
Lecture 2: Entropic c-theorem

Abstract : We discuss an entropic c-theorem that was derived by Casini and Huerta [1]. We make comparisons
to Zamolodchikov’s c-theorem [2].

1 Motivation

Crudely speaking, c-theorem is a statement that some kind of information is lost along the renormalization group
flow. First such theorem was proved by Zamolodchikov [2] in 1+1-dimension. An entropic version of this theorem
was proved by Casini and Huerta [1]. The main motivation for us to understand the main argument in Ref. [1],
so that we can apply it in higher dimensions.

But this motivation aside, it is still interesting to compare these two theorems. In both cases, there is some
function that decreases along the renormalization group(RG) flow. However, behavior of the function along the
RG flow, as well as the argument behind the theorem differs. Another interesting fact is that both functions
become the central charge of the theory at the fixed point of the RG flow, despite these differences.

There is a catch in our discussion. Namely, entanglement entropy in quantum field theory is, strictly speaking,
not a very well-defined quantity. However, we will take a point of view that any regulator-independent quantity
will have a well-defined continuum meaning.

2 The ground rule

We consider a Lorentz-invariant quantum field theory. This means that entanglement entropy must obey this
symmetry. If we can assign an entanglement entropy to an interval, the entanglement entropy must be invariant
under not just translation but also on boosts.

S(A) = S(ΛA), (1)

where
ΛA = {Λx|x ∈ A}. (2)

Here Λ can be any element in the Lorentz group.
But in relativistic theories, it makes more sense to ascribe entropy to not just an interval, but a (partial)

Cauchy surface. Intuitively, this is because the initial condition on the surface determines the future and the past
uniquely. A bit more formally, a partial Cauchy surface is a hypersurface which is intersected by any causal curve
at most once.

Figure 1: The blue interval is related to the red interval unitarily. Therefore, their entropies are the same. The
black interval is the lightcone.

Now here comes a nontrivial assumption. We assume that, on every Cauchy surface, one can divide the degrees
of freedom over different intervals, so that one can define a reduced density matrix over every interval. This cannot
be true in relativistic quantum field theories, so the derivation of the c-theorem in this note is heuristic at best.
However, the value of this theorem is that the core idea can be generalized to higher dimensions.
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3 Derivation

Without loss of generality, consider two intervals of length x and x′ < x; see Fig.2. There are a few things to note
here. First, the interval A ∪ B ∪ C is unitarily related to D. Therefore S(A ∪ B ∪ C) = S(D). Second, by the
strong subadditivity of entropy, we have S(AB) + S(BC)− S(B)− S(ABC).
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Figure 2: Choose A,B,C, and D such that the length of B is x′ and the length of D is x.

Now note that the entropy of AB and BC can be related to another interval; see Fig.3. Now these new intervals
can be boosted to an interval on an equal-time slice. So the entropy of both AB and BC must be determined
by the length of this interval. This can be done in a simple calculation in Minkowski space. Consider the green

interval in Fig.3 for example. Its length is
√(

x′ + x−x′

2

)
−
(
x−x′

2

)2
=
√
xx′.
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Figure 3: The entropy of AB is equal to the entropy of the green interval. The entropy of BC is equal to the
entropy of the purple interval.

So we have the following inequality:

2S[
√
xx′]− S[x]− S[x′] ≥ 0, (3)

where S[x] is an entropy of an interval of length x. Let x′ = x̄− ε, x = x̄+ ε. This inequality becomes

2S[x̄− ε2

2x̄
]− S[x̄+ ε]− S[x̄− ε] = −ε2S[x̄]′′ − ε2

x̄
S[x̄]′

≥ 0.

(4)

So we have

S[x]′′ +
1

x
S[x]′ ≤ 0, (5)

which implies that
d

dx

(
x
dS[x]

dx

)
≤ 0. (6)

When the inequality is satisfied with an equality, we have

x
dS[x]

dx
= C (7)
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for some constant C. So S[x] = C log x+ c′ for some constant c′, recovering the famous form for the entanglement
entropy at the fixed point of the RG flow.

The lesson is that there is a function xdS[x]
dx that depends decreases monotonically under the increase of x, which

is interpreted as probing the larger scale. If we are at a fixed point of this flow, then we recover the logarithmic
dependence of the entanglement entropy on the size of the interval. Comparing this formula to the entanglement
entropy of CFT, we conclude that C = c

3 at the fixed point, where c is the central charge of the CFT.

4 Some comments

It is important to note that the derivation of the entropic c-theorem is not rigorous in a mathematical sense.
The reason is that in quantum field theory, entanglement entropy formally diverges. Of course, as usual one
can introduce a regulator and compute regulator-independent quantities. In a sense that is what’s going on here,
because even though the entropy is not a well-defined object, its linear combination that leads to the final inequality
is.

Another comment is that the function xdS[x]
dx is different from Zamolodchikov’s c-function. They coincide at

the fixed point of the RG flow, but generally not along the flow.

5 More comments

A close inspection of the derivation reveals that the we did not have to choose B or D to be on an equal-time
slice. For those, one will end up proving the same inequality. However, we do get something nontrivial out of the
equality condition. That is, we get

S(AB) + S(BC)− S(B)− S(ABC) = 0 (8)

whenever A and C are null-like. It is known that, if strong subadditivity holds with an equality, then we have an
equality for the entanglement Hamiltonian:

HAB +HBC −HB −HABC = 0, (9)

where HX := − log ρX . What does this mean? This means that the entanglement Hamiltonian is invariant under
the deformation in the null direction. Let

HAB −HB = δAHB, HABC −HBC = δAHBC . (10)

Then we have δAδCHB = 0, where A and C were null intervals.
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