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Inner Structure of an Active Galaxy ENERGY SO URCES'. 6

Blandford—Znajek process. This theory explains the extraction of energy
from magnetic fields around an accretion disk, which are dragged and
twisted by the spin of the black hole. Relativistic material is then feasibly
launched by the tightening of the field lines.

Relativistic Jet

Supemassive
Black Hole

Penrose mechanism. Here energy is extracted from a rotating black hole by
frame dragging, which was later theoretically proven to be able to extract

relativistic particle energy and momentum, and subsequently shown to be a
(Rrer Regions) possible mechanism for jet formation.

Accretion Disk

https://en.wikipedia.org/wiki/Astrophysical_jet

Since the 1960s, there have been two leading hypotheses or
models for the spiral structures of galaxies;
star formation caused by

- density waves in the galactic disk of the galaxy

- shock waves in the interstellar medium.

(https://en.wikipedia.org/wiki/Spiral_galaxy)




Line elements in Eucledian/Minkowsky space
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Line elements and a metric tensor in a general space (manifold)

dS2 = guv(x)dx“dxv

where gy is called a metric tensor and characterizes the specific manifold.
Superscript is used for contravariant components ( dx”) and subscript is

used for covariant components (0 = Fw ) of tensors.
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Metric tensor and magnitude of a vector/tensor
guvg’” = g‘“guv = 53 & v Is the inverse of g“v
2
_ u qv __ u u q4u _ 1%
\A\ =g, A"A" =4 4" (# 4" 4") 4,=g,. 4
Affine connection
198, 985 9gu
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Br 2l oxP  o9x*  ox’
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Fgc/ﬁ = gy raﬁ,/’L < Second kind
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— =T ¢ & Isthe determinantof &
2g dx” op #

https://en.wikipedia.org/wiki/Affine_connection
In differential geometry, an affine connection is a geometric object on a smooth manifold which
connects nearby tangent spaces, and so permits tangent vector fields to be differentiated as if
they were functions on the manifold with values in a fixed vector space



Covariant derivative
DAy =045 =Ts.d, | Dg =0 Dg¥=0 D=0
DaAﬁ — aa AP — FfaAy D},f = ayf (for a scalar field f)

DaAﬁ is a tensor of 2" rank whereas aa A[3 is not a tensor since it does
not follow the tensorial transformation properties under coordinate
transformation.

Riemannian curvature tensor and torsion tensor
(D,D;-D,D, )4,
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Ricci curvature tensor and Einstein’s field equation

_ PN _ en
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(R :scalar curvature)
o of3
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D Rﬁ—ESBR =0 R=g"R
|
Gaﬁ = RO;3 — EéaﬂR (Einstein tensor)

D G% =0 (Divergence of Einstein tensor vanishes)

a” B
|_ ———————————————————— -
| 1 _8nG \
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G is the Newton’s gravitational constant, T represents the matter distribution, A is the
cosmological constant. Thus the geometrical field g is determined by the matter tensor T.
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Exact solutions of Einstein’s field equation

Non-rotating (J/ = 0) Rotating (J # 0)

Uncharged (Q=0) Schwarzschild (1915) Kerr (1963)

Reissner-Nordstrom

Charged (Q#0)  15:¢ 1919

Kerr-Newman (1965)

For spherically symmetric and stationary system, the solution is
Schwarzschild solution;

-1
ds® = —(1— ﬁjczdﬁ + (1— 3) dr’ +r2d6? + r*sin’ 0d¢?’

r r

. . . _ 2Gm aO = 3kn/l
where a is the Schwarzschild radius.| a = 2 a, ~9mm



For a spherically symmetric rotating system with an angular
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momentum J, the equation is solved in Boyer-Lyndquist coordinates;
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0 0 -y’ R +b° +
T -2
Quadratic curvature invariant (Kretschmann scalar)
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r+by’=0 >r=0and y=00=r/2)

curvature singularity (x> + y* = b and z =0)

Singularities and surfaces

ai\/a2—4b2
rr—ar+b°=0 — ro=
2 event horizons 2
atila’—4b*y?
—ar+b’y’=0 — r’ = \/ £

ergosphere > frame dragging 2

Outer event horizon
r+ =m+vVm? — a?
Inner event horizon
r—-=m-—v TI'L2 —_ (12

Outer ergosurface

‘r;; =m+vm? — a? cos? 0

a= 2Gn/2 Schwarzschild radius

Inner ergosurface

rp =m—vVm? —a? cos® 0

C
b= V angular momentum
mc

Ring singularity Ergoregion

?+y’=a’and2=0

| “The Kerr spacetime: A brief introduction”
Symmetry axis 0 = 0,7 Matt Visser, arXiv:0706.0622v3 (15 Jan 2008)



Plot of quadratic curvature invariant
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Contour plot of quadratic curvature invariar]j:s
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KRETSCHMANN SCALAR FOR A KERR-NEWMAN BLACK HOLE

RicHARD CONN HENRY FORTRAN COde

Center for Astrophysical Sciences, Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218-2686; henry@ jhu.edu .
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ABSTRACT - 1.3 MB of script text file for

I have derived the Kretschmann scalar for a general black hole of mass m, angular momentum per ] ]
unit mass a, and electric charge Q. The Kretschmann scalar gives the amount of curvature of spacetime,
as a function of position near (and within) a black hole. This allows one to display the “appearance™ of In pUt to M ath ematlca 2 ' 2
the black hole itself, whether the black hole is merely of stellar mass or is a supermassive black hole at
the center of an active galaxy. Schwarzschild black holes, rotating black holes, electrically charged black
holes, and rotating electrically charged black holes are all illustrated. Rotating black holes are discovered
to possess a negative curvature that is not analogous to that of a saddle.
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For a Schwarzschild black hole of mass M, the Kretschmann scalar is!']
K — 48G> M?
cArb
where G is the gravitational constant.
For a de Sitter or Anti de Sitter metric
ds* = —dt* + Mt (d—"z + 72d6? + r?* sin? 0d¢2) ,
1— kr?
the Kretschmann scalar is
K =24H*.

For a general FRW spacetime with metric

2
ds® = —dt® + a(t)? (% +72d6? + r* sin’ 0d¢2),

the Kretschmann scalar is
12 (a(t)2a" ()2 + (k— a'(t)2)2)

K=
a(t)t
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THE ANGULAR MOMENTA OF NEUTRON STARS AND BLACK HOLES AS A WINDOW ON SUPERNOVAE

J. M. MiLLER', M. C. MILLER?, AND C. S. REYNOLDS>
! Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042, USA; jonmm@umich.edu
2 Department of Astronomy, University of Maryland, College Park, MD 20742, USA
Received 2010 December 20; accepted 2011 February 7; published 2011 March 17

ABSTRACT

It is now clear that a subset of supernovae displays evidence for jets and is observed as gamma-ray bursts (GRBs).
The angular momentum distribution of massive stellar endpoints provides a rare means of constraining the nature
of the central engine in core-collapse explosions. Unlike supermassive black holes, the spin of stellar-mass black
holes in X-ray binary systems is little affected by accretion and accurately reflects the spin set at birth. A modest
number of stellar-mass black hole angular momenta have now been measured using two independent X-ray
spectroscopic techniques. In contrast, rotation-powered pulsars spin down over time, via magnetic braking, but
a modest number of natal spin periods have now been estimated. For both canonical and extreme neutron star
parameters, statistical tests strongly suggest that the angular momentum distributions of black holes and neutron
stars are markedly different. Within the context of prevalent models for core-collapse supernovae, the angular
momentum distributions are consistent with black holes typically being produced in GRB-like supernovae with jets
and with neutron stars typically being produced in supernovae with too little angular momentum to produce jets via
magnetohydrodynamic processes. It is possible that neutron stars are with high spin initially and rapidly spun down
shortly after the supernova event, but the available mechanisms may be inconsistent with some observed pulsar
properties.

Key words: accretion, accretion disks — black hole physics — gamma-ray burst: general — stars: evolution — stars:
neutron — supernovae: general
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Table 1 Table 2
Black Hole Angular Momenta Distribution Properties
Source cJ/GM 2 (: 2b ) cJ/GM 2 Sample Gmean Qmedian
(reflection) @/ (continuum) BH (reflection) 0.66 0.76
M33 X-7 o 0.77(5) BH (continuum) 0.72 0.80
LMC X-1 0.92(6)° NS (natal; 1.4 Mo, R = 15 km) 0.029 0.017
A 0620—00 0.12(19)¢ NS (natal; 1.4 Mo, R = 10 km) 0.018 0.007
AU 1543475 _ _ _ _ _ _ _ 0.30) _ ______080()
IXTE J1550—-564_ _ _ _ _ _ _ ( 076() _ _ ______ . 10 ' ' ' '
d Neutron Stars |
XTE J1650—500 0.79(1) Black Holes (reflection) ;
XTE J1652—453 045(2)f o 8 *\ Black Holes (continuum)-.
\GROTI655—40 _ _ _ ~~ _ ~ 098DT ~ "~~~ " 0.70(5)", N\ :
GX 3394 0.94(2)" . SR\ 1
SAX J1711.6—3808 0.6(3)4 § -
XTE J1752-223 0.55(11)¢ 4 § ]
Swift J1753.5—-0127 0.76(13) ]
XTEDOOS:094 07500 N
(GRS [915+105 """ 098" "7 5590) N
\Cygnus X-1__ ____005(DT o . 7 N
0.0 0.2 4 0.6 0.8 1.0

Notes. Measured values of black hole spin parameters are given
above. The errors are statistical errors on the last significant digit.

References. * Liu et al. 2008: ® Gou et al. 2009: € Gou et al. 2010
d Miller et al. 2009; ¢ Shafee et al. 2006; ! Hiemstra et al. 2011;
¢ Reisetal. 2011; " Reis et al. 2009; ' Blum et al. 2009; ) McClintock

et al. 2006.

a = cJ/GM?

Figure 1. Distribution of dimensionless angular momenta for neutron stars and
stellar-mass black holes, compiled from recent measurements, is shown here.
The neutron star momenta were calculated using the subset of rotation-powered
pulsars wherein natal spin periods have been estimated. Stellar radii of 15 km
and masses of 1.4 M5 were assumed in all cases in order to give the greatest
possible angular momentum values. A two-sided Kolmogorov-Smirnov test
was used to evaluate the probability that neutron star and black hole Sfins were
drawn from the same parent distribution. A probability of 3.6 x 10~ " is found
when comparing neutron star spins to black hole spins derived using the disk
continuum. The probability is 9.3 x 107> when using black hole spins derived
n<ino dick reflectian



Black Hole Binaries in the Milky Way
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X-ray Properties of Black-Hole Binaries

Ronald A. Remillard (MIT Kavli Institute), Jeffrey E. McClintock
(Harvard-Smithsonian Center for Astrophysics)

(Submitted on 14 Jun 2006)

We review the properties and behavior X-ray binaries that contain
an accreting black hole. The larger majority of such systems are
X-ray transients, and many of them were observed in daily
pointings with RXTE throughout the course of their outbursts. The
complex evolution of these sources is described in terms of
common behavior patterns illustrated with comprehensive
overview diagrams for six selected systems. Central to this
comparison are three X-ray states of accretion, which are
reviewed and defined quantitatively. Each state yields phenomena
that arise in strong gravitational fields. We sketch a scenario for
the potential impact of black hole observations on physics and
discuss a current frontier topic: the measurement of black hole

spin.
Comments: 39 pages, 12 figures, ARAA, vol. 44, in press
Subjects: Astrophysics (astro-ph)

Journal reference: Ann.Rev.Astron.Astrophys.44:49-92,2006

Figure 1: Scale drawings of 16 black-hole binaries in the Milky
Way (courtesy of J. Orosz). The Sun—Mercury distance (0.4 AU)
is shown at the top. The estimated binary inclination is
indicated by the tilt of the accretion disk. The color of the
companion star roughly indicates its surface temperature.



Table 1: Twenty confirmed black holes and twenty black hole candidates®

21

Coordinate  Common” Year® Spec. Po f(M) M,
Name Name/Prefix (hr) (M) (M)
0422432 (GRO J) 1992/1 M2V 5.1 1.19+0.02 3.7-5.0
0538641 LMC X-3 - B3V 40.9 2.340.3 5.9-9.2
0540697 LMC X1 - O7111 93.8%  0.1340.05¢ 4.0-10.0:°
0620-003 (A) 1975/17 K4V 7.8 2.7240.06 8.7-12.9
1009-45 (GRS) 1993/1 K7/MOV 6.8 3.17+0.12 3.6-4.7:¢
11184480 (XTE J) 2000/2  K5/MOV 4.1 6.1+0.3 6.5-7.2
1124-684 Nova Mus 91 1991/1 K3/K5V 10.4 3.01+0.15 6.5-8.2
1354649 (GS) 1987/2  GIV 61.19 5.7540.30

1543-475 (4U) 1971/4 A2V 26.8 0.25-+0.01 8.4-10.4
1550564 (XTE J) 1998/5 G8/KS8IV ~ 37.0 6.86+0.71 8.4-10.8
1650-500"  (XTE J) 2001/1 K4V 7.7 2.7340.56 -
1655-40 (GRO J) 1994/3  F3/F5IV  62.9 2.7340.09 6.0-6.6
1659487 GX 339-4 1972/10"  ~ 42.17F 5.840.5 —
1705250 Nova Oph 77  1977/1 K3/7V 12.5 4.86+0.13 5.6-8.3
1819.3-2525 V4641 Sgr 1999/4  BOIII 67.6 3.1340.13 6.8 7.4
18594226 (XTE J) 1999/1 — 9.2:¢ 7441.1:¢ 7.6-12.0:¢
19154105 (GRS) 1992/Q"  K/MIII 804.0 9.5+3.0 10.0-18.0
19564350 Cyg X-1 — 09.71ab 134.4  0.244+0.005 6.8-13.3
20004251 (GS) 1988/1 K3/K7V 8.3 5.0140.12 7.1-7.8
20234338 V404 Cyg 1989/1/  KOIII 155.3  6.08+0.06 10.1-13.4
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CoONCLUSIONS

1. Basic formalism leading to the Einstein’s field equation and some of the exact
solutions are introduced. (Schwarzschild metric and Kerr-Newman metric)

2. Kerr metric in Boyer-Lindquist coordinates system has been discussed and
graphical presentations of quadratic curvature invariant as well as the event
horizon and ergosphere for some of black holes have been given, which were
obtained by using Mathematica program (ver. 11.3).

3. Further investigation related to this topic would include more detailed analysis
on the space-time structure, astrophysical jet, universal magnetic fields and
reconnection, worm hole, and so on, as well as the applications to the analysis
of observational data.

4. Possible extension of the theory to include the spontaneous magnetic fields
in the formalism will be pursued.
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