,z/dx| (red dashed line) - Horizontal dash-dotted line: threshold of the Buneman instability [from Munoz& JB, 2018a].**

3D evolution (case Bg=3)

Reconnection plane (perp) Central plane (par) (red structures: current density) : filamentation, formation of structures propagating in the direction perpendicular to the reconnection-plane: reconnection wave

Epar at the nonlinear stage: structure formation out of the turbulence!

Hence: Epar gets filamented & travels

C) Spatial distribution of Epar(x,z) in the central plane at the nonlinear stage D) temporal evolution of the perpendicular (Bx) fluctuations. Black lines: initial electron drift speed Vte (dashed line) enhanced to 2 Vte, valid at later times (dotted)

Electron energization

a) and b): trajectory of a strongly accelerated electron (green); red/blue: jz in the two planes at times of the nonlinear stage c) Velocity components of a typical strongly accelerated electron d) Temporary evolution of the average (four-) velocity components of the 10^4 most energized electrons [from Munoz& JB, 2018b]

Epar = Erec: traveling filaments

C) Spatial distribution of Epar(x,z) in the central plane at the nonlinear stage D) temporal evolution of the perpendicular (Bx) fluctuations. Black lines: initial electron drift speed Vte (dashed line) enhanced to 2 Vte, valid at later times (dotted)

Magnitized electron acceleration by 3D nonlinear guide field reconnection

$$
\frac{dU}{dt} = E_{\parallel} J_{\parallel} + \left(p_{e,\parallel} + m_e n_e u_{e,\parallel}^2 \right) \vec{u}_{\vec{E}} \cdot \vec{\kappa} \quad + \frac{p_{e,\perp}}{B} \left(\frac{\partial B}{\partial t} + \vec{u}_{\vec{E}} \cdot \vec{\nabla} B \right)
$$

Curvature–induced acceleration

Heating & energetic electrons' power law

t=t_f = 15.1 Omega_ci (bottom row) for the black boxes in the top rows. (a)-(c) show the current density Jz in the plane x - y at z = center. Dashed-dotted line: initial thermal distribution, blue dashed line: Maxwellian fit to the distribution, red dashed lines: power law fit [from Munoz& JB, 2018b]

Summary 1: Parker Solar Probe (NASA)

To be launched during the next few days ….

Summary 2: Solar Orbiter

