Solar Coronal Plasmas

Jörg Büchner

Max-Planck-Institute for Solar System Research & Georg-August-University both in Göttingen & (from Winter semester 2018-19 also at Technical University Berlin), all in Germany Max-Planck-Princeton Center for Plasma Physics

With many thanks to the collaborating members and students of the TSSSP group (P. Munoz, N. Jain, P. Kilian, F. Widmer, X. Zhou ...) J. Büchner Solar Coronal Plasmas EASW-8, Daejeon, Korea, August 2nd, 2018

MPI Solar System Research (MPS): New building, Göttingen 2014

MPS: buildings for scientists, laboratories, workshops

Left (glass) building: for scientists; Right: administration & facilities like clean rooms, balloon hall, coelostat/ heliostat...

J. Büchner

Solar Coronal Plasmas

Thermal-Vacuum Chamber Image: Image

J. Büchner

Solar Coronal Plasmas

Research

Planets and Comets

Planetary Atmospheres Planetary Interiors Small Bodies Comets

Planetary Surfaces

Planetary Plasma

Environments

J. Büchner

Solar and Stellar Interiors

Helioseismology Asteroseismology

The TSSSP-(Theory and Simulation of Solar System Plasmas) moves to the

TU Berlin in winter semester 2018-2019hybrid & MHD modelsSolar Coronal PlasmasEASW-8, Daejeon, Korea, August 2nd, 2018

Sun and Heliosphere

Coronal Spectroscopy and Imaging; Solar Lower **Atmosphere and Magnetism** Solar and Stellar MHD Plasma instabilities, waves, turbulence; reconnection; Numerical simulations: kinetic (PIC & Vlasov), hybrid & MHD models

- Coronal plasmas & fields
- Eruptions & reconnection
- Turbulence and dissipation
- Electron acceleration

J. Büchner

Solar Coronal Plasmas

- Coronal plasmas & fields
- Eruptions & reconnection
- Turbulence and dissipation
- Electron acceleration

J. Büchner

Solar Coronal Plasmas

Solar corona in the plasma Universe

Typical plasma parameters

Parameter	Unit	Corona	ISM	ICM
T_e (temperature)	eV	100	1-100	10^3-10^4
n_e (number density)	cm^-3	10^9	10^-3-10^-1	10^-4-10^-2
P-thermal pressure	dyne/cm^2	0.3	10^-14-10^-13	10^-13-10^-10
omega_pe/ 2 pi	Hz	2 10^9	15-250	0.25-25
V_te / V_sound	km/s	4 10^3	10-100	500-1500
lambda_Debye	cm	0.2	2 10^3-2 10^9	2 -100 10^5
N_D= lambda_D^3	1	10^7	10^9-10^13	10^13-10^15
nu_e (e-e collisions)	Hz	30	10^-5-10^-10	10^-14-10^-10
lamba_mfp	km	100	10^8-3 10^13	6.(10^13-10^14)
R=nu_e/omega_pe ("collisionality")	1	1.5 10^-9	10^-13 – 10^-9	10^-13

-> the solar coronal plasma is still mainly collisioness, -> kinetic effects might be crucial

J. Büchner

Solar Coronal Plasmas

Magnetoplasma parameters

Parameter	Unit	Corona	ISM	ICM
T-temperature	eV	100	1-100	10^3-10^4
N - density	cm^-3	10^9	10^-3-10^-1	10^-4-10^-2
P-thermal pressure	dyne/cm^2	0.3	10^-14-10^-13	10^-13-10^-10
B-magnetic field	G	10	(1-10) 10^-6	(0.1-10) 10^-6
Thermal plasma beta	1	0.1	1-10	50-1000
Rho_e	cm	2	10^7	10^8
Rho_p	cm	80	4 10^8	4 10^9
omega_pe/ 2 pi	Hz	2 10^9	15-250	0.25-25
Omega_ce / 2 pi	Hz	2.5 10^8	3-30	1-30
V_A	km/s	800	10-100	20-100

-> the magnetic pressure dominates the solar corona -> force free B fields can be extrapolated

J. Büchner

Solar Coronal Plasmas

Ideal <-> nonideal solar magnetoplasma

The coronal magnetic fields can grow or become annihilated according to the induction equation:

Convection >>> Diffusion

Magnetic Reynolds- and Lundquist numbers

$$R_m = \frac{\mu_0 \ l \ v}{\eta} \qquad S \equiv \frac{\mu_0 L_{CS} V_A}{\eta}$$

Reynolds- / Lundquist numbers of (Spitzer-) collisional plasmas are huge ~10⁶⁻¹² for large scales (L) and typical V!

J. Büchner

At smaller scales: two-fluid Ohms law

Two-fluid electron equation of motion: -> "Ohm's law":

$$\frac{4\pi}{\omega_{pe}^2}\frac{d\vec{J}}{dt} = \vec{E} + \vec{v}_i \times \vec{B} - \frac{1}{ne}\vec{J} \times \vec{B} + \frac{1}{ne}\nabla p_e - \eta\vec{J}$$

In case of strong guide fields -> to the lowest order onedimensional balance equation for Epar

$$E_{\parallel} = -\frac{m_e}{ne} \frac{d(nv_e)}{dt} - \frac{1}{ne} \frac{dp_e}{dx_{\parallel}} + \frac{1}{ne} f_{eff}$$

Electric field ⇔ Electron inertia + Pressure gradient + f_{eff} = "drag force" due to collective waveparticle interaction

J. Büchner

Solar Coronal Plasmas

Plasma phenomena in the Solar corona

- Coronal plasmas & fields
- Eruptions & reconnection
- Turbulence and dissipation
- Electron acceleration

J. Büchner

Solar Coronal Plasmas

Typical evolution

Three phases (in outward velocities and soft X-ray fluxes): Flux -> 1: slow rise of X-ray the prominence, magnetic energy accumulation -> 2: fast rise of Flare flare emissions and CME acceleration -> 3: CME propagation / decreasing X-ray flare activity

Soft

e.g. B-field line-tied equilibria

- Primary magnetic field components:
 - Internal poloidal field B_{Pi} (plasma)
 - External "strapping" field B_s (vacuum)
 - Internal toroidal field B_{Ti} (plasma)
 - External "guide" field B_q (vacuum)
- At low-β, J×B forces dominate:
 - Poloidal hoop force: $f_h = +J_T \times B_{Pi}$
 - Strapping field force: $f_s = -J_T \times B_s$
 - Toroidal field forces: $f_T = -J_P \times (B_g + B_{Ti})$

J. Chen, ApJ, 1989

J. Büchner

Solar Coronal Plasmas

Are eruptions due to ideal instabilities?

Flux rope catastrophe at a final point in a sequence of equilibria; here: 2D case [see, e.g., Forbes & Isenberg 1991] Helical kink (KI) instability m=1, [see, e.g., Gerrard et al. 2001]

Lateral kink or torus-instability

[see, e.g. [Kliem & Török, 2006]

J. Büchner

Solar Coronal Plasmas

Ideal instability criteria

Winding due to footpoint motion -> flux rope kink? 1.) Windings cause a kink instability [Kruskal & Schwarzschild, 1954] Instability criterion: "Edge safety

factor" (inverse winding number) :

$$q_a = rac{2\pi a}{L} rac{B_{Ta}}{B_{Pa}} < 1$$

2.) Quickly decaying magnetic fields -> "torus" instability ? [Kliem & Török, 2006] Instability criterion: quick decrease of the magnetic downward directed "strapping" Lorentz force

$$n(z) = rac{z}{|\mathbf{B}_{pot}|} rac{\partial |\mathbf{B}_{pot}|}{\partial z} > rac{3}{2}$$

J. Büchner

Saturation of lateral kink instability

Above: A [Török and Kliem, 2005]-result. However: the ideal instabilities saturate quickly -> failed eruptions [Aulanier et al., 2010]. It still may be behind confined ("failed") eruptions.

J. Büchner

Solar Coronal Plasmas

MRX experiment of a coronal loop

Goals:

Formation of quasistatic flux ropes in a static potential field arcade

Study of the force balance and transition between equilibria, toward loss-ofequilibrium and a kink instability

In a sheared arcade, both strapping and tension forces confine the flux rope

Laboratory experiment to better understand the role of the tension force.

MRX laboratory experimental results

I.e. it seems that both instability conditions - for kink and torus instability have to be fulfilled necessarily - but they what is sufficient? E.g. they do not to take into account, e.g. the distance between the footpoints, which was observed to play a role, the current distribution over the small radius et c. Which criterion is sufficient? Role of footpoint distance?

Equilibrium flux ropes -> stability ?

Stability of equilibrium flux ropes [Titov & Demoulin, 1999] (Plasma beta (<< 1); height-stratified density and pressure, the footpoint distance and rope inclination (R,d), ratio of radii.

J. Büchner

Solar Coronal Plasmas

Rising flux rope due to twisting

Helicity is injected from below -> The flux rope rises and twists Stabilitiy investigations for R = 4; 6; 8 and t_{rot} = 0.5; 5; 10; 15; 20 t_{Alfven} when the Alfvenic perturbation reaches the flux rope apex)

J. Büchner

R=4 footpoints distance as in MRX

Shown is the rising height of the flux-rope apex driven during different times trot. The trailing Alvenic perturbation reaches the apex at te (dashed lines); Instability for q < 0.7 and $N(z) \sim 1.0... 1.4$ at the apex

J. Büchner

Solar Coronal Plasmas

R=6 -> medium footpoint distance

Shown is again the apex height evolution for different driving times trot; Instability if q < 0.6 but larger N(z) > 2.0 at the apex position required

J. Büchner

Solar Coronal Plasmas

R=8 -> large footpoint distance

Shown is the apex-height evolution for different driving times trot; Instability still for q < 0.7 but now only after N(z) > 2.6 at the apex -> Larger distance between footpoints -> flux ropes are more stable! J. Büchner Solar Coronal Plasmas EASW-8, Daejeon, Korea, August 2nd, 2018

-> Lorentz forces due to return currents inhibit eruptions!

Parallel current J.B.

In almost ideal plasma conditions (here eta=10^-8 Rm=10^8) return currents around the flux rope and the strapping field result in downward directed Lorentz forces -> eruptive instability inhibited!

J. Büchner

Solar Coronal Plasmas

Eruption only if the return current is dissipated. e.a. by reconnection !

Red line: results for eta ~ 10⁻⁸ (Rm=10⁸-ideal plasma). Green line: eta ~ 10⁻⁵:enhanced resitivity->Rm=10⁵ reconnection. (compare: MRX experiment: eta ~ 10⁻³, Rm=10³)

J. Büchner

Solar Coronal Plasmas

Similar in Lab. Experiment of Madison Wisconsin

Line-tied University of Wisconsin-Madison pinch experiment: currents cpmpensate via return currents -> Instability only after small CS formation&turbulence [from Brookhart et al., PRL, 2015]

J. Büchner

Solar Coronal Plasmas

Data driven Simulations of CME cases, e.g. of 24.4.12 ideal and non-ideal 6.-7.3.12

SDO/HMI HMI_FRONT2 6173 6-Mar-2012 23:35:44.600 550 500 450 Y (arcsecs) 40G 350 300 250-300 -BDO -450-400-550-500-350X (arcseca)

The following simulations are based on observations of the SDO s/c Left: original B-field (magnetogram), obtained March 6, 2012 at 23:35 UT (AR 11429). About 60 minutes later a strong X5.4-class Flare took place in this AR area and a CME was launched. The photospheric plasma velocity for the simulation is also derived using SDO observations.

J. Büchner

Solar Coronal Plasmas

Preparation of observed B-field data

Original magnetogram.

Preprocessed magnetogram.

Preparation of real magnetograms (this example is for AR 11520 on July 7, 2012) by filtering away small scale structures, B fields near the boundaries and balancing the B flux in accordance with the MHD boundary conditions.

J. Büchner

Solar Coronal Plasmas

Preparation of initial conditions & grid

SDO-observation based extrapolated coronal B-field

Initial density and temperature distribution photosphere -> corona

EASW-8, Daejeon, Korea, August 2nd, 2018

J. Büchner

Solar Coronal Plasmas

Ideal plasma instability simulation

A torus instability can be reached only after long time or for 4 times too fast winding speed at the footpoints is assumed!

J. Büchner

Solar Coronal Plasmas

Non-ideal MHD simulation

Non-ideal run with a realistic (smaller) winding speed on March 7, 2012. **Epar isosurfaces** 0.5 mV/m indicate that after 3740 s and after only 0.7 windings, fast reconnection has begun. Indeed, at 00:30 UT AR 11429 released a strong X5.4-class flare (SDO observation).

J. Büchner

Solar Coronal Plasmas

Evolution of the energies

Fast reconnection starts at t=500 s -> accumulated magnetic energy is released and -> thermal energy is enhanced. -> Then the kinetic energy takes over which carries most of the energy away [Santos, Büchner,

J. Büchner

Solar Coronal Plasmas

EASW-8, Daejeon, Korea, August 2nd, 2018

Otto, 2011]

Evolution of magnetic helicity

(a)

600

700

$$\frac{\mathrm{d}H_{\mathrm{R}}}{\mathrm{d}t} = -2\int_{V} (\mathbf{E}\cdot\mathbf{B})\mathrm{d}V - 2\int_{S} \left((\mathbf{A}_{\mathrm{p}}\cdot\mathbf{V})\mathbf{B} - (\mathbf{A}_{\mathrm{p}}\cdot\mathbf{B})\mathbf{V} \right) \cdot \mathbf{n}\,\mathrm{d}S.$$

Field, 1984] Crosses: Temporal evolution of the relative magnetic helicity H_R in the simulation box according to the time-integrated [Berger and Field, 1984] formula

derived by

[Berger and

Diamonds: Relative magnetic helicity H_R obtained from simulation [Yang, Büchner, Santos and Zhang 2013] EASW-8, Daejeon, Korea, August 2nd, 2018

J. Büchner

 \cap

100

200

300

time (s)

Helicity in the simulation box (10⁴² MX²)

5

4

3

2

Solar Coronal Plasmas

500

400

New data driven CME eruption simulation confirmed: reconnection required to erupt

[from Inoue, Kusanao, JB, Skala, 2018 Nature Comm]. More tomorrow by Kusanao-san towards possibilities of prediction for space weather applications J. Büchner Solar Coronal Plasmas EASW-8, Daejeon, Korea, August 2nd, 2018

Summary

Ideal plasma instabilities alone do not cause flux rope eruptions, in addition dissipation / reconnection is needed. After that even helicity is dissipated!

J. Büchner

Solar Coronal Plasmas

- Coronal plasmas & fields
- Eruptions & reconnection
- Turbulence and dissipation
- Electron acceleration

J. Büchner

Solar Coronal Plasmas

Unstably self-generated plasma waves change the 3D velocity space distributions

Ion distribution function Electron distribution function

J. Büchner

Solar Coronal Plasmas

J. Büchner

Nature of "anomalous resistivity"

Representing $f_j = f_{0j} + \delta f_j$ $E_{\parallel} = \langle E_{\parallel} \rangle + \delta E_{\parallel}$ $\vec{B} = \delta \vec{B}$ for an appropriate averaging -> the Vlasov equation reveals: $\langle \delta f_j \rangle = \langle \delta \vec{E} \rangle = \langle \delta \vec{B} \rangle = 0.$

$$\frac{\partial f_{0e}}{\partial t} + \vec{v} \cdot \frac{\partial f_{0e}}{\partial \vec{r}} + \frac{e}{m_e} \vec{E} \cdot \frac{\partial f_{0e}}{\partial \vec{v}} = -\frac{e}{m_e} \left\langle \left(\delta \vec{E} + \vec{v} \times \delta \vec{B}\right) \cdot \frac{\partial \delta f_e}{\partial \vec{v}} \right\rangle$$

after velocity-space integration, the momentum exchange rate is

$$\left(\frac{d}{dt}nm_e v_{y,e}\right)_{eff} = \langle \delta E_y \delta \rho_e + \delta j_{z,e} \delta B_x - \delta j_{x,e} \delta B_z \rangle$$

-> What fluctuations / turbulence is generated in the corona?

-> The correlations above have to be determined by kinetic numerical simulations!

J. Büchner

Solar Coronal Plasmas

Quantification of collisionless dissipation by effective collision rate

Ensemble averaged $f_j = f_{0j} + \delta f_j$. **Vlasov equation for** reveals

$$\langle \delta f_j \rangle = \left\langle \delta \vec{E} \right\rangle = \left\langle \delta \vec{B} \right\rangle = 0.$$

$$\frac{\partial f_{0j}}{\partial t} + \vec{v} \cdot \frac{\partial f_{0j}}{\partial \vec{r}} + \frac{e_j}{cm_j} \left(\vec{v} \times \vec{B} \right) \cdot \frac{\partial f_{0j}}{\partial \vec{v}} = \left(\frac{\partial f_j}{\partial t} \right)_{an}$$
$$= -\frac{e_j}{m_j} \left\langle \left(\delta \vec{E} + \frac{\vec{v} \times \delta \vec{B}}{c} \right) \cdot \frac{\partial \delta f_j}{\partial \vec{v}} \right\rangle.$$

$$\left(\frac{\partial}{\partial t}n_jm_jv_{y,j}\right)_{an} = \left\langle \delta E_y\delta\rho_j + \frac{\delta j_{z,j}\delta B_x - \delta j_{x,j}\delta B_z}{c} \right\rangle.$$

$$\nu_{eff,j} = \frac{1}{\langle n_j m_j v_{y,j} \rangle} \left(\frac{\partial}{\partial t} n_j m_j v_{y,j} \right)_{an}.$$

Often used theoretical estimate of the anomalous collision frequency based on waves and their dispersion (quasilinear approximation):

$$\nu = \sum_{k} \frac{\Delta k |\delta E(k)|^2 \omega_{pe}}{k v_{te}^2 m_e n v_d} Im \xi_e Z(\xi_e)$$

In a simulation one can directly determine the momentum exchange rate

$$\nu(t+\delta t/2) = \frac{2}{\delta t} \frac{p(t+\delta t) - p(t)}{p(t+\delta t) + p(t)}$$

EASW-8, Daejeon, Korea, August 2nd, 2018

J. Büchner

Solar Coronal Plasmas

Current sheet "quasi-collisions"

Effective "collision rates": Solid (electric) $\delta \rho \delta E_n$ and dashed (magnetic fluctuations) $\delta j \times \delta B$ lines; (Upper - thicker lines: electrons; Lower - thinner lines: ions

J. Büchner

Summary "Anomalous resistivity"

- Magnetic diffusivity expressed via an effective "collision frequency": Neglible: binary particle collision [Spitzer 56, Härm–Braginski 63]
- There is no indication for the estimate of [Bunemann 1958] in the solar corona

PIC and Vlasov code simulations revealed for the solar corona:

[Büchner, Kuska, Silin, Elkina, 99-08]

- 1D small beta: IA / double layers
- 2D higher beta LH turbulence
- 3D highest beta: LH/kink sausage

$$u_c \approx \omega_{pi}/2\pi$$
 $u_c \sim \omega_{LH}$
 $u_c \approx \omega_{pi}$

But, use "anomalous resistivity": with care!

J. Büchner

Solar Coronal Plasmas

Better would be an "SGS" description, as demonstrated for MHD turbulence models

$$\mathbf{E}_{\mathrm{M}} = -\beta \mathbf{J} + \gamma \mathbf{\Omega} + \alpha \mathbf{B}$$

Reynolds averaging Mean field approximation [e.g. Yokoi et al, 2010]

where

$$\beta = \frac{5}{7}\nu_{\rm K} = C_{\beta}\tau K,$$

$$K (\equiv \langle \mathbf{u}'^2 + \mathbf{b}'^2 \rangle / 2)$$

the turbulent cross-helicity and $W(\equiv \langle {\bf u}' \cdot {\bf b}' \rangle)$

the turbulent residual helicity $H(\equiv \langle -\mathbf{u}'\cdot\boldsymbol{\omega}'+\mathbf{b}'\cdot\mathbf{j}'\rangle)$

$$\gamma = \frac{-\nu_{\rm M}}{7} = C_{\gamma} \tau W,$$

5

 $\alpha = C_{\alpha} \tau H,$

J. Büchner

Modified MHD equations (MFM)

$$\begin{aligned} \frac{\partial \rho}{\partial t} &= -\nabla \cdot (\rho U) + \chi \nabla^2 \rho \\ \frac{\partial \rho U}{\partial t} &= -\nabla \cdot \left[\rho U \otimes U + \frac{1}{2} (\rho + B^2) I - B \otimes B \right] + \chi \nabla^2 (\rho U) \\ \frac{\partial B}{\partial t} &= \nabla \times (U \times B) - (\nabla (\eta + \beta)) \times J + (\eta + \beta) \nabla^2 B \\ &+ \nabla \times (\gamma \sqrt{\rho} \Omega) \\ \frac{\partial h}{\partial t} &= -\nabla \cdot (hU) + \frac{\gamma - 1}{\gamma h^{\gamma - 1}} (\eta J^2 - \frac{\rho K}{\tau_t}) + \chi \nabla^2 h \\ \frac{\partial K}{\partial t} &= -U \cdot \nabla K + C_\beta \tau_t K \frac{J^2}{\rho} - C_\gamma \tau_t W \frac{\Omega \cdot J}{\sqrt{\rho}} + \frac{B}{\rho} \cdot \nabla W - \frac{K}{\tau_t} \\ \frac{\partial W}{\partial t} &= -U \cdot \nabla W + C_\beta \tau_t K \frac{\Omega \cdot J}{\sqrt{\rho}} - C_\gamma \tau_t W \Omega^2 + \frac{B}{\sqrt{\rho}} \cdot \nabla K - C_W \frac{W}{\tau_t} \end{aligned}$$

(... according to a mean field turbulence model, e.g. of Yoshikava and Yokoi)

J. Büchner

Solar Coronal Plasmas

MHD turbulence reveals fast reconnection

[from Widmer, JB, Yokoi, Hoshino 2016] But: No model for kinetic scale "SGS" turbulence, yet!

J. Büchner

Solar Coronal Plasmas

Dissipation (as needed for non-ideal coronal instabilities - eruptions) can be provided by collisioness plasma mechanisms. However, their description via anomalous resistivity is of limited use.

Way out: mean field turbulence models. They already reproduce high reconnection rates for MHD.

But no good model for kinetic turbulence, yet.

- Coronal plasmas & fields
- Eruptions & reconnection
- Turbulence and dissipation
- Electron acceleration

J. Büchner

Solar Coronal Plasmas

X-ray flare ribbon observations

TRACE and RHESSI-observations of flare-ribbons of X-rays due to energetic electron precipitation [Nishizuka et al., 2009, 2014]

J. Büchner

Solar Coronal Plasmas

Radio observations of Flares

Moving flare-ribbons structures – solar radio observations by the Ondrejov Radio Spectrograph [Kotrč et al. 2009, 2015]

J. Büchner

Solar Coronal Plasmas

Conditions for reconnection in the corona

Lsp is the system size, RHOi the ion Larmor radius, S the Lundquist number

$$S \equiv \frac{\mu_0 L_{CS} V_A}{\eta}$$

(Obtained for a H+-plasma $\beta = 0.2$

[Ji, Daughton, Roytershteyn, Space Sci. Rev., 2012]

-> Collisionless, kinetic reconnection

Cascading reconnection -> plasmoid rec.

Upper movie: Evolution over 500 tA of the **CME-trailing** current sheet: plasmoid instability Lower movie: higher resolved current sheets (300 to 400 tA), [Barta, JB, Karlicky, 2011]

J. Büchner

Solar Coronal Plasmas

Cascading reconnection->plasmoids

Current sheet breakup into plasmoids by cascading reconnection: adaptive mesh MHD simulation by [Bárta, JB, Karlicky, Skala, 2011] -> high reconnection rates with transitions to turbulent reconnection -> possible in (observed) wide trailing current sheets

-> corresponds well to radio burst fine structures [Nishizuka et al., 2012]

J. Büchner

Solar Coronal Plasmas

Plasmoid rec. -> electron acceleration

Electrons are accelerated in the plasmoids, ejected out of the islands parallel to B, precipitate down to the chromosphere.

J. Büchner

e⁻ spectrum at reconnection site

 $(\textbf{J}) = \begin{bmatrix} 10^{-1} & \textbf{I} &$

Plasmoid reconnection accelerates electrons up to almost 1 MeV electrons flat power law. Index: - 1.86

J. Büchner

Solar Coronal Plasmas

Self-consistent (PIC-code) simulations of finite Bg reconnection needed

Harris current sheets (CSs)

$$\vec{B}(x) = B_{\infty y} \left[\tanh\left(\frac{x - L_x/4}{L}\right) - \tanh\left(\frac{x - 3L_x/4}{L}\right) - 1 \right] \hat{y} + B_z$$

Physical parameters

$$b_g = B_z/B_{\infty y} = 0...8...50$$

 $L/d_i = 0.5, M_i/m_e = 100$
 $\omega_{pe}/\Omega_{ce} = 4.16, T_i/T_e = 1.0$
 $n_b/n_0 = 0.2, d_{i/e} = c/\omega_{pi/pe}$

$$v_{th,e}/c = 0.12$$

Initial perturbation:

$$\delta A_z = \delta P B_{\infty y} \frac{L_y}{2\pi} \sin\left(\frac{2\pi \left(y + L_y/4\right)}{L_y}\right) \sin^2\left(\frac{2\pi x}{L_x}\right)$$

J. Büchner

Solar Coronal Plasmas

3D – force free CSs

200 ppc (e+i) everywhere $L_x \times L_y \times L_z = (4 \times 8 \times 16) d_i^3$ 512x512x1024 grid points

2 x 10¹⁰ particles **2D-Harris CS for comparison**

 $L_x \times L_y = (20.9 \times 12.6) d_i^2$ $2500 \times 1500 \text{ grid points}$ $\Delta x = 0.7 \lambda_{De}$ $\rho_{e,bg} = v_{th,e} / (b_g \Omega_{ce})$ $\Delta x / \rho_{e,bg} = 0.166 b_g$ $\Delta t = (1/23.9) \omega_{pe}^{-1}$ $CFL : c\Delta t / \Delta x = 0.5.$

Resulting turbulence (Bg=3)

Ey: frequency spectrum: obliquely propagating, broadband, up to the lower hybrid frequency. Reason: countersteaming electron beams Ey: kx-wave-number spectrum: broadband in 0.3< k di < 4; kx ~ kpar-> U ~ 6-81 Vthi -> resonance with electron beams

Solid line: evolution of the reconnection rate [Munoz&JB, 2018b]

J. Büchner

Solar Coronal Plasmas

Nonlinear stage of reconnection

Here: two methods used to determine the reconnection rate. Result: the reconnection rate is strongly enhanced during the non-linear evolution of reconnection – permitted by selfgenerated turbulence ! [from Munoz& JB, 2018a]

J. Büchner

Solar Coronal Plasmas

Free energy that causes the turbulence

Mean values along the X-line of reconnection, averaged along zdirection of streaming Vrel,z (solid line) & shear flow |dVrel,z/dx| (red dashed line) - Horizontal dash-dotted line: threshold of the Buneman instability [from Munoz& JB, 2018a].

J. Büchner

Solar Coronal Plasmas

3D evolution (case Bg=3)

Reconnection plane (perp) Central plane (par) (red structures: current density) : filamentation, formation of structures propagating in the direction perpendicular to the reconnection-plane: reconnection wave

J. Büchner

Solar Coronal Plasmas

Epar at the nonlinear stage: structure formation out of the turbulence!

J. Büchner

Solar Coronal Plasmas

Hence: Epar gets filamented & travels

C) Spatial distribution of Epar(x,z) in the central plane at the nonlinear stage D) temporal evolution of the perpendicular (Bx) fluctuations. Black lines: initial electron drift speed Vte (dashed line) enhanced to 2 Vte, valid at later times (dotted)

J. Büchner

Solar Coronal Plasmas

Electron energization

a) and b): trajectory of a strongly accelerated electron (green); red/blue: jz in the two planes at times of the nonlinear stage c) Velocity components of a typical strongly accelerated electron d) Temporary evolution of the average (four-) velocity components of the 10^4 most energized electrons [from Munoz& JB, 2018b]

J. Büchner

Solar Coronal Plasmas

Epar = Erec: traveling filaments

C) Spatial distribution of Epar(x,z) in the central plane at the nonlinear stage D) temporal evolution of the perpendicular (Bx) fluctuations. Black lines: initial electron drift speed Vte (dashed line) enhanced to 2 Vte, valid at later times (dotted)

J. Büchner

Solar Coronal Plasmas

Magnitized electron acceleration by 3D nonlinear guide field reconnection

$$\frac{dU}{dt} = E_{\parallel}J_{\parallel} + \left(p_{e,\parallel} + m_e n_e u_{e,\parallel}^2\right)\vec{u}_{\vec{E}}\cdot\vec{\kappa} + \frac{p_{e,\perp}}{B}\left(\frac{\partial B}{\partial t} + \vec{u}_{\vec{E}}\cdot\vec{\nabla}B\right)$$

J. Büchner

Solar Coronal Plasmas

Curvature-induced acceleration

orea, August 2nd, 2018

Heating & energetic electrons' power law

t=t_f = 15.1 Omega_ci (bottom row) for the black boxes in the top rows. (a)-(c) show the current density Jz in the plane x - y at z = center. Dashed-dotted line: initial thermal distribution, blue dashed line: Maxwellian fit to the distribution, red dashed lines: power law fit [from Munoz& JB, 2018b]

J. Büchner

Solar Coronal Plasmas

Summary 1: Parker Solar Probe (NASA)

To be launched during the next few days

J. Büchner

Solar Coronal Plasmas

Summary 2: Solar Orbiter

J. Büchner

Solar Coronal Plasmas