Competition of Deformation and Pairing Correlations in N = Z (Stable or Unstable) Nuclei

Eun Ja Ha¹

in collaboration with

Myung-Ki Cheoun¹ and Hiroyuki Sagawa²

- 1) Department of Physics and Origin of Matter and Evolution of Galaxy (OMEG) Institute, Soongsil University, Seoul 156-743, Korea
- 2) RIKEN and University of Aizu, Aizu-Wakamatsu, Fukushima 965-8560, Japan

			ns
(n) i	11.1.1	101	11.51
. .		1.2.1	

Contents

1. Motivation

2. Spin singlet and spin triplet pairing correlations on shape evolution

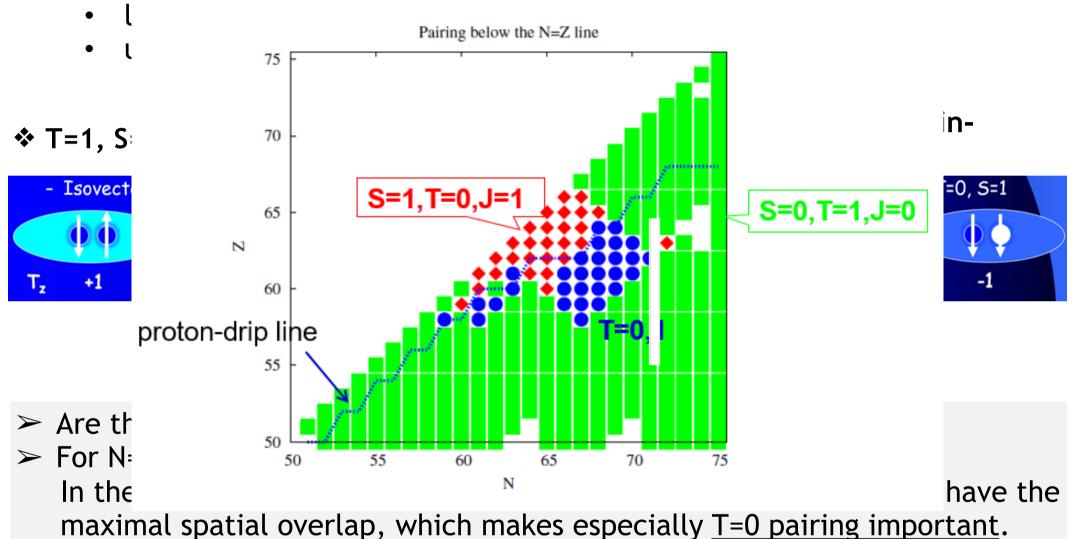
in *sd*- and *pf*-shell N=Z nuclei.

3. Competition of deformation and neutron-proton pairing in Gamow-

Teller transitions for ^{56,58}Ni.

4. Effects of the Coulomb and the spin-orbit interaction in a deformed

mean field on the residual pairing correlations for N=Z nuclei.


5. Summary

Formalism

Result

Summary

✤ Pairing correlation

- There have been many discussions about the coexistence of IS and IV and their competitions.
- The nuclear structure of N≠Z nuclei, 60< N<70 and 57< Z<64, may also be affected by np correlations. PRL 106, 252502(2011)</p>

M1 spin transition data shows the IV quenching for the N = Z sd-shell nuclei.

;T = 0 pairing by the tensor force well-known in deuteron structure may

become more significant even inside nuclei. PRL 115, 102501(2015)

- In our early papers, the np pairing was discussed for GT and doublebeta decay using spherical QRPA, which did not include the deformation explicitly and the IS np pairing was taken into account by renormalizing the IV np pairing. M.K. Cheoun et al. NPA 561(1993), NPA 564(1993)
- In this work, the effects of deformation and IS np pairing are taken into account explicitly in the HFB approach.

References of our recent papers

1. Spin singlet and spin triplet pairing correlations on shape evolution in

sd-shell N=Z nuclei. Ha *et al*. PRC97,024320(2018)

2. Neutron-proton pairing correlations and deformation for N = Z nuclei

in *pf*-shell by the deformed BCS and HFB approach.

Ha et al. PRC97, 064322(2018)

3. Competition of deformation and neutron-proton pairing in Gamow-Teller

transitions for ^{56,58}Ni. in preparation.

4. Effects of the Coulomb and the spin-orbit interaction in a deformed mean

field on the residual pairing correlations for N=Z nuclei.

Ha et al. submitted to PRC.

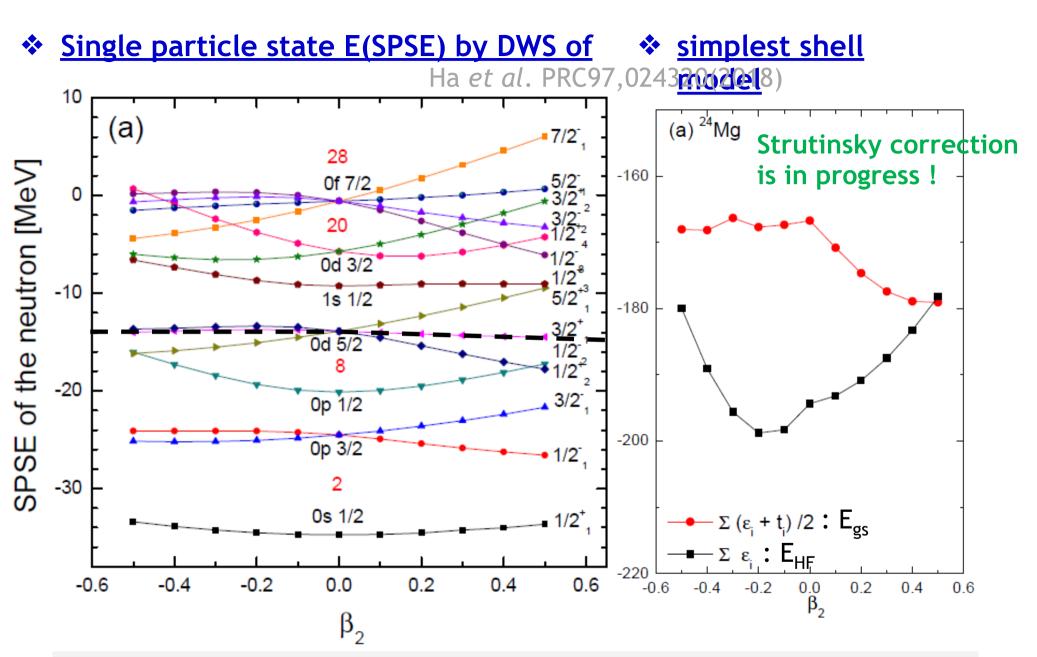
5. Neutron-proton pairing correlations and deformation for N = Z nuclei in

sd- and nf-shell by deformed BCS and deformed ORPA

Contents

1. Motivation

2. Spin singlet and spin triplet pairing correlations on shape evolution


in *sd*- and *pf*-shell N=Z nuclei.

3. Competition of deformation and neutron-proton pairing in Gamow-

Teller transitions for ^{56,58}Ni.

- 4. Effects of the Coulomb and the spin-orbit interaction in a deformed
 - mean field on the residual pairing correlations for N=Z nuclei.

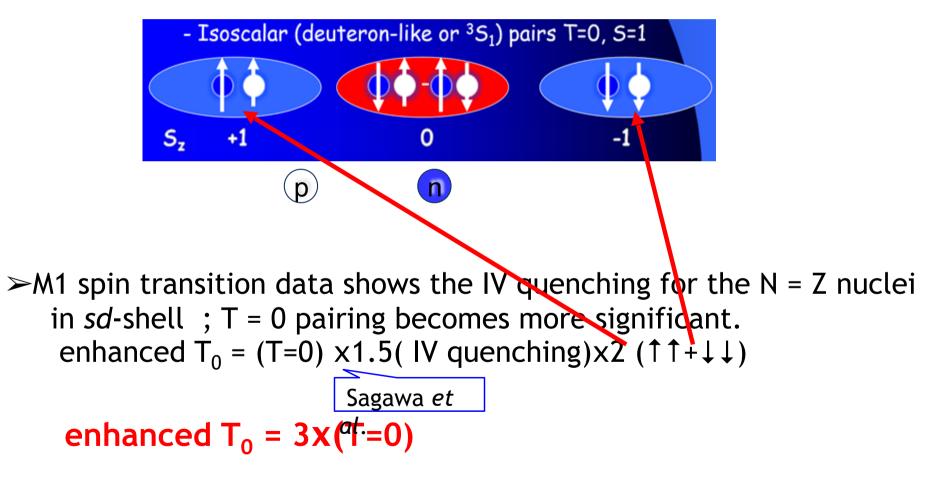
5. Summary

Results

 \succ In the simplest filling-shell model, we assume that

- no smearing, which means that the occupation provability of nucleon, v^2 , is 1 or 0.

- Fermi energy is located on the each outermost shell (black dotted line)


HF energy and corrected ground state energy

$$\begin{split} \mathsf{E}_{\mathsf{H}} &= \sum_{i=1}^{A} (\mathsf{t}_{i} + \sum_{j=1}^{A} \langle j \left| \mathsf{V} \right| j \rangle) \\ &= \sum_{i=1}^{A} (\mathsf{t}_{i} + \langle i \left| \mathsf{V}_{g_{\mathsf{V}}} \right| i \rangle) = \sum_{i=1}^{A} \epsilon_{i} : \text{Single particle} \\ \mathsf{E}_{g} &= \sum_{i=1}^{A} \mathsf{t}_{i} + \frac{1}{2} \sum_{i,j}^{A} \langle j \left| \mathsf{V} \right| j \rangle \\ &= \sum_{i=1}^{A} (\mathsf{t}_{i} + \frac{1}{2} \langle i \left| \mathsf{V}_{g_{\mathsf{V}}} \right| i \rangle) \quad (\bigcirc \langle i \left| \mathsf{V}_{g_{\mathsf{V}}} \right| i \rangle = \epsilon_{i} - \mathsf{t}_{i}) \\ &= \sum_{i=1}^{A} (\mathsf{t}_{i} + \frac{1}{2} (\epsilon_{i} - \mathsf{t}_{i})) = \sum_{i=1}^{A} \frac{1}{2} (\epsilon_{i} + \mathsf{t}_{i}) \\ &\therefore \mathsf{E}_{g} \neq \sum_{i=1}^{A} \epsilon_{i} \end{split}$$

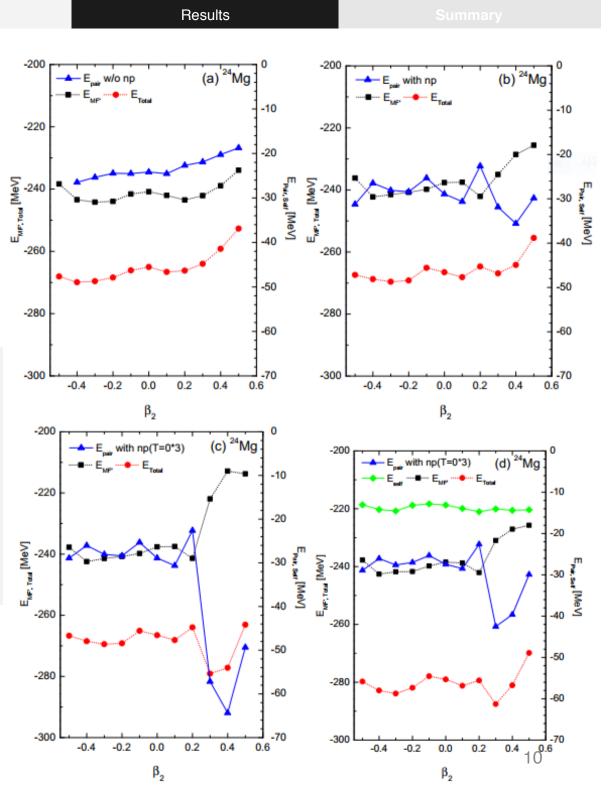
We consider the pairing correlations, pp, nn, and np-pairings.

Enhanced T=0 pairing correlation for N=Z nuclei

T=0, S=1 (Isoscalar(IS), spin-triplet)

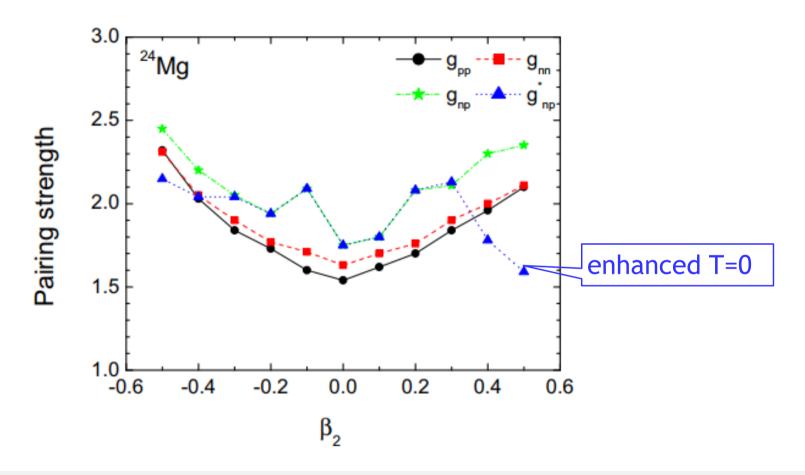
Shell evolution of ²⁴Mg

$$H = H_0 + H_h$$


$$H_0 = T + V_{BV} \quad (V_c + V_{\Theta} + V_b)$$

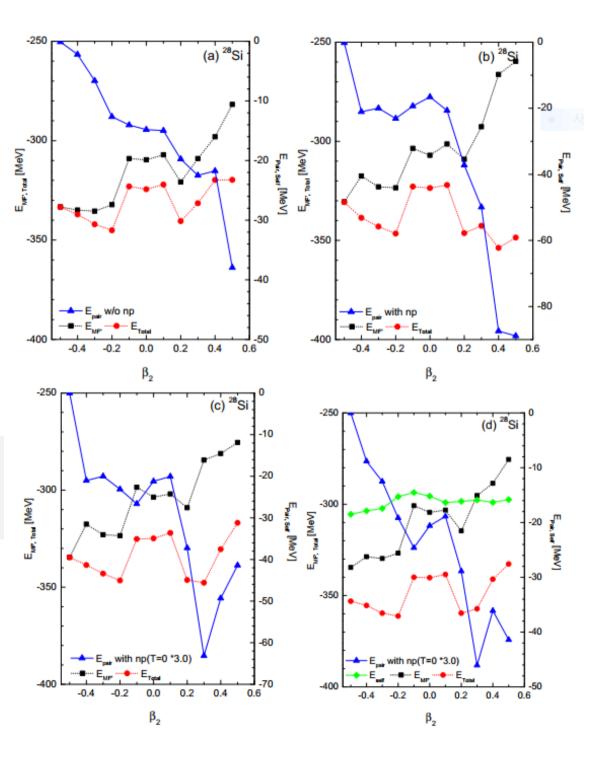
$$E_b = E_{\overline{M}} + E_{\mu} + E_{\Theta}$$

(a) without np-pairing
(b) with np-pairing
(c) with enhanced T=0
(d) with enhanced T=0 + self E


- T=0 contribution makes the bounding more stronger due to its attractive property.
- Enhanced IS np pairing correlations may be an indispensable ingredient to understand the prolate deformation.

Nucleus	β_2^{E2} [34]	β_2^{RMF} [35]	β_2^{FRDM}
²⁴ Mg	0.605	0.416	0

Formalism

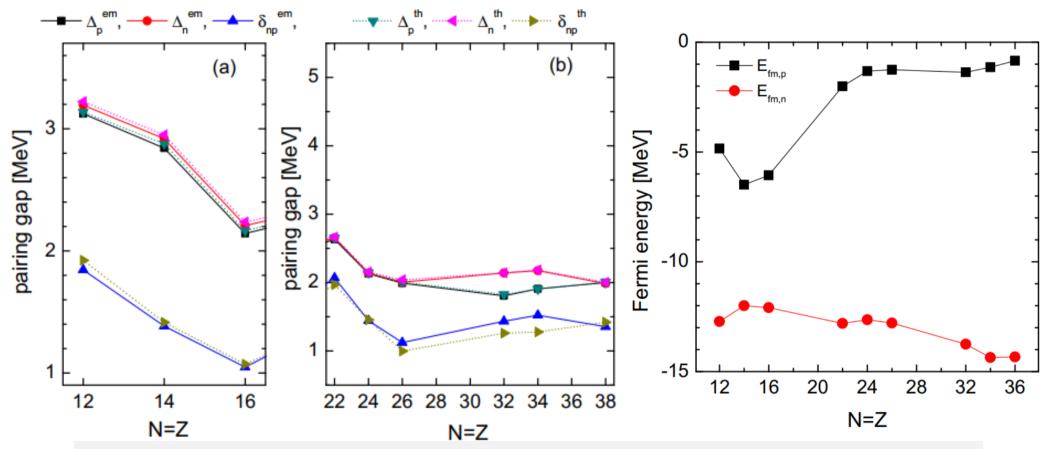

Evolution of pairing strength of ²⁴Mg

- > g_{np}^* becomes smaller $i\eta_{\beta_2}| > 0.3.$, that is, the smaller g_{np}^* we have, the larger pairing energy is obtained.
- \succ There can be T=0 pairing (Isoscalar) condensation in large deformation.
- > There is the coexistence of T=0 and T=1 pairing in 0.3.

Shell evolution of ²⁸Si

Nucleus	$\beta_2^{E2}~[10]$	β_2^{RMF} [11]	β_2^{FRDM} [12]
^{24}Mg	0.605	0.416	0.
²⁸ Si (prolate)	0.407	x	x
²⁸ Si (oblate)	х	- 0.374	- 0.363
^{32}S	0.312	0.186	0.221

²⁸Si can be oblate deformed by the strong T = 0 pairing correlations with self energy.

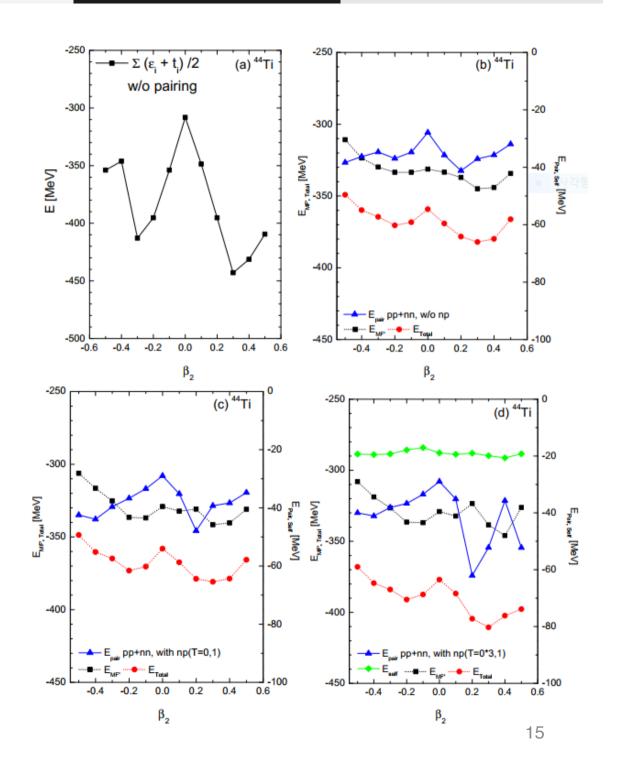

Formalis

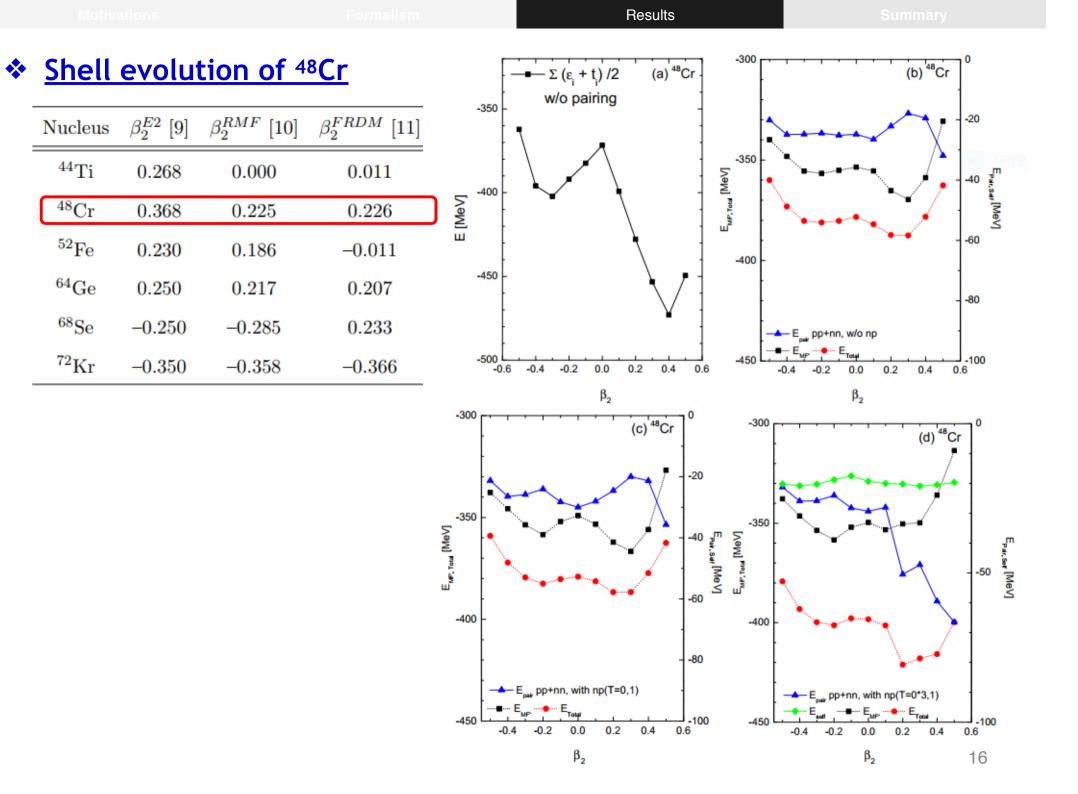
✤In pf-shell N=Z nuclei

Ha et al. PRC97, 064322(2018)

Nucleus	β_2^{E2} [9]	$\beta_2^{RMF}~[10]$	β_2^{FRDM} [11]	Δ_p^{emp}	Δ_n^{emp}	δ_{np}^{emp}
$^{44}\mathrm{Ti}$	0.268	0.000	0.011	2.631	2.653	2.068
$^{48}\mathrm{Cr}$	0.368	0.225	0.226	2.128	2.138	1.442
52 Fe	0.230	0.186	-0.011	1.991	2.007	1.122
$^{64}\mathrm{Ge}$	0.250	0.217	0.207	1.807	2.141	1.435
⁶⁸ Se	-0.250	-0.285	0.233	1.909	2.174	1.522
$^{72}\mathrm{Kr}$	-0.350	-0.358	-0.366	2.001	1.985	1.353

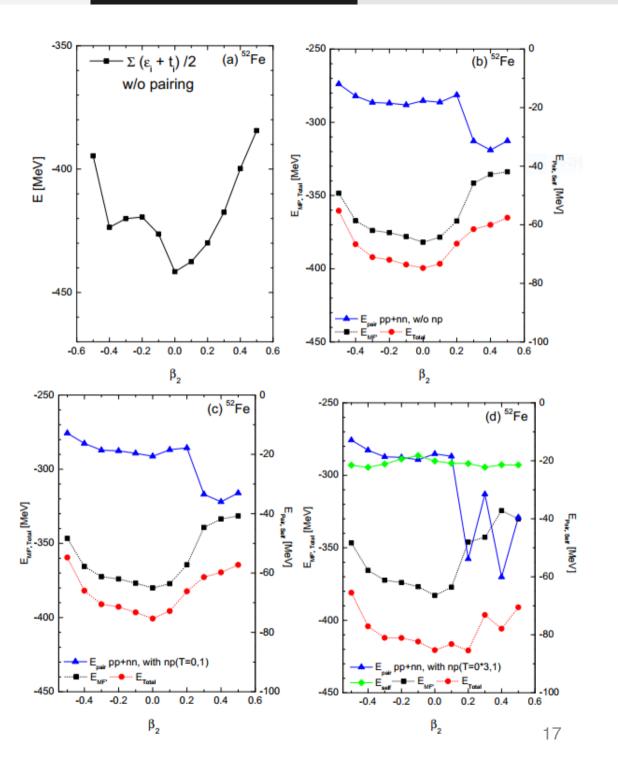
Pairing gaps & Fermi E evolution in sd- & pf-shell N=Z nuclei

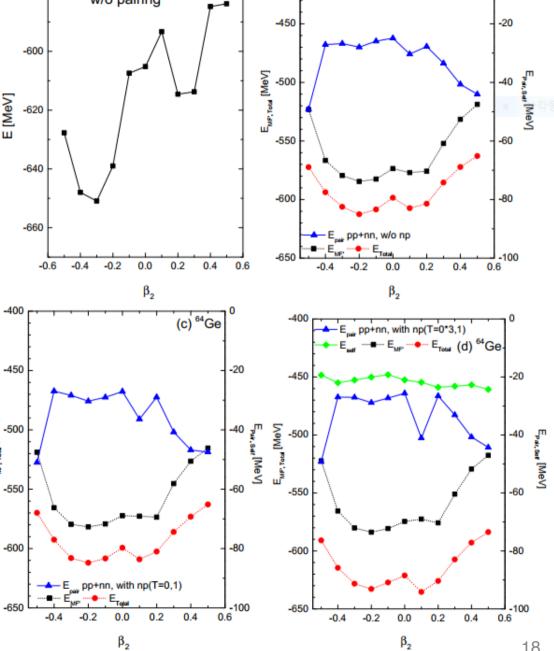



- \succ Empirical pairing gap by five mass formula.
- Theoretical pairing gaps are adjusted to reproduce the empirical pairing gaps. Specifically, np-pairing gaps are almost saturated in pf-shell N=Z nuclei.
- The gap between proton and neutron Fermi E increases as the number of mass increases.

Shell evolution of 44Ti

	Nucleus	$\beta_2^{E2}~[9]$	$\beta_2^{RMF}~[10]$	β_2^{FRDM} [11]
C	44 Ti	0.268	0.000	0.011
	$^{48}\mathrm{Cr}$	0.368	0.225	0.226
	52 Fe	0.230	0.186	-0.011
	$^{64}\mathrm{Ge}$	0.250	0.217	0.207
	$^{68}\mathrm{Se}$	-0.250	-0.285	0.233
	$^{72}\mathrm{Kr}$	-0.350	-0.358	-0.366


The enhanced T=0 force makes the bounding more stronger.

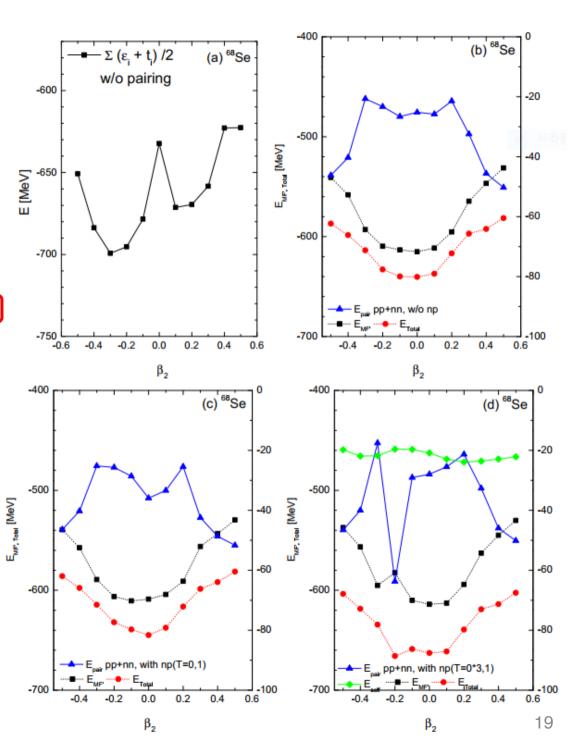


Shell evolution of ⁵²Fe

	Nucleus	$\beta_2^{E2}~[9]$	$\beta_2^{RMF}~[10]$	β_2^{FRDM} [11]
-	$^{44}\mathrm{Ti}$	0.268	0.000	0.011
	$^{48}\mathrm{Cr}$	0.368	0.225	0.226
	52 Fe	0.230	0.186	-0.011
	$^{64}\mathrm{Ge}$	0.250	0.217	0.207
	$^{68}\mathrm{Se}$	-0.250	-0.285	0.233
	$^{72}\mathrm{Kr}$	-0.350	-0.358	-0.366

							Results			
•	<u>Shell</u>	evolut	tion of ⁶	<mark>⁴Ge</mark>	-580 -	$- \Sigma (\epsilon + t) /2$ w/o pairing	(a) ⁶⁴ Ge	-400		(b) ⁶⁴ Ge
	Nucleus	$\beta_2^{E2}~[9]$	$\beta_2^{RMF}~[10]$	β_2^{FRDM} [11]				-450		
	44 Ti	0.268	0.000	0.011	-600 -	· · · ·	$\backslash / 1$	<u></u> ⊒ -500 -		\mathbf{X}
	$^{48}\mathrm{Cr}$	0.368	0.225	0.226	Гария -620 Ш	. /	•-•	E ^{MF, Tota} [MeV]		
	52 Fe	0.230	0.186	-0.011	ш -640 -			-550		/ _ †
	^{64}Ge	0.250	0.217	0.207	-640 -]	-600		×]
	$^{68}\mathrm{Se}$	-0.250	-0.285	0.233	-660 -		-	[ar pp+nn, w/o np	
	$^{72}\mathrm{Kr}$	-0.350	-0.358	-0.366	-0.0		0.2 0.4 0.	-650 -0.4	-0.2 0.0 0.2	2 0.4 0.6
					-400 -450 -450 	β ₂	(c) ⁶⁴ Ge -20	450 [Aem] Four.sar [MeV	β ₂ E _{per} pp+nn, with np(T E _{self} E _{MP}	=0*3,1) E _{Tetal} (d) ⁶⁴ Ge

*

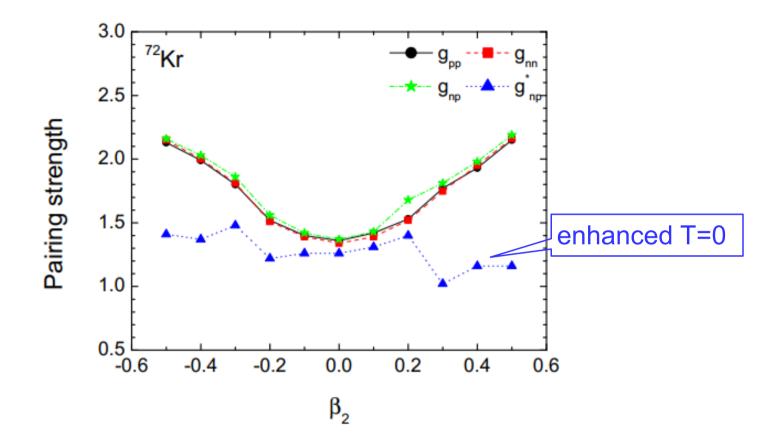

0

18

Formalism

Shell evolution of 68Se

Nucleus	$\beta_2^{E2}~[9]$	$\beta_2^{RMF}~[10]$	β_2^{FRDM} [11]
⁴⁴ Ti	0.268	0.000	0.011
$^{48}\mathrm{Cr}$	0.368	0.225	0.226
52 Fe	0.230	0.186	-0.011
$^{64}\mathrm{Ge}$	0.250	0.217	0.207
$^{68}\mathrm{Se}$	-0.250	-0.285	0.233
$^{72}\mathrm{Kr}$	-0.350	-0.358	-0.366



Even the oblate deformation can be explained by the unlike-pairing correlations !

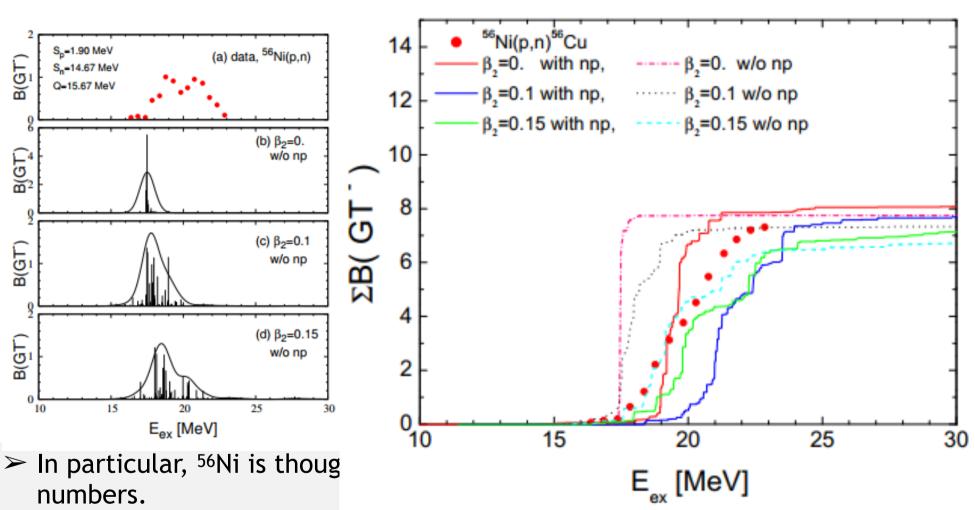
*	<u>Shell</u>	<u>evolu</u>	tion of ⁷	2 <mark>Kr</mark>	$ \frac{-400}{(b)^{72} \text{Kr}} $ (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
	Nucleus	β_2^{E2} [9]	β_2^{RMF} [10]	β_2^{FRDM} [11]	
	$^{44}\mathrm{Ti}$	0.268	0.000	0.011	
	$^{48}\mathrm{Cr}$	0.368	0.225	0.226	
	52 Fe	0.230	0.186	-0.011	-700
	$^{64}\mathrm{Ge}$	0.250	0.217	0.207	-80
	$^{68}\mathrm{Se}$	-0.250	-0.285	0.233	-750
C	$^{72}\mathrm{Kr}$	-0.350	-0.358	-0.366	-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 β_2 β_2
					400 $\left[\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ \end{array} \right]^{0}$ 400 $\left[\begin{array}{c} & & & & & \\ & & & & \\ \end{array} \right]^{0}$ 400 $\left[\begin{array}{c} & & & & \\ & & & \\ \end{array} \right]^{0}$ 10
					$-700 \begin{bmatrix} -700 \\ -80 \\ -700 \\ -80 \\ -700 \\ -80 \\ -700 \\ -80 \\ -700 \\ -80 \\ -700 \\ -80 \\ -700 \\ -80 \\ -700 \\ -80 \\ -700 \\ -80 \\ -700 \\ -80 \\ -700 \\ -80 \\ -700 \\ -80 \\ -80 \\ -700 \\ -80 \\ -80 \\ -700 \\ -80 \\ -80 \\ -80 \\ -700 \\ -80 \\ $
					β ₂ β ₂ 20

20

Evolution of pairing strength of ⁷²Kr

There is also the coexistence of T=0 and T=1 pairing at large deformation similarly to sd-shell N=Z nuclei.

Contents


- 1. Motivation
- 2. Spin singlet and spin triplet pairing correlations on shape evolution
 - in *sd* and *pf*-shell N=Z nuclei.
- 3. Competition of deformation and neutron-proton pairing in Gamow-

Teller transitions for 56,58Ni.

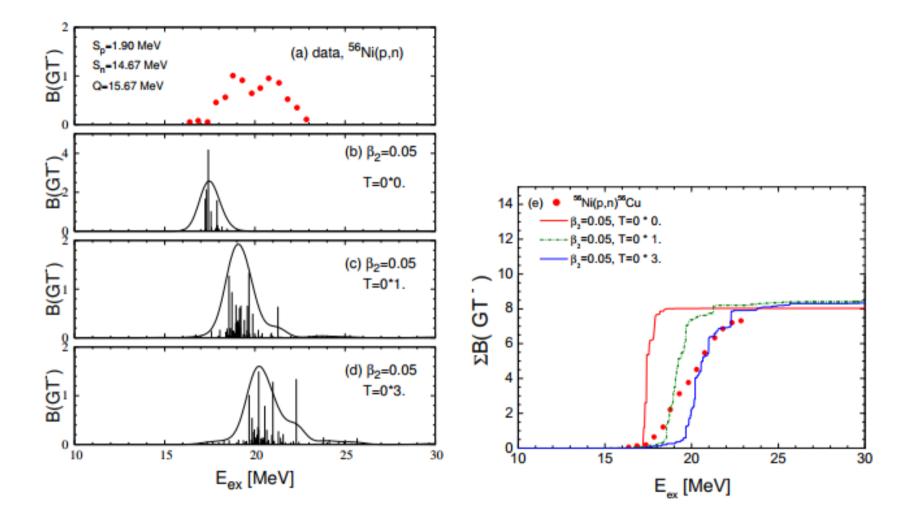
- 4. Effects of the Coulomb and the spin-orbit interaction in a deformed
 - mean field on the residual pairing correlations for N=Z nuclei.
- 5. Summary

Gamow-Teller strength for ⁵⁶Ni

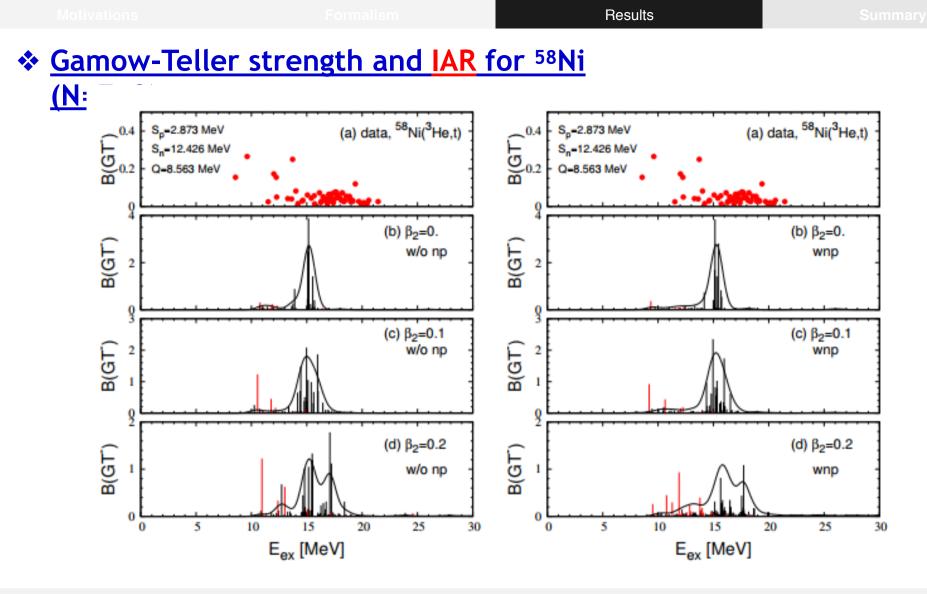
Ha et al. accepted to PRC

If we take α-cluster model for ⁵⁶Ni, the ground state may be slightly deformed. PRC 84, 024302(2011)

The np pairing effects turn out to be able to properly explain the GT strength although the deformation is also another important property. The high-lying GT peak in the two peaks stems from the repulsive np pairing through the reduction of Fermi energies of protons and neutrops.


Results proton and neutron Fermi E * Without np-pairing ٨_p ∆**ک=۸**p-۸n The np pairing makes the Fermi energy difference small, which р n can induce the GT transition more effectively and give rise to the high-lying GT states !!! With np-pairing

٨_D


n

р

IS np pairing effects on B(GT)

The shift of the GT strength distributions by the enhanced T=0 np pairing is mainly attributed to the IS coupling condensation. Even with the small deformation, the second peak appears by the T=0 pairing.

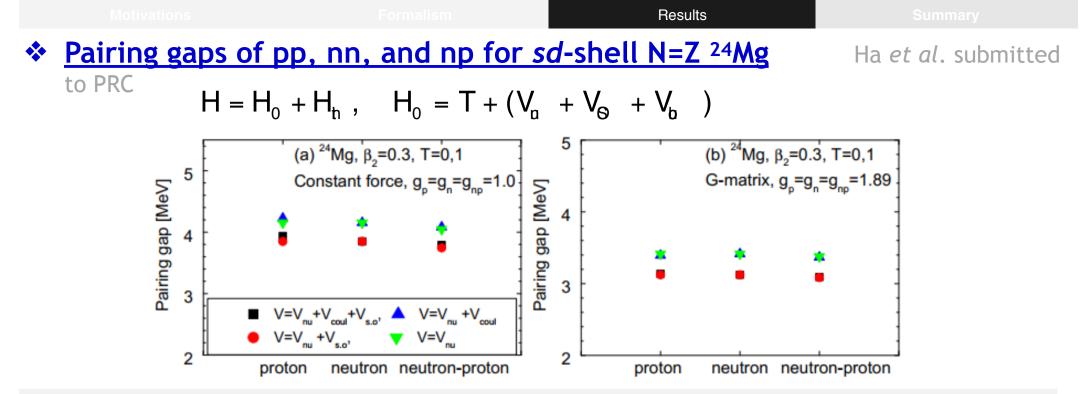
- > The *np* pairing makes the IAR(isobaric analogue resonance) concentrated around 12 MeV, which is consistent with the results in PRC 69(2004) at B_2 = 0.2.
- The deformation effect turned out to be more important rather than the np pairing correlations since the np pairing effects become the smaller with the increase of N Z number. Some spurious states peculiar to QRPA lead to small distribution of IAR state.

Contents

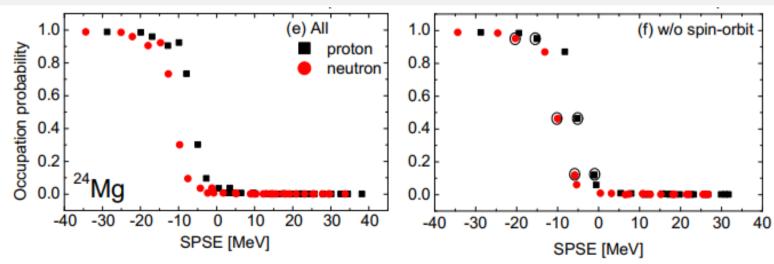
- 1. Motivation
- 2. Spin singlet and spin triplet pairing correlations on shape evolution
 - in *sd* and *pf*-shell N=Z nuclei.
- 3. Competition of deformation and neutron-proton pairing in Gamow-

Teller transitions for ^{56,58}Ni.

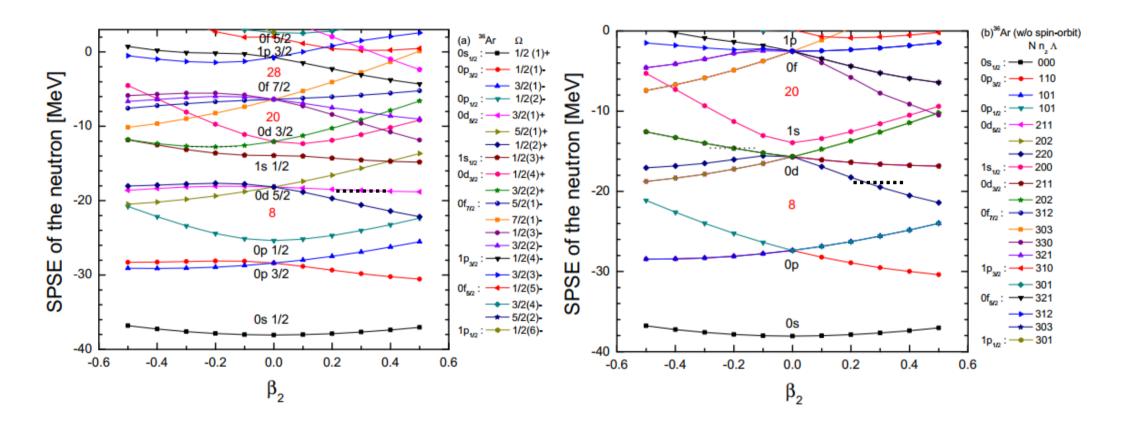
4. Effects of the Coulomb and the spin-orbit interaction in a deformed


mean field on the residual pairing correlations for N=Z nuclei.

5. Summary

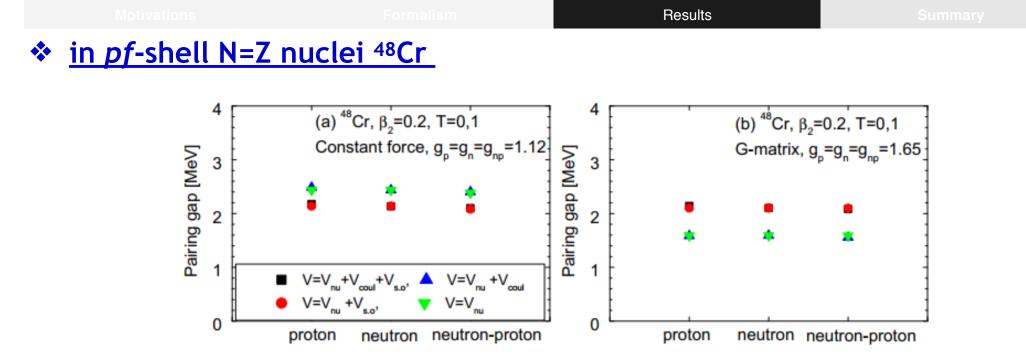

We investigated how the Coulomb and SO interaction as well as the deformation affect on the residual pairing correlations.

 Constant PME(pairing matrix element): the pairing under the Wigner spin-isospin SU(4) symmetry in the absence of the Coulomb and the spin-orbit interaction.

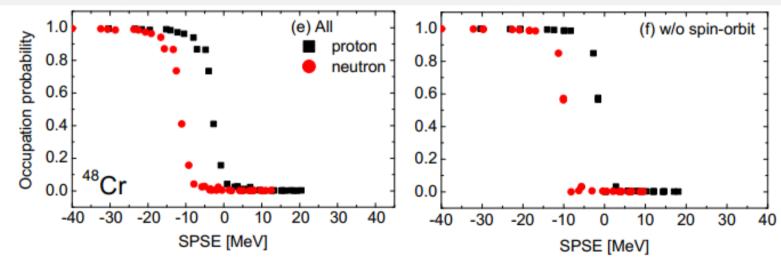

 Brueckner G-Matrix PME : state dependent taken into account shell structure effects, the realistic description of ground state.

The charge independence symmetry is approximately conserved for ²⁴Mg.
 Coulomb force does not affect the pairing gaps !!

 \succ The smearing of the Fermi surface increases when there is no SO force, which _29 increases the pairing gap.

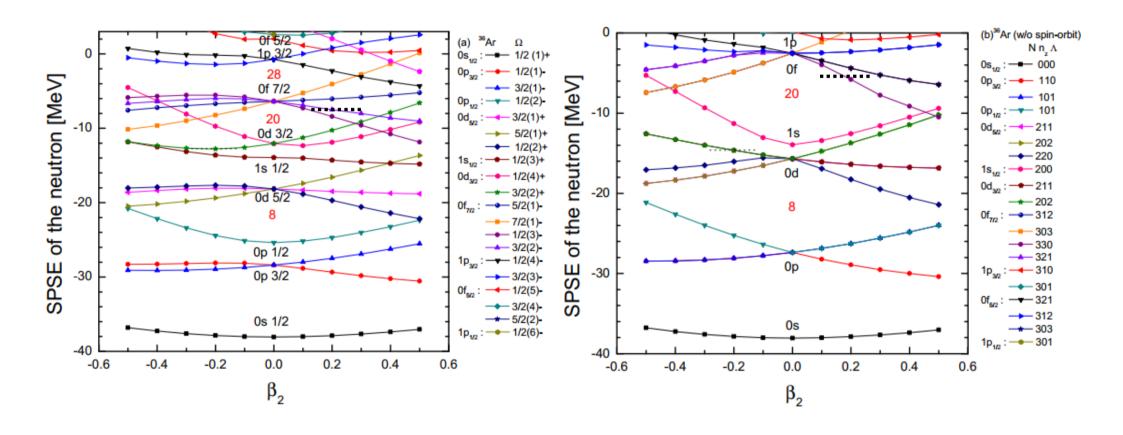


Results


> Why does the pairing gaps grow without the SO?

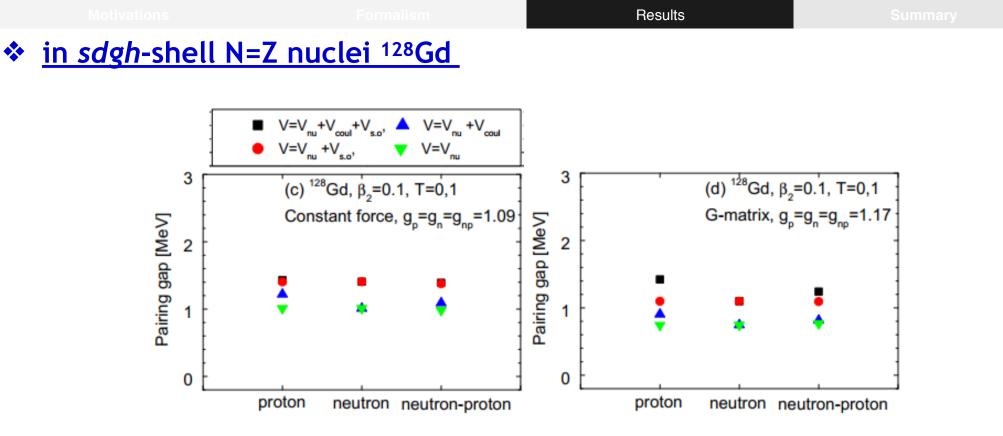
: Many degenerate states appear w/o the SO force, $0d_{3/2}^+ 0d_{5/2} \rightarrow 0d$, which keep more

particles in the smearing region and makes more smearing and larger pairing gaps.



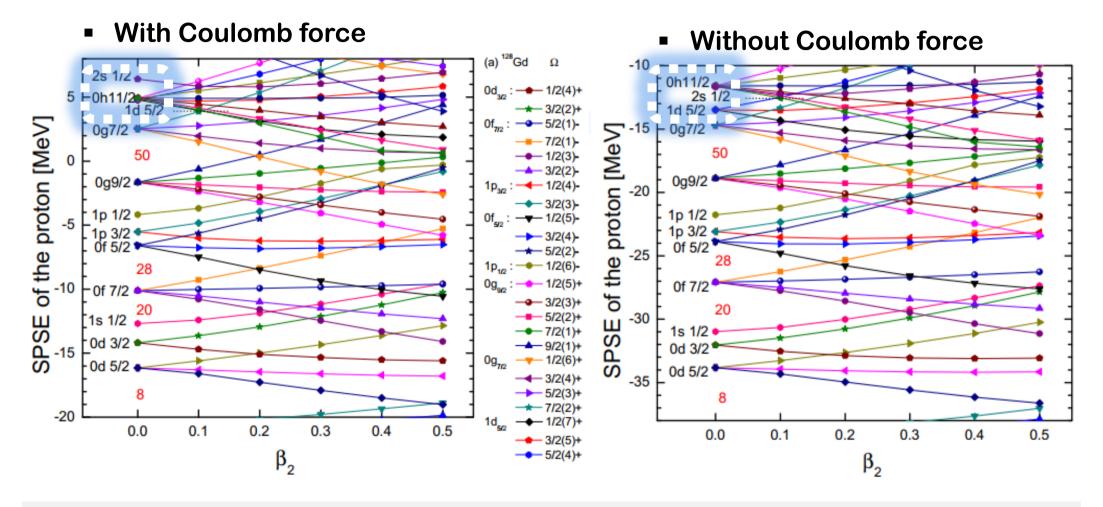
The charge independence symmetry is approximately conserved for ⁴⁸Cr.
 Coulomb force also does not affect the pairing gaps !!

The SO force increases the smearing at the Fermi surface, which increases the pairing gap.
³¹

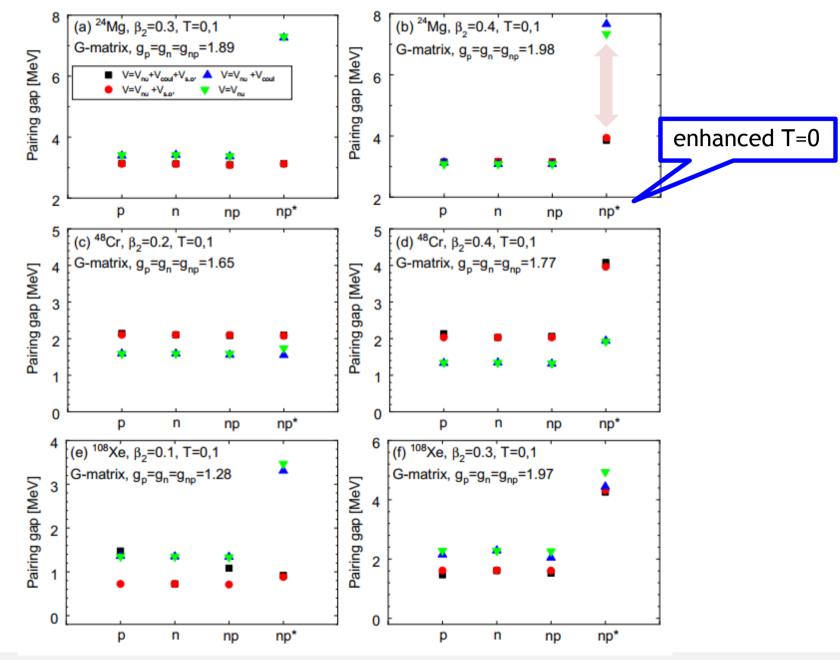

Shell evolution with(without) spin-orbit(SO) force in ⁴⁸Cr

> Why does the pairing gaps grow with the SO?

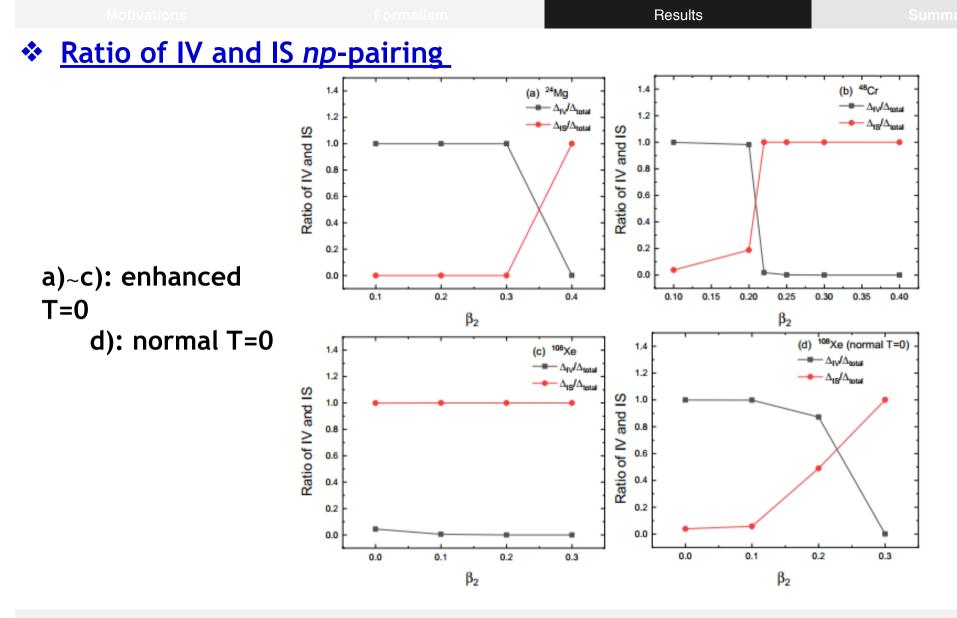
: By the SO force, the occupation probability by the $3/2_2^+$ and $1/2_4^+$ in $0d_{3/2}$ shell increase


and makes more smearing and larger pairing gaps.

- ➤ The CF does not affect the pairing gaps at least sd-shell nuclei but the CF increases the pairing gap with G-Mat PME for heavy nucleus.
- > The SO force also increase the pairing gaps for two PME.
- \succ For heavy nuclei, the CF can be more important rather than the SO force.


Formalism

Reordering of SPSE in ¹²⁸Gd by the Coulomb force



- The reordering of sdgh-shell near to Fermi surface by the Coulomb force(CF) affect the pairing gaps.
- > $0h_{11/2}$ and $1d_{5/2}$ are almost overlapped by CF, which increase the occupation probability.
- \succ The large smearing by the CF makes a large pairing gap

Competition of isoscalar(IS) and isovector(IV) pairing in N=Z nuclei

For the enhanced T=0, the np pairing gap by the SO switch-off is large apart from (c) and (f).

- IS condensation by the enhanced T=0 np pairing may happen in deformed ²⁴Mg and ⁴⁸Cr.
- rapid phase transition from IV to IS component in the np pairing. But it may happen slower in heavy nuclei, which may mean the coexistence of IV and IS in some deformation region.

 \succ For heavy nuclei. ¹⁰⁸Xe. T=0 *np* pairing is dominant by the enhanced T=0 and the

Results

Summary

- 1. We find a coexistence of two types of superconductivities (T=0 and T=1) at the
 - $|B_2| > 0.3$ region in ²⁴Mg.
- 2. The enhanced IS *np* pairing interaction is shown to play important roles of shape

deformations.

- 3. The IS condensation by the enhanced T = 0 pairing may happen not only in *sd*-shell, but also in *pf*-shell nuclei.
- 4. The IS condensation part plays a vital role to explain the GT strength distribution of ⁵⁶Ni nucleus.
- 5. The Coulomb force and the SO force are shown to change the smearing by change of ordering of SPS.
- 6. The state-dependent Brueckner G-PME takes into account shell structure effects

on the residual interaction and enables us to do realistic description of ground

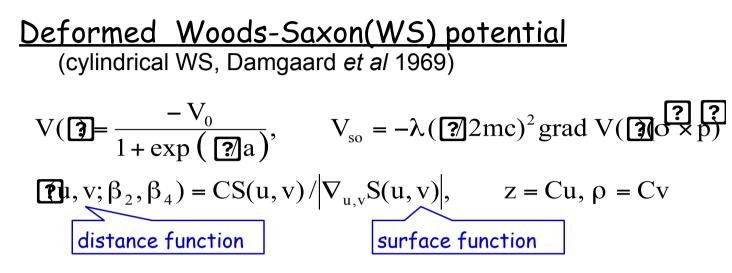
states of the N = Z nuclei.

 IS condensation due to the enhanced T=0 np pairing may happen in a deformed ²⁴Mg and ⁴⁸Cr.

8. For heavy N=Z nuclei, the transition from IV to IS component may happen ³⁷

Thanks for your attention !!

Back-up files


Motivations

Formalism

Results

Summary

How to include the deformation?

 β_2 : quadrupole deformation parameter

 β_4 : hexadecapole deformation parameter

 \succ We can determine these two parameters by taking values giving the minimum ground state energy.

To exploit G-matrix elements, which is calculated on the spherical basis, deformed bases are expanded in terms of the spherical bases.

$$|lpha \Omega_{lpha}> = \sum_{a} B^{lpha}_{a} |a \Omega_{lpha}>,$$

Deformed SPS ^a Sph. HO w. f.

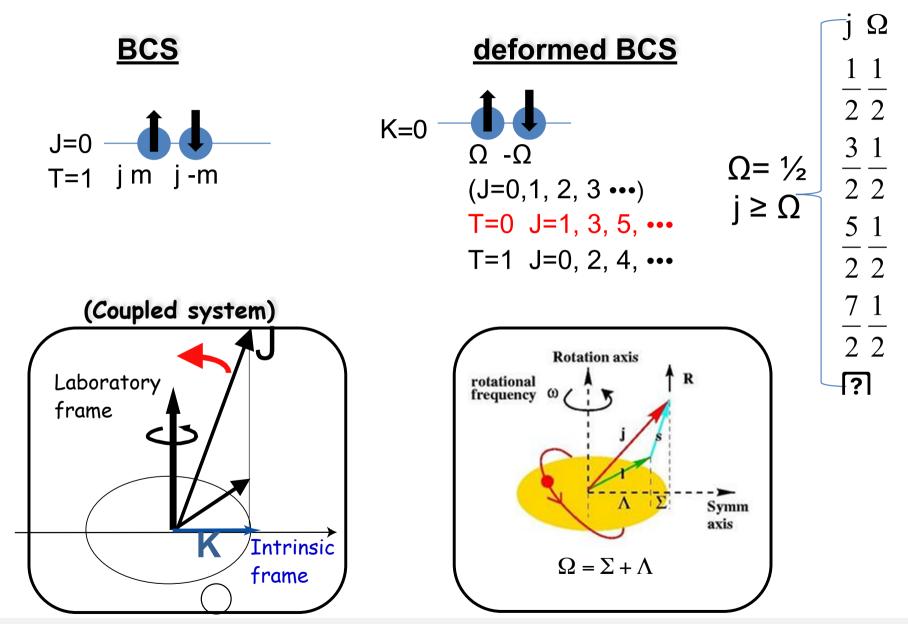
✤ In sd-shell N=Z nuclei , Q_{exp} of ²⁸Si is different from ²⁴Mg and ³²S

Nucleus	$\beta_2^{E2}~[10]$	β_2^{RMF} [11]	β_2^{FRDM} [12]	$Q_{exp.}$ [14, 15]	Δ_p^{emp}	Δ_n^{emp}	δ_{np}^{emp}
^{24}Mg	0.605	0.416	0.	– $0.29\sim$ – 0.07	3.123	3.193	1.844
²⁸ Si (prolate)	0.407	x	x	x	2.841^{a}	$2.917\ ^a$	1.384^{a}
²⁸ Si (oblate)	x	- 0.374	- 0.363	$0.16\sim 0.18$	2.841^{a}	2.917^{a}	1.384^a
^{32}S	0.312	0.186	0.221	– $0.12\sim$ – 0.18	2.141	2.207	1.047

$$\beta_{2} = \frac{4\pi}{3\boldsymbol{B}_{0}^{2}} \left[\frac{\boldsymbol{B}(\boldsymbol{E} 2 \uparrow)}{\boldsymbol{e}^{2}} \right]^{1/2} \quad (\boldsymbol{R}_{0} = 1.2\boldsymbol{A}^{1/3})$$

in the rotational model, $Q_{J^{\pi}} = \frac{3K^2 - J(J+1)}{(J+1)(2J+3)}Q_0$.

for 2⁺, $Q_{2+} = -2/7 Q_0$

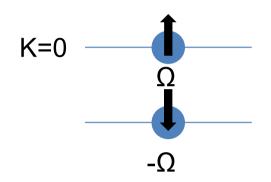

Q₂₊: experimental quadrupole moment

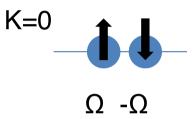
Q₀ : intrinsic quadrupole moment

> ²⁸Si is not heavy. Where does it come from ?

.2

Pairing correlation




 \succ Since the deformed SPS are expanded in terms of the spherical SP bases the different total angular momenta of the SP basis states would be mixed.

Pairing correlation

deformed HFB

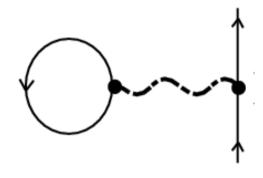
deformed BCS

$$\begin{split} \textbf{BCS} \\ \Delta_{p\bar{p}\alpha} &= \Delta_{\alpha p\bar{\alpha} p} = -\sum_{J,c} g_{pp} F^{J0}_{\alpha a\bar{\alpha} a} F^{J0}_{\gamma c\bar{\gamma} c} G(\underline{aacc}, J, T=1) (u_{1p_c}^* v_{1p_c} + u_{2p_c}^* v_{2p_c}) \\ \Delta_{p\bar{n}\alpha} &= \Delta_{\alpha p\bar{\alpha} n} = -\sum_{J,c} g_{np} F^{J0}_{\alpha a\bar{\alpha} a} F^{J0}_{\gamma c\bar{\gamma} c} [G(aacc, J, T=1) Re(u_{1n_c}^* v_{1p_c} + u_{2n_c}^* v_{2p_c}) \\ &+ i G(aacc, J, T=0) Im(u_{1n_c}^* v_{1p_c} + u_{2n_c}^* v_{2p_c})] \;, \end{split}$$

$$\mathsf{HFB} \Delta_{p\bar{p}_{\alpha}} = \Delta_{\alpha p\bar{\alpha} p} = -\sum_{J,c,d} g_{\mathrm{pp}} F^{J0}_{\alpha a\bar{\alpha} a} F^{J0}_{\gamma c\bar{\delta} c} G(aacd, J, T = 1) (u^*_{1p_c} v_{1p_d} + u^*_{2p_c} v_{2p_d})$$

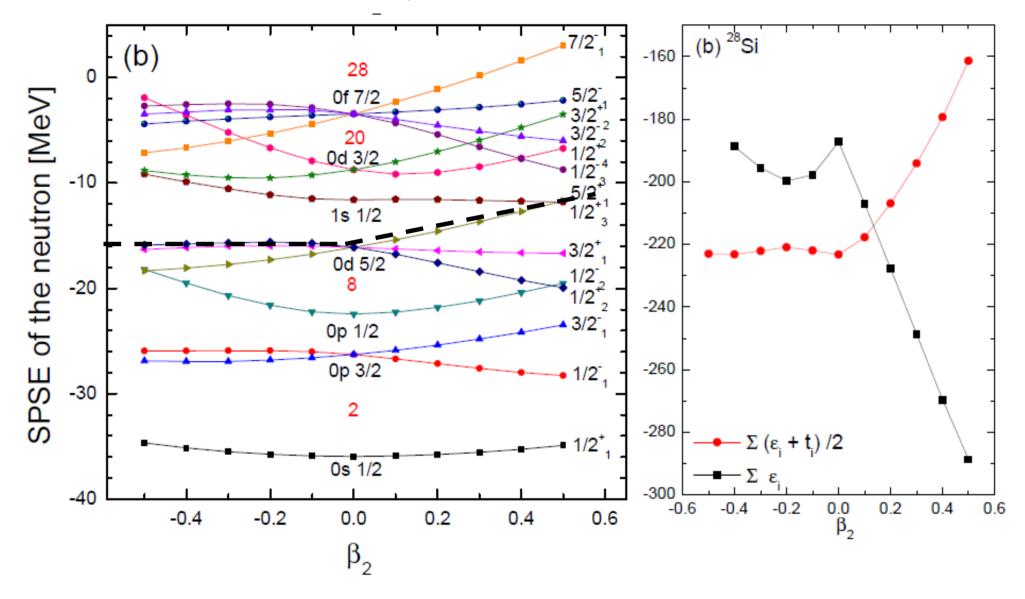
$$(43)$$

Self energy in BCS

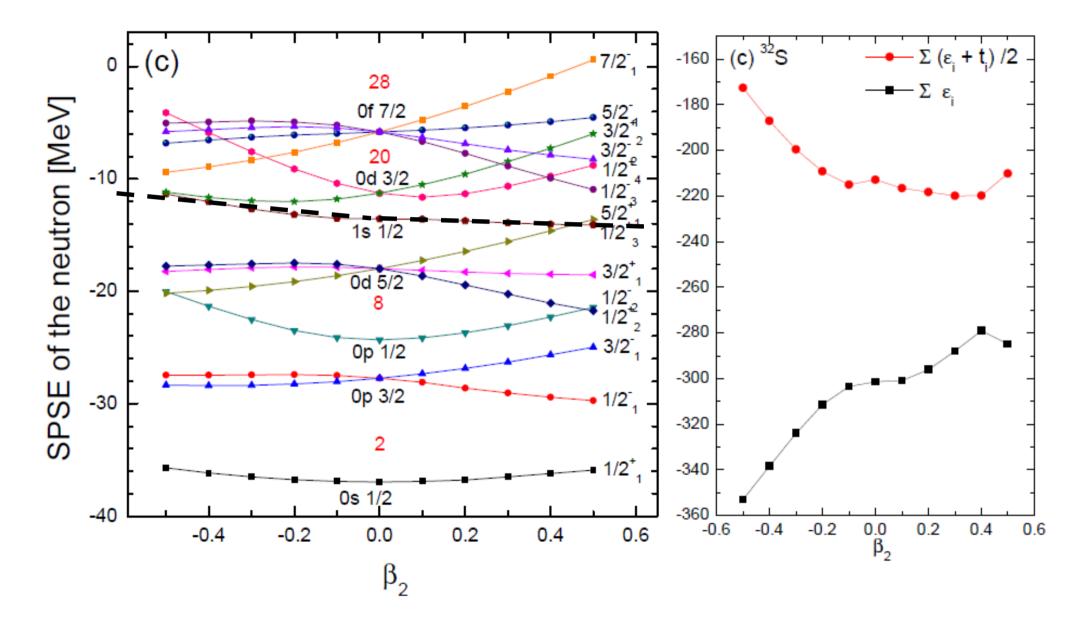

$$H_{0} = \sum_{b}^{A} 2 \left[v_{b}^{2} \left(\eta_{b} + \frac{1}{2} \mu_{b} \right) - \frac{1}{2} u_{b} v_{b} \Delta_{b} \right]$$

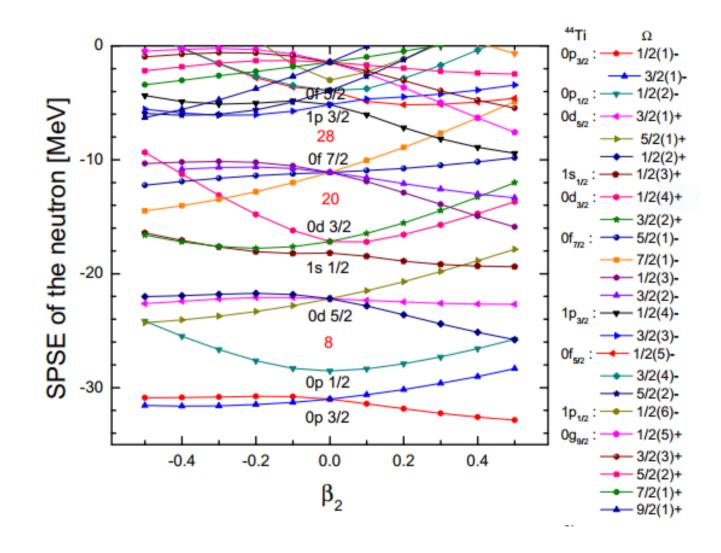
$$E_{mean} E_{self} E_{pair}$$
BCS eq.

$$\eta_{b} \equiv \varepsilon_{b} - \lambda - \mu_{b}$$


$$\mu_{b} = -\frac{1}{2} \sum_{a,J} v_{a}^{2} \hat{J}^{2} \langle ab : J | V | ab : J \rangle : \text{self energy}$$

$$\Delta_{b} = -\sum_{a} u_{a} v_{a} \langle aa; 0 | V | bb : 0 \rangle : \text{pairing gap}$$


➤ The self energy term was usually neglected in BCS eq. because it results from particle-hole correlations beyond the BCS and affects a renormalization of the single particle energy.


Shell evolution & the simplest shell model of ²⁸Si

45

Shell evolution & the simplest shell model of ³²S

47

Parameter set of Deformed Woods-Saxon

Table 1

Set of parameter values defined by the program according to the input value of the ICHOIC variable. The symbols P (N) refer to the protons (neutrons). The λ values in the case of the Chepurnov parametrisation are defined by $\lambda = 23.8 (1+2*(N-Z)/A)$. Blomqv.-Wahlb. stands for Blomqvist and Wahlborn. The values of r_0 and a are in fermi, V_0 in MeV, κ and λ dimensionless

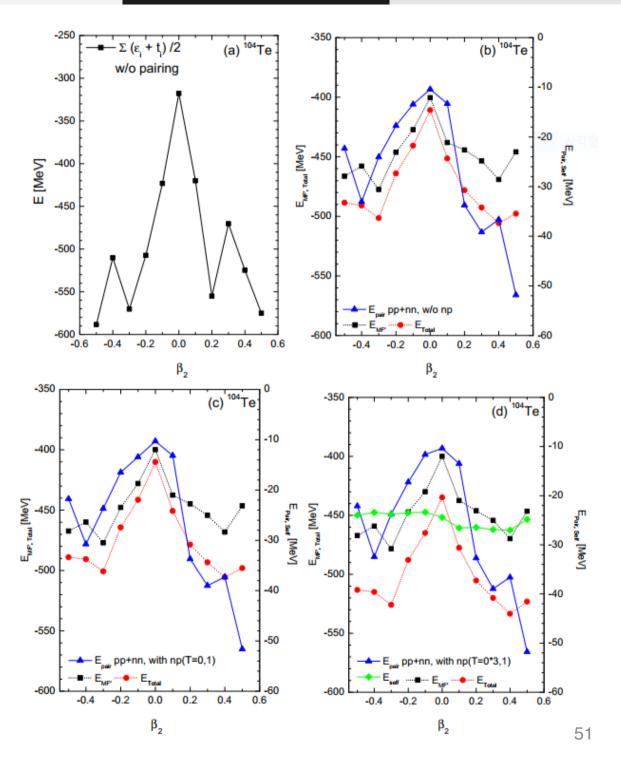
Parametrisation	λ (Ρ)	λ (N)	$r_{0-so}(\mathbf{P})$	$r_{0-so}(N)$	r_0 (P)	r_0 (N)	к	V_0	а	ICHOIC
BlomqvWahlb.	32.0	32.0	1.270	1.270	1.270	1.270	0.67	51.0	0.67	0
Rost	17.8	31.5	0.932	1.280	1.275	1.347	0.86	49.6	0.70	1
Chepurnov	calc.		1.240	1.240	1.240	1.240	0.63	53.3	0.63	2
"optimal"	A-depe	ndent			1.275	1.347	0.86	49.6	0.70	3
"universal"	36.0	35.0	1.20	1.310	1.275	1.347	0.86	49.6	0.70	4
"input"	parameters read from input							5		
defdependent INCREA = 1	deformation-dependent (only for $\beta_2 > 0.325$)			depend on ICHOIC						0-5

In gd-shell N=Z nuclei

Nucleus	β_2^{RMF} [10]	β_2^{FRDM} [11]	β_2^{KTUY} [10]	Δ_p^{emp}	Δ_n^{emp}	δ_{np}^{emp}
$^{104}\mathrm{Te}$	_	-0.011	0.039	1.520	1.548	0.665
$^{116}\mathrm{Ce}$	0.285	0.282	0.145	1.452	1.530	0.697
$^{128}\mathrm{Gd}$	0.350	0.341	0.194	1.415	1.393	0.592

Results

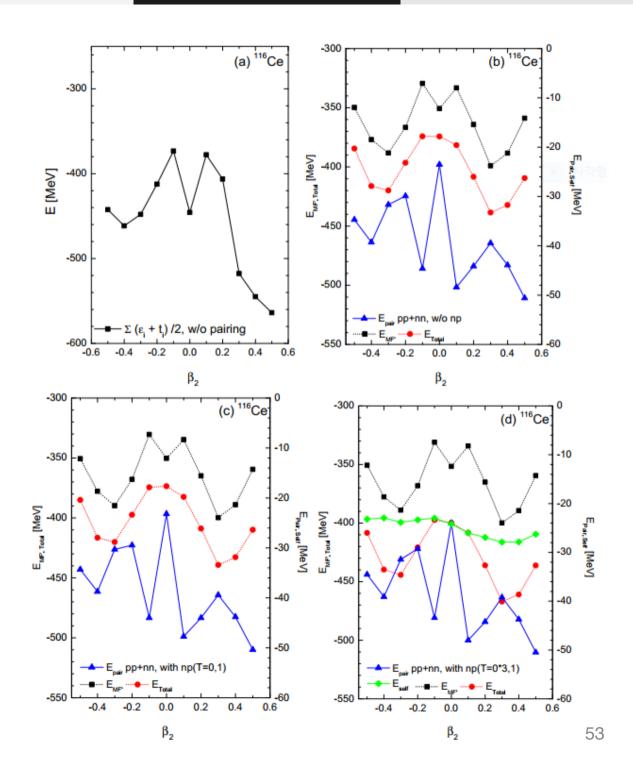
Used parameters in this work.

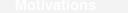

*

*
$$N_{an} = 0$$
 (a b)
* $N_{an} = 5$ (b b)
* $N_{an} = 5$ (c b)
* P c)

Motivations

Formalism

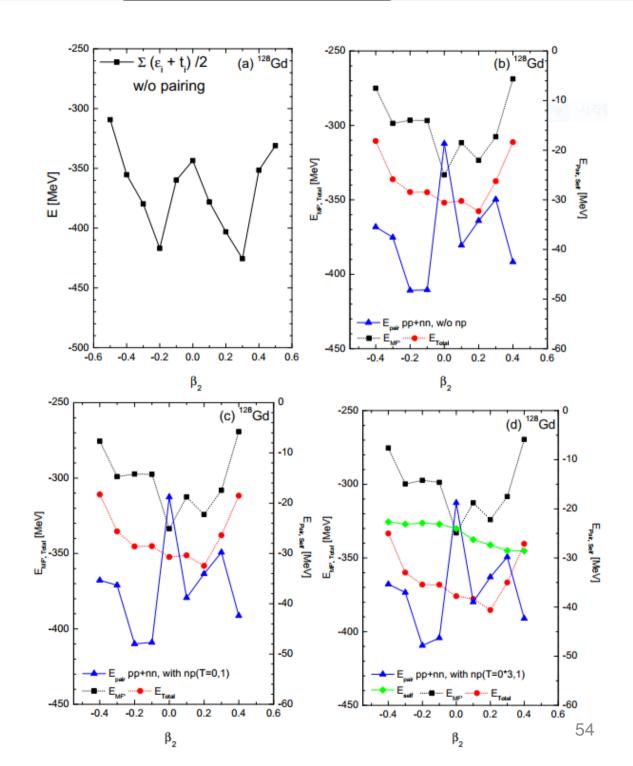



deformed Hartree Fock Bogoliubov (DHFB) transformation,

$$\begin{pmatrix} a_{1}^{\dagger} \\ a_{2}^{\dagger} \\ a_{\bar{1}} \\ a_{\bar{2}} \end{pmatrix}_{\alpha} = \begin{pmatrix} u_{1p} & u_{1n} & v_{1p} & v_{1n} \\ u_{2p} & u_{2n} & v_{2p} & v_{2n} \\ -v_{1p} & -v_{1n} & u_{1p} & u_{1n} \\ -v_{2p} & -v_{2n} & u_{2p} & u_{2n} \end{pmatrix}_{\alpha} \begin{pmatrix} c_{p}^{\dagger} \\ c_{n}^{\dagger} \\ c_{\bar{p}} \\ c_{\bar{n}} \end{pmatrix}_{\alpha}$$

Motivations

ground state E of 116Ce



Formalism

Results

ground state E of 128Gd

Motivations Formalism Results Summary

Two-body interaction

Realistic two body interaction inside nuclei was taken by Brueckner g-matrix, which is a solution of the Bethe-Salpeter Eq., derived from the Bonn-CD potential for nucleon-nucleon interaction in free space.

$$g(\omega)_{ab,cd} = V_{ab,cd} + V_{ab,cd} \frac{Q_p}{\omega - H_0} g(\omega)_{ab,cd}$$

a,b,c,d : single particle states from the Woods-Saxon potential. $V_{ab.cd}$: phenomenological nucleon-nucleon potential in free space.