
1 Day 1 - Introduction to the transport the-

ory

1.1 Units

• Speed of light: c = 2.99762458× 108 m/s

• Planck constant: ~c = 197.327 MeV fm

• Boltzmann constant: kB = (1/11604.52)eV/K

• Natural unit: ~ = c = kB = 1

• Measure everything with either MeV or fm

• For rough estimates

c ≈ 3× 108 m/s

200 MeV ≈ 1/fm

20 ◦C ≈ (1/40) eV (1)

1.2 Uncertainty relations

• ∆x∆p ≥ ~/2→ 1/2

– Interpretation 1: If a particle is confined within ∆x, the momen-
tum is uncertain by 1/∆x. Same goes for the momentum uncer-
tainty.

– Interpretation 2: When a particle state is created (via a scat-
terings, for instance), its momentum is uncertain until enough
distance is traversed

• ∆t∆E ≥ 1/2

– Interpretation 1: When a particle state is created (vis a scattering,
for instance), its energy is uncertain until enough time is passed

– Interpretation 2: A state (particle) that has a finite life time can-
not have a well defined energy (mass). If the life time is τ , the
energy uncertainty is 1/τ .

– Interpretation 3: An off-shell state with the invariant mass Q lasts
about 1/Q before it starts to radiate

1

1.3 1 and 2 body mechanics

Transport theory is the theory of many body particles. It is a semi-classical
approach to solve many body dynamics. In physics, one can solve one body
problem

F(x, t) =
dp

dt
(2)

to get x(t),p(t) or

i∂tψ(t,x) = Ĥψ(t,x) (3)

where

Ĥ =
p̂2

2m
+ V (x, t)) (4)

to get ψ(t,x). Many such problems admit exact solutions. But most of
such problems do not admit an analytic solution. But I just told you that
they can be solve. So what do I mean by that? I meant “by any means
necessary” – analytical or numerical. When the force depends on on the
distance between the two particles, two body problems can be also solved
by changing coordinates to the center of mass coordinate and the relative
coordinate. For instance, suppose we have the Hamiltonian.

H =
p2
1

2m1

+
p2
2

2m2

+ V (x1 − x2, t) (5)

Let’s see how we transform this to the CM frame and how the dynamics is
affected. We’ll do this here in some detail because we will go to the center
of mass system and then come back to the lab frame all the time when we
do transport calculations, that is, scatterings.

The total momentum of two interacting particle is

P = p1 + p2 (6)

The total mass is

M = m1 +m2 (7)

Hence, the system as a whole is moving with the speed

Vcm =
P

M
=

p1 + p2

m1 +m2

(8)

2

Suppose we move to the system where the system as a whole is at rest, that
is Pcm = 0. How does the Hamiltonian look like? Well, this is easy to achieve
just subtract Vcm from all the velocities:

p1 = p1,cm +m1Vcm

p2 = p2,cm +m2Vcm (9)

Since the total momentum is

p1 + p2 = (m1 +m2)Vcm (10)

we have an important condition that in the CM

p1,cm + p2,cm = 0 (11)

To transform the kinetic energy, square the momentum to get

p2
1 = (p1,cm +m1V1,cm)2

= p2
1,cm + 2m1p1,cm ·Vcm +m2

1V
2
cm (12)

Hence the kinetic energy part becomes

K =
p2
1

2m1

+
p2
2

2m2

+ V (x1 − x2, t)

=
p2
1,cm
2m1

+
p2
2,cm
2m2

+ 2(p1,cm + p2,cm) ·Vcm +
1

2
(m1 +m2)V

2
cm(13)

The 3rd term vanishes since p1,cm + p2,cm = 0. The last term is simply

1

2
(m1 +m2)V

2
cm =

1

2
M(P/M)2 =

P2

2M
(14)

is the CM kinetic energy. The first two terms are a bit tricky. Since p1,cm +
p2,cm = 0,

p2
1,cm = p2

2,cm = p2
r (15)

Then

p2
1,cm
2m1

+
p2
2,cm
2m2

=
p2
r

2

(
1

m1

+
1

m2

)
=

p2
r

2µ
(16)

3

where

µ =
m1m2

m1 +m2

(17)

So finally,

H =
P2

2M
+

p2
r

2µ
+ V (x1 − x2, t) (18)

What about the coordinates? For the total momentum, the speed is

Vcm = P/M

=
p1 + p2

m1 +m2

=
m1ẋ1 +m2ẋ2

m1 +m2

=
d

dt
R (19)

where

R =
m1x1 +m2x2

m1 +m2

(20)

is the CM coordinate. For the second term, the velocity is

v̇r =
pr
µ

=
p1 −m1Vcm

µ

=
1

µ

(
m1ẋ1 −m1

m1ẋ1 +m2ẋ2

m1 +m2

)
=

1

µ

m1m2(ẋ1 − ẋ2)

m1 +m2

=
d

dt
r (21)

where we define r = 1 − 2. Now since the potential only depend on the
difference x1−x2 the forces are only between the two particles. Hence, there
is no external force acting on the system. Hence P is a constant of motion.

4

That is, once we know P, equivalently, Vcm, we can go to the CM frame to
do an easier calculations and then go back to the lab frame. The equations
of motion are

Ṙ =
P

M

Ṗ = 0

ṙ =
pr
µ

ṗr = −∇V (r, t) (22)

In this way, all 2-body problems with no external force reduce to 1-body
problem.

Now go back to the N Newton’s equation of motion F = ma for the 1-
body problem It is a second order differential equation which can be recast
in to two first order ones

dxi

dt
= pi/m

dpi

dt
= F i (23)

You have learned how to solve this problem analytically in your Classical me-
chanics courses. For instance, the Kepler motion or simple harmonic motion.
That’s when F i is simple. In general, this needs to be solve numerically.

OK. So let’s think about solving this numerically. We’ll do it in 1-D,
but generalization is immediate. The easiest way is to use the definition of
derivative

df

dt
=
f(t+ h)− f(t)

h
+O(h) (24)

So the Newton’s equation becomes (we’ll just do 1D)

x[n+ 1]− x[n]

h
= p[?]/m+O(h)

p[n+ 1]− p[n]

h
= F [?] +O(h) (25)

where

x[n] = x(t0 + nh) (26)

5

is the position at time tn = t0+nh. But when should right hand side be eval-
uated? Well, as long as we are making O(h) error, we can use either p[n], F [n]
or p[n + 1], F [n + 1] or any time that is O(h) away from tn. Then ignoring
O(h) errors, the simplest algorithm is the Forward Euler algorithm

x[n+ 1] = x[n] + (p[n]/m)h

p[n+ 1] = p[n] + F [n]h (27)

This is simple because the new value is calculated only with the old values.
Unfortunately, this doesn’t work well. To see that, consider the SHO.

ẍ = −ω2x (28)

This becomes

x[n+ 1] = x[n] + h(p[n]/m)

p[n+ 1] = p[n]− hkx[n] (29)

We know the exact solutions are e±iωt where ω2 = k/m. So at t = tn, the
exact solution is (choosing eiωt),

xexact[n] =
(
eiωh

)n
(30)

pexact[n] = imω
(
eiωh

)n
(31)

So let’s try

x[n] = ξn (32)

p[n] = imωξn (33)

The discrete equations become

ξ = 1 + ihω (34)

The magnitude of this expression is

|ξ| =
√

1 + (hω)2 > 1 (35)

Hence as time grows, x[n] will grow indefinitely while the exact solution is
bound by 1. This is, of course, bad. This means that the energy is not
conserve. It will grow indefinitely.

6

What if we try the Backward Euler?

x[n+ 1] = x[n] + (p[n+ 1]/m)h

p[n+ 1] = p[n] + F [n+ 1]h (36)

Using the same ansatz for the SHO, one can now show that

ξ =
1

1− iωh
(37)

whose magnitude is

|ξ| = 1√
1 + (ωh)2

(38)

This is good in the sense that this is bound. But this is also bad because the
energy is not constant. It will eventually go to zero.

OK. Both are bad. But wait. there is one more trick we can try. Note
that

f(t+ h)− f(t)

h
= ḟ(t) +O(h) (39)

but the same expression is

f(t+ h)− f(t)

h
= ḟ(t+ h/2) +O(h2) (40)

So if we evaluate the right hand side at tn+1/2 = t0 + (n + 1/2)h, then we
actually have a second order accurate method! So suppose we use the Half-
point method

x[n+ 1] = x[n] + h
p[n+ 1/2]

m
p[n+ 1] = p[n] + hF [n+ 1/2] (41)

Again, let x[n] = ξn, p[n] = imωξn to get

ξ = 1 + iωhξ1/2 (42)

7

which has the solution

ξ1/2 =
ihω ±

√
4− (hω)2

2
(43)

One can easily see that

|ξ1/2| = (hω)2 + (4− (hω)2)

4
= 1 (44)

That’s good! The trouble, however, is that we need to evaluate the right
hand side at the half-point.

To do better, Recall from the Freshman physics courses that when the
acceleration, equivalently the force, is constant, the solution is

x(t) = x(0) + v0t+
a

2
t2 (45)

Now consider going from tn = t0 + nh to tn+1. Then as long as h is small,

x[n+ 1] = x[n] + v[n]h+ a[n]
h2

2
+O(h3) (46)

For the momentum, the exact expression is

p[n+ 1] = p[n] +

∫ tn+1

tn

dt F (t) (47)

Using the Trapezoid rule, we can approximate

p[n+ 1] = p[n] + h
F [n] + F [n+ 1]

2
+O(h3) (48)

Hence, as long as F (x, t) does not depend on p, this completes our algorithm.
Namely, the Velocity Verlet Method

x[n+ 1] = x[n] + h(p[n]/m) + (h2/2)(F [n]/m)

p[n+ 1] = p[n] + h
F [n] + F [n+ 1]

2
(49)

This method is known to conserve energy.
If the force depends on the momentum then things get a bit complicated,

but fortunately, we won’t have to deal with that.
OK. So far so good. But as long as we have more than 2 particles, trouble

starts. The system of 3 particles, for instance, cannot be solve analytically.
Furthermore, such system is known to be chaotic meaning that a small error
can exponentially grow. Hence, no matter how accurate your numerical
method is, it is bound to deviate from the solution if you run it long enough.

8

1.4 The Vlasov equation

Now if you have many particles, however, things get a bit easier again since
you can use statistical ideas. The simplest equation of motion for many body
system is

ẋi = pi/mi

ṗi = Fext(xi) (50)

where Fext(x) is the external force as opposed to the internal force between
the particles. Now define the phase space density

f(t,x,p) =
N∑
i=1

δ(x− xi(t))(2π)3δ(p− pi(t)) (51)

then

∂tf(t,x,p) =
N∑
i=1

(∂tδ(x− xi(t))) (2π)3δ(p− pi(t))

+
N∑
i=1

δ(x− xi(t))(2π)3 (∂tδ(p− pi(t))) (52)

Noting

∂tδ(x− xi(t)) = (−ẋi(t)) · ∇xδ(x− xi(t)) (53)

and similarly for δ(p− pi),

∂tf(t,x,p) =
N∑
i=1

((−ẋi · ∇xδ(x− xi(t))) (2π)3δ(p− pi(t))

+
N∑
i=1

δ(x− xi(t))(2π)3 (−ṗi · ∇pδ(p− pi(t)))

= −(p/m) · ∇xf(t,x,p)− Fext(x) · ∇pf(t,x,p) (54)

the resulting equation

∂tf(t,x,p) + (p/m) · ∇xf(t,x,p) + Fext(x) · ∇pf(t,x,p) = 0 (55)

9

is known as the Vlasov equation.
Now what if the system only has internal forces? Can we still apply this

formula? Well, we can’t apply it exactly since ṗi’s are not the same any
more. Now, trace back why this is so. This is so because when only the
internal interactions exist. Consider again the simplest case: The potential
between each particle is the same V (xi − xj) = V (xj − xi). The equation of
motion is

ṗi = −∇xi

∑
j 6=i

V (xi − xj)

= −∇xi

∫
d3y V (xi − y)

∑
j 6=i

δ(y − xj)

= −∇xi

∫
d3y V (xi − y)

(∫
d3q

(2π)3
f(t,y,q)− δ(y − xi)

)
(56)

Now in the case of many particles, the single δ-function term can be ignored
and we can define the average total force

〈F(x)〉 = −∇x

∫
d3y

d3q

(2π)3
V (x− y)f(t,y,q) (57)

Using this,

∂tf = −(p/m) · ∇xf +
N∑
i=1

δ(x− xi(t))(2π)3 (−ṗi · ∇pδ(p− pi(t)))

= −(p/m) · ∇xf − 〈F(x)〉 · ∇ff (58)

to finally get

∂tf(t,x,p) + (p/m) · ∇xf(t,x,p) + 〈F(x)〉 · ∇pf(t,x,p) = 0 (59)

These two equations constitute the “mean-field approximation”.
Are we done, then? Not really. Mean-field approximation is nice, but

it still assumes some un-physical things. The most important one is our
assumption of point particles. Real particles are not point particles. They
have a size.

The size of a particle is encoded in the “hard core” part of the potential
energy. Think about electrically charge billiard balls. If none of them are

10

close by, then the system can be regarded as a system of point particles
with Coulomb interactions. Then one can use the mean-field approximation.
However, as soon as two particles are in contact, the notion of “average force”
fails because they must now scatter and that event is independent of what
other parts of the system is doing.

The mean-field equation should be then modified. How does one modify
it? Well, let’s have a look at the concept of the phase space density again.

(x, p)

∆p

∆x

(x− , p) ∆ x(x+ , p)x∆

∆p(x, p−)

(x, p+)∆p

Since ∫
d3x

∫
d3p

(2π)3
f(t,x,p) = N (60)

one can say that f(t,x,p) is the number of particles per unit spatial volume
and per unit momentum volume at time t.

Now consider a small cell in the phase space shown above. How can the
number of particles in the cell change? Well, two ways so far. One, non-
zero velocity will move particles from one x position to its neighbor. Two,
non-zero acceleration (force) will move particles from one p to its neighbor.
Now we add the third way: Two particles in a cell can undergo a collision
which changes their momenta from p1,p2 to p3,p4. Unlike the acceleration
case which can be made arbitrarily smooth by taking smaller and smaller
∆t, the scattering process is not continuous. It doesn’t matter how small ∆t
is, once a scattering happens, the two particles jump from one momentum

11

box to another. That’s fundamentally different than the picture of a smooth
force acting on a particle trajectory.

2 Day 2

2.1 Quantum mechanical transition rate

So how does on describe this process? Well, we do it probabilistically. The
rate with which scattering p1 +p2 → p3 +p4 happens depend on the density
of particle p1 and p2 at x, the conditional probability that given the initial
state p1,p2) the final state will be (p3,p4). To get the total rate, one then
needs to integrate over momenta.

Recall Fermi’s Golden rule for the transition rate

Γi→f =
∣∣∣〈f |Ĥint|i〉

∣∣∣2 (2π)ρ(E) (61)

where ρE is the density of state for the final states.
Using this, the rate with which a cell at (x,p) loses its particles is given

by

Γloss(t,p,x) =
Sp3p4
2Ep

∫
d3p2

(2π)32E2

∫
d3p3

(2π)32E3

∫
d3p4

(2π)32E4

|Mpp2↔p3p4|
2

× (2π)4δ(p+ p2 − p3 − p4)f(t,x,p)f(t,x,p2) (62)

where Mpp2↔p3p4 is the transition matrix element. The gaining rate is

Γgain(t,p,x) =
Spp2
2Ep

∫
d3p2

(2π)32E2

∫
d3p3

(2π)32E3

∫
d3p4

(2π)32E4

|Mpp2↔p3p4|
2

× (2π)4δ(p+ p2 − p3 − p4)f(t,x,p3)f(t,x,p4) (63)

where I’ve pulled out the energy factors from the scattering matrix element to
make it relativity-friendly. Here the S factors take care of identical particles
in the final state. Assuming that the particles are all identical, we then have
the full Vlasov-Boltzmann equation

〈F〉(x) = −∇x

∫
d3y

d3q

(2π)3
V (x− y)f(t,y,q) (64)

∂tf(t,x,p) + (p/m) · ∇xf(t,x,p) + 〈F(x)〉 · ∇pf(t,x,p) = Γgain(t,p,x)− Γloss(t,p,x)(65)

12

Our task is to simulate this.
In the formula above, Mpp2↔p3p4|2 is the scattering matrix element. This

is right, but it is not the most convenient form. To get the more convenient
form, let’s look at the definition of scattering cross-section. If you look up
the definition of a cross-section, you will find

dσ =
Sp3p4

4EpE2|vrel|
d3p3

(2π)32E3

d3p4
(2π)32E3

|Mpp2↔p3p4|
2 (2π)4δ(4)(p+ p2 − p3 − p4)(66)

Comparing with the rate formula, one can easily see

Γloss = f(t,x,p)
1

2Ep

∫
d3p2

(2π)32E2

∫
dσ |vrel| f(t,x,p2) (67)

Note that dσ has 6 integrals to do but has a 4-d energy-momentum conserving

delta-function. Hence, 4 of the 6 integrals can be done. Therefore

∫
dσ is

really a 2-D integral. We can choose the remaining 2 variables to be the solid
angle φ, θ. In the CM frame,

φ
p1

p3

p4

θ p2

Hence, we can write

Γloss =
f(t,x,p)

2Ep

∫
d3p2

(2π)32E2

∫
dΩ

dσ

dΩ
|vrel| f(t,x,p2) (68)

with the understanding that the last integral is best evaluated in the CM
frame.

2.2 Thermal equilibrium

The Vlasov-Boltzmann equation is in general impossible to solve analytically.
That’s why we need numerical simulations. There is one solution, however,

13

that one can obtain. It’s the static solution. Suppose that there is no long
range forces so that F = 0 and further suppose that the solution does not
depend on (t,x). Then the left hand side is automatically zero. To make th
right hand side vanish, we need

f(p3)f(p4)− f(p)f(p2) = 0 (69)

under the condition that the energy-momentum is conserved. The only way
this can happen is that

f(p3)f(p4) = F (p3 + p4) (70)

for some other function F . Then since p+ p2 = p3 + p4, Eq.(??) is automat-
ically satisfied.

The only function that does this is exponential:

f ∝ exp(−βuµpµ) (71)

where uµ represents the CM velocity of the whole system.
So here is a test of any numerical program that is supposed to solve the

Boltzmann equation: Start with very non-thermal initial condition and see
if they eventually settle to the thermal distribution. In the NR case and in
the frame where u = 0,

fth(p) = N e−β
p2

2m (72)

Here N is the normalization factor that fixes the spatial density. Most com-
monly, this factor is written as

N = eβµ (73)

where µ is the chemical potential.

2.3 Boltzmann-Uehling-Uhlenbeck model

To make it simple, we will not consider only the scatterings. In that case,
the equation to solve is just the Boltzmann equation

pµ∂µf(t,x,p) =

1

2

∫
d3p2

(2π)32E2

∫
dΩ

dσ

dΩ
|vrel| (f(t,x,p3)f(t,x,p4)− f(t,x,p)f(t,x,p2))

(74)

14

using p0 = Ep ≈ m + p2/2m and Epv = p and pµ + pµ2 = pµ3 + pµ4 . So far
the only quantum effect included is the symmetry factor for the identical
particles. But if the system is composed of identical particles, then the sym-
metry factor is not the only effect. If the particles are Fermions, there is the
Pauli-blocking. If the particles are Bosons, there is the Bose-enhancement.
These can be taken into account as follows. When colliding Fermions, each
final state gets (1− f(t,x,p). Hence

f(p3)f(p4)− f(p)f(p2) (75)

becomes

f(p3)f(p4) (1− f(p)) (1− f(p2))− f(p)f(p2) (1− f(p3)) (1− f(p4)) (76)

For Bosons, each final state gets (1 + f(t,x,p)) so that

f(p3)f(p4)− f(p)f(p2) (77)

becomes

f(p3)f(p4) (1 + f(p)) (1 + f(p2))− f(p)f(p2) (1 + f(p3)) (1 + f(p4)) (78)

With this modification, the resulting equation

pµ∂µf(t,x,p) =

1

2

∫
d3p2

(2π)32E2

∫
dΩ

dσ

dΩ
|vrel|(

f(t,x,p3)f(t,x,p4)(1± f(t,x,p))(1± f(t,x,p2))

− f(t,x,p)f(t,x,p2)(1± f(t,x,p3))(1± f(t,x,p4))
)

(79)

is called the Boltzmann-Uehling-Uhlenbeck equation.
Now let’s consider equilibrium. For Fermions, we need

f(p3)f(p4) (1− f(p)) (1− f(p2)) = f(p)f(p2) (1− f(p3)) (1− f(p4)) (80)

To solve this, let’s set

1− f(p) = f(p)g(p) (81)

15

Then the condition becomes

g(p)g(p2) = g(p3)g(p4) (82)

which we know the solution

g(p) = e±β(uµp
µ−µ) (83)

and

f(p) =
1

g(p) + 1
(84)

If one demands that at low energy f(p) go back to the Boltzmann distribution
to get the Fermi-Dirac distribution

f(p) =
1

1 + eβ(Ep−µ)
(85)

in the rest frame where u = 0. For Bosons, let

1 + f(p) = f(p)g(p) (86)

then again we have g(p)g(p2) = g(p3)g(p4) with the solution g(p) = e±β(uµp
µ−µ).

Solving for f(p), we get

f(p) =
1

g(p)− 1
(87)

which yields the Bose-Einstein distirubtion

f(p) =
1

eβ(E−µ) − 1
(88)

2.4 Numerical Test of thermalization

You should have received a copy of the test programs. If you unzip sim3d.zip,
it will create a subdirectory named 3DSim. In that directory, you will find
the source codes in C and the makefile. The makefile is pretty generic and it
does not depend on any outside library. Hence, if you have gcc just typing
make will create the executable named sim3d.

In the same directory, you will find a subdirectory named Runs. CD to
Runs and you will find some example input files. On the command line, try

16

../sim3d input.typical output.file

If your compilation went well, it should run and produce a bunch of output
files.

The file named input.typical contains the input data which should not
change during the course of similation. It currently has these parameters:

Time_step_choice_Given_0_Calc_1 0

Final_time_choice_Given_0_Mft_1 0

Initial_Condition_Pfixed_1_Thermal_2_Elliptic_3 1

Time_step_size 1.0

Final_time 200.0

Average_number_of_collisions 2

Ellipse_z_max 5

Ellipse_y_max 3

Ellipse_x_max 5

RandomSeed 123456789

CrossSection_in_mb 10

Mass_in_MeV 140

Pmax 14

Pz_up 10

Pz_down 0

Py_up 10

Py_down 0

Px_up_in_MeV 10

Px_down_in_MeV 0

Z_up 10

Z_down -10

Y_up 10

Y_down -10

X_up 10

X_down -10

Initial_time 0.0

Number_of_particles 1500

EndOfData

This a hash-table. The first “key-word” without any white space is the
description of the parameter and the second column is the value of the pa-
rameter. The read-in function looks for the key-word and takes the value
next to it. Hence, the order does not matter. You can move the lines up and

17

down but don’t touch the last line that says EndOfData. You can also write
a comment by writing # at the beginning of a line. The read-in program
ignores that.

The program that reads in this file is in util.c. In this “utilities” file,
you will find this function

char *StringFind(char *file_name, char *st)

{

char *s, *x;

char line[1000];

FILE *input, *tmp_file;

int ind;

static int flag = 0;

if(flag == 0)

{

if(!IsFile(file_name))

{

fprintf(stderr, "The file named %s is absent.\n", file_name);

if(file_name == NULL)

{

fprintf(stderr, "No input file name specified.\n");

fprintf(stderr, "Please specify the input file name. Exiting.\n");

exit(1);

// fprintf(stderr, "Creating a default file named input...\n");

// file_name = char_malloc(80);

// strcpy(file_name, "input");

}

else

{

fprintf(stderr, "Creating %s..\n", file_name);

}

tmp_file = fopen(file_name,"w");

fprintf(tmp_file, "EndOfData\n");

fclose(tmp_file);

}/* if isfile */

flag = 1;

}/* if flag == 0 */

18

input = fopen(file_name,"r");

// allocate

s = char_malloc(100);

x = char_malloc(100);

ind = 0;

while(fgets(line, sizeof line, input))

{

sscanf(line, "%s %s", s, x);

if(line[0] != ’#’)

{

if(strcmp(s, st) == 0)

{

free(s);

return x;

}

}

}// while

fclose(input);

if(ind == 0)

{

fprintf(stderr, "StringFind: %s not found in %s.\n", st, file_name);

printf("Enter %s = ", st);

scanf("%s", x);

printf("Rewriting %s...\n", file_name);

ReWriteString(file_name, st, x);

free(s);

return x;

}

else

{

fprintf(stderr, "StringFind: This should not be reached.\n");

return NULL;

}

19

}/* StringFind */

This is the main function and it actually reads in the value of the parameter
as a character string. There are few other functions, DFind, IFind etc that
specifically reads in the double precision value, integer value, etc.

In main.c, ReadInParams, you will see that these functions are used as
follows

void ReadInParams(char *input)

{

double t0, temperature, lmfp, dens, volume;

long int il_var;

FILE *input_file;

FILE *output_file;

// we do everything in fm

fprintf(stderr, "ReadInParams: Input file is %s\n", input);

input_file = fopen(input, "r");

output_file = fopen("params.dat", "w");

COM_DATA.num_ptcls = IFind(input, "Number_of_particles");

fprintf(stderr, "number of particles = %d\n", COM_DATA.num_ptcls);

.

.

.

}

To make the input file, you have some choices. You can call the executable
with just the name of the non-existent input file. In that case, each call to
DFind, IFind, etc will ask you the value and add a line to the named file.
If you have an incompletely filled out input file, again whenever the Find

functions cannot locate the asked-for value, it will ask and create a line in
the input file. If you have an already filled-out input file, it will just read in
the values and do not bother you.

Now, the input data are defined in data.h

20

#ifndef DATA_H

#define DATA_H

#ifndef hbarc

#define hbarc (197.3)

#endif

typedef struct init_data

{

int num_ptcls;

// x ranges

// x_down[0] is the start time

// x_up[0] is the end time

double x_down[4];

double x_up[4];

// p ranges

// p_down[0] and p_up[0] are energy slots

double p_down[4];

double p_up[4];

double p_max;

// mass

double mass;

// cross-section

double sigma;

double r0;

// random seed

long int iseed;

// initial condition choices

int init_choice;

// epllipse params

double ax;

21

double ay;

double az;

// time step size

double h;

double dt;

int time_step_choice;

// number of time step

int num_steps;

// mean free time

double t_mft;

// maximum speed in 1-d

double v_max;

// temperature

double temperature;

double ave_num_coll;

// final time choice

int final_time_choice;

} InitData;

InitData COM_DATA; // static common data

int COM_IND; // temp

#endif

If you want to add another input parameter, all you have to do is add that to
the structure InitData and put another line in the function ReadInParams.
For instance, you can specify the name of the output file by putting in an
entry in InitData

typedef struct init_data

22

{

.

.

.

char *output_file_name;

} InitData;

and then in the ReadInParams

void ReadInParams(char *input)

{

.

.

.

COM_DATA.output_file_name = StringFind(input, "Output_file_name");

.

.

.

}

then compile again. Now next time you run sim3d, it will ask for the name
and add it in to the input file.

Let’s take a look at the main function

int main(int argc, char **argv)

{

char *input;

char *output;

Particle *ptcls;

if(argc != 3)

{

fprintf(stderr, "Must provide input and output file names.\n");

exit(0);

}

input = argv[1];

output = argv[2];

23

fprintf(stderr, "main: Program name is %s\n", argv[0]);

fprintf(stderr, "main: Input file is %s\n", input);

fprintf(stderr, "main: Output file is %s\n", output);

fprintf(stderr, "main: Removing all previous data files...\n");

system("rm -f *.dat");

ReadInParams(input);

ptcls = (Particle *) malloc(sizeof(Particle)*(COM_DATA.num_ptcls));

Initialize(ptcls);

PrintParticles(ptcls, "init_ptcls.dat");

BinP(ptcls, "initial_p.dat");

PrintParticlesTwoLayers(ptcls, "init_ptcls_l.dat","init_ptcls_u.dat");

Evolve(ptcls, output);

PrintParticles(ptcls, "fin_ptcls.dat");

BinP(ptcls, "final_p.dat");

PrintParticlesTwoLayers(ptcls, "fin_ptcls_l.dat","fin_ptcls_u.dat");

return 1;

}// main

Simple, isn’t it. This is how you should try to structure your programs. The
function main is like the list of contents for a book. It only lists “sections”.
If you go to the one of the “sections”, that function should only list the
“subsections”. Unless the programming task it really simple, it is rare that
you actually need to implement anything at the “section” level. The “sub-
section” level may contain some actual implementations, but most likely a
function at this level will contain only the list of “subsubsection” and so on.
Actual numerical work should be done functions in the “subsubsection” level
and below.

Now, the functions that actually do something should be short and it
should do one thing and one thing only and it must do it as efficiently and
thoroughly as possible. This is the original UNIX programming philosophy -
You first create small tools. You then assemble small tools to make a bigger
tool, then you assemble the bigger tools to make yet bigger tools, ... There

24

are good points and bad points to this philosophy. The good points are
that your program will be easy to read as long as you give your functions
very descriptive names and it will be easy to maintain/modify/improve your
code since everything is as modula. The bad things about this approach is
that it is not easy to optimize your code in this way. It will be fast if you
noticed the “as efficient as possible” part above, but it won’t be the fastest
possible. However, I find that I make much less coding mistakes following
this philosophy.

Now, let’s run some test cases. If you run sim3d with the provided
input.typical, it will do 100 time steps. Let’s change that. First copy
input.typical to input so that we keep the example intact. In input,
change Final_time 100 to Final_time 20 and run ../sim3d input output.dat.
This produces a file named final_p.dat which contains the distribution
dN/p2dp of the simulated particles and also the functional form of the corre-
sponding thermal distribution. You will see that the program report that the
average number of collisions is much less than 1 and the calculated distribu-
tion is not quite thermal. Now increas Final_time to 100 and do it again. It
will take a bit longer, but this time the average number of collisions is about
1 and the distribution looks more like the thermal although there still is a
strong remnant of the initial distribution. Increase Final_time yet again to
200 and run it. You will now see that the number of collisions has increased
to about 2 and the distribution looks more or less thermal although the first
few bins are off. OK. On to Final_time 300. Note the number of collisions.
Is that what you would have expected? The distribution will now look much
more thermal but not quite. In fact, it is not easy to get the low p part of the
thermal spectrum by colliding hard-spheres. This is because the collisions
that produces low energy particles is rare furthermore, the to value reported
is calculated as

dN

p2dp
≈ ∆N

p2∆p
(89)

Note the factor of p2 in the denominator. For small p this amplifies the

error. If you plot dN
dp

, the two distribution will look much closer even when
all particles suffered on average only 2 scatterings or so. Try it.

25

2.5 How to solve the Boltzmann equation

The gaining rate is

Γgain(t,x,p) =
1

2Ep

∫
d3p2

(2π)32E2

∫
dΩ

dσ

dΩ
|vrel| f(t,x,p3)f(t,x,p4) (90)

with the understanding that pµ + pµ2 = pµ3 + pµ4 .
How do you simulate this? Well, we want to use particles. That’s where

scattering cross-section is useful. To think about it, we first need to know
what a cross-section means. The definition of a cross-section is “the effective
area where something happens”.

Let b be the displacement vector between the centers of two colliding
particles. The effective area can be defined as

σ =

∫
d2b P (b) (91)

where P (b) is the probability that something happens at b. Let’s compare
that with the conventional way to define the cross-section. The probability
that something happens when a beam of particle with the beam area A is
incident on a single target is

Pscatt =
Out flux

In flux
(92)

The out-flux is defined as

Out flux =

∫
dS · Jout (93)

and the in-flux

In flux = AJz (94)

The cross-section (the effective area) is then

σ = APscatt

= lim
r→∞

∫
dΩr2 Jr,out

Jz
(95)

using the area element on a sphere

dS = rs sin θdθdφ r̂ (96)

26

and the definition

Jr,out = r̂ · Jout (97)

The differential cross-section is

dσ

dΩ
= lim

r→infty

r2Jr,out
Jz

(98)

The relationship between the out-flux and the cross-section is then

lim
r→∞

r2Jr,out = Jz
dσ

dΩ
(99)

The incident flux is defined as the density of projectile times the speed

Jz = nprojvrel (100)

so that

lim
r→∞

r2Jr,out = nprojvrel
dσ

dΩ
(101)

Recall that this is for a single target particle. If the incident beam is hitting
a group of targets, the total out-flux is given by

lim
r→∞

r2Jr,out =
dσ

dΩ
vrelnprojntargAd (102)

where d is the thickness of the thin target. Now it looks more or less what
is in the loss/gain rate.

This means that to solve the Boltzmann equation, all one has to do is to
simulate particle scatterings. That’s it. So here is the strategy to simulate
this system.

1. We need particle properties such as the mass

2. We need the differential cross-section dσ/dΩ

3. Start from an initial configuration of particles

4. Using the total cross-section σ =

∫
dΩ(dσ/dΩ), determine scattering

pairs

5. Determine the final states using dσ/dΩ

6. Continue

27

3 Day 3

3.1 Relativistic Thomas Fermi Approximation

Our main reference is PRC 46 No 5, 1797 (1992) by Von-Eiff and Weigel For
details, read the paper.

Main idea
The main idea is simple. The protons and neutrons inside a nucleus are bound
because they extert forces on each other. However, dealing with A(A− 1)/2
pairs of forces individually is too complicated. Here A is the total number of
protons and neutrons. Collectively they are called the nucleons. One way to
simplify the calculation is to use the idea of the average potential. That is,
each nucleon only feels the average force and this average force is common
to all.

This technique called the Thomas-Fermi approximation was originally
developed for the atomic electron system. When an atom has N electrons,
the Hamiltonian operator is given by

Ĥ =
N∑
i=1

p̂2
i

2me

+
∑
i>j

VCoul.(ri − rj) +
N∑
i=1

Vext(ri) (103)

where VCoul.(ri − rj) is the Coulomb potential between the i-th electron and
the j-th electron and Vext(ri) is the Coulomb potential between the i-th
electron and the nucleus. This is a very complicated problem and solving
it exactly is out of question (even numerically) for more than a handful of
electrons.

To have some understanding of this complicated system, Fermi developed
a method that is a judicious mixture of classical and quantum mechanics. It
goes as follows. The charge density of this system is made up of the electron
density, which in turn is given by the wavefunctions

ρC(r) = −eρN(r) = −e
N∑
i=1

e|ψi(xi)|2 (104)

This then determines the electric field according to the Gauss law

∇2A0 = −ρC = eρN (105)

28

Now we also know that electrons are Fermions. Hence, they obey Pauli
exclusion principle and that means that each energy level can hold only up
to 2 electrons. Given the number of electrons, then there is a highest quantum
energy level which is filled and above it is empty. This energy level is called
the Fermi energy µF which is basically the chemical potential. Recall that
the chemical potential for a system is defined as the energy you need to put
a particle into that system.

For an electron at the position r, the potential energy it feels is then
−eA0(r). Total energy of course is made up of the potential energy and the
kinetic energy. For any electron at any position r, the maximum energy it can
have is the Fermi energy µF which implies that there is a maximum kinetic
energy. For the maximum kinetic energy an electron can have at r, consider a
free gas of electrons with the density ρN . In that case, the maximum kinetic
energy is given by the Fermi energy of free electros. One can show that the
corresponding maximum momentum pF is related to the density

ρN =
p3F
3π2

(106)

In Thomas-Fermi approximation, this relationship is promoted to be valid
locally

pF (r) =
(
3π2ρN(r)

)1/3
(107)

which can be thought of as a first approximation.
Combined, we then have

µF =
p2F (r)

2me

− eA0(r) + Vext(r)

=
(3π2ρN(r))2/3

2me

− eA0(r) + Vext(r) (108)

which can be re-expressed as

pF (r) =
√

2me(µF + eA0(r)− Vext(r)) (109)

That is, given A0(r), Vext(r) and a global constant µF , we can calculate the
density as

ρN(r) =
p3F (r)

3π2
(110)

29

The electric potential itself is determined by the density

∇2A0(r) = eρN(r) (111)

And the chemical potential must satisfy

N =

∫
d3r ρN(r) (112)

where the prefactor 2 comes from the spin degeneracy. Solving these three
equations self-consistently make up the Thomas-Fermi approximation.

To solve the equations, one can use the following iteration procedure.

1. Start with an initial guess for the density ρnowN (r) that satisfies Eq.(112).

2. Calculate the potential A0
now(r) with ρnowN (r) by solving the Gauss law

Eq.(111).

3. Use Eq.(108) to calculate the next ρnextN (r) with an initial guess of µF

ρnextN (r) =
p3F,next(r)

3π2
(113)

where

pF,next =
√

2me(µF + eA0
now(r)− Vext(r)) (114)

4. Adjust µF so that Eq.(112) is satified.

5. Compare ρnowN (r) and ρnextN (r). If they have converged, then a solution
is found. If not, then set ρnowN (r) = ρnextN (r) and go back to step 1.

That’s for an atomic system. Now consider a nucleus. First, it is made
up of two different kinds of particles, protons and neutrons. Second, there is
no center providing the external potential. Nevertheless, it still is a quantum
system made up of fermions with interactions between them.

What about the force? There certainly is Coulomb interaction between
the protons. There also must be nuclear forces that holds the nucleus to-
gether. So we postulate 3 additional kind of potentials. There is a scalar
potential satisfying

(∇2 −m2
σ)σ = −gσρS (115)

30

where ρS(r) is the scalar density we will shortly specify. There is also nuclear
potential

(∇2 −m2
ω)ω = −gωρB (116)

where ρB is the sum of the proton density and the neutron density (the baryon
density). These two forces are isospin (a precise way of distinguishing proton
and neutron) blind. The following, however, isospin dependent:

(∇2 −m2
ρ)ρ = −gρρ3 (117)

where ρ3 is the difference between the proton density and the neutron density.
Finally there is the Coulomb potential

∇2A0 = −eρp (118)

which influence only the protons. Here mσ,mω,mρ are the masses of the
mesons that mediate the forces and gσ, gω, gρ are the coupling constants.

Since we are dealing with an atomic nucleus, the relativistic effects cannot
be ignored. That means we must use the full relativistic expression for the
energy.

E =
√

p2 +m2 + V (r) (119)

We know what the potential energy due to the Coulomb interaction is. It’s
the time-component of the 4-vector potential eA0(r), but only for the protons.
For other forces, the ω and ρ fields should also be regarded as the time-
component of the 4-vector meson fields. Hence,

Vp(r) = eA0(r) + gωω + gρρ (120)

for the proton and

Vn(r) = gωω − gρρ (121)

for the neutron. Note that ρ couples differently to proton and neutron as it
can distinguish the two. The positive coupling constant here implies repulsion
and the negative one attraction. For instance, the potential for the proton
is purely repulsive. So where does the attraction that holds the nucleus

31

together come from? It comes from the scalar interaction. One can show
that the role of the σ field is to change the effective mass

m∗(r) = m− gσσ(r) (122)

Again, since they are Fermions, there is the Fermi energy µp and µn for
protons and neutrons, respectively. In analogy of the electron case, they are
given by

µp =
√
pFp(r)

2 +m∗p(r)
2 + Vp(r)

=
√
pFp(r)

2 +m∗p(r)
2 + eA0(r) + gωω + gρρ (123)

and

µn =
√
pFn(r)2 +m∗n(r)2 + Vn(r)

=
√
pFn(r)2 +m∗n(r)2 + gωω − gρρ (124)

The Fermi momenta pFp,n are related as before to the densities

ρp(r) =
pFp(r)

3

3π2
(125)

ρn(r) =
pFn(r)3

3π2
(126)

and the Fermi energies (chemical potentials) must satisfy the constraints

Z = 4π

∫ ∞
0

dr r2 ρp(r) (127)

(A− Z) = 4π

∫ ∞
0

dr r2 ρn(r) (128)

The scalar density is defined to be

ρS(r) = 2

∫
d3pp
(2π)3

m∗p(r)

Epp
θ(pFp(r)− pp) + 2

∫
d3pn
(2π)3

m∗n(r)

Epn
θ(pFn(r)− pn)

=
m∗p(r)

3

2π2

(
pFp(r)EFp(r)

m∗p(r)
2
− ln

(
pFp(r) + EFp(r)

m∗p(r)

))
+
m∗n(r)3

2π2

(
pFn(r)EFn(r)

m∗n(r)2
− ln

(
pFn(r) + EFn(r)

m∗n(r)

))
(129)

32

where

EFp,n =
√
pFp,n(r)2 +m∗p,n(r)2 (130)

The equation of motion for the σ field is

(∇2 −m2
σ)σ = −gσρS (131)

Hence, obtaining σ is not just a matter of inverting the KG operator since the
source also contains σ itself. This equation needs to be solved self-consistently
by iteration.

3.2 Iteration to solve for the nuclear densities

So the iteration process should look like the following. We will simplify the
problem by looking only for the spherically symmetric solution. That is, all
functions are functions of r = |r| only.

1. Start with initial guesses of ρp(r) and ρn(r).

2. Calculate the electric potential A0, ω and ρ.

3. Calculate the initial σ(r)

4. Calculate pFp,n(r) from ρp(r) and ρn(r). and calculate the scalar density
ρS(r).

5. Calculate σ(r).

6. Get the next ρp(r) and ρn(r) using Eqs.(123) – (126) and adjusting µp
and µn to satisfy Eqs.(158) and (159).

7. Check convergency by comparing the old ρp,n and the new ρp,n. If the
difference is larger than the set tolerance level, then go back to step 2. If
the difference is within the set tolerance level, then stop the calculation
and output the calculation.

33

3.3 Units

Before we start to build up our program, let’s first talk about the units. In
the nuclear world, the most natural length unit is 10−15 m or a femto-meter,
or a fermi, denoted as fm. That’s the size of a proton or a neutron. The
natural mass unit (energy unit) is GeV/c2. But most of times, /c2 is tacitly
understood and we just use GeV. For instance, the mass of a proton is almost
1 GeV (∼ 0.94 GeV).

In writing our KG equation as

(∇2 −m2)φ = −ρ (132)

without any factors of ~ and c, we are already assuming that we use the
“natural unit” where ~ = c = 1 so that mass, momentum, energy all have
the same unit and since

~c = 0.19732697 fm GeV (133)

the inverse length also have the same unit. Conceptually this is all good. But
in practice, one needs to choose whether everything is going to be measured
with the length unit fm or the energy unit GeV. Either one is fine, but one
does need to choose one and stick with it. Since our problem is to find proton
and neutron densities as a function of r, it is perhaps more natural to use
the length unit to measure everything. Let’s do that.

So when a dimensionful quantity is input, it must be converted to the
our unit system. For example, the proton mass in GeV is (We don’t need to
bother with c just yet. Those will (and must) be put back later.)

mp = 0.93827204 GeV (134)

As soon as this is read in, it should be converted

mp ← mp/hbarc (135)

where hbarc = 0.19732697. That is, in the unit of 1/fm, the proton mass is

mp = 0.93827204/0.19732697 = 4.7549103 (136)

in our numerics. All mass, momentum and energy parameters should be
treated the same way. All length parameters should be entered in fm. In this
way, our densities we calculate will be automatically in the right unit (fm−3)
without any further conversion.

34

3.4 Input parameters

Input parameters such as the mass of a proton remain unchanged during the
whole calculation. It is therefore a bit silly to pass them to any function as
arguments. Hence, these static input parameters can be declared as common
variables. It is a good practice to make a list of these static parameters
rather than declaring them one by one as common. Only these static input
parameters should be declared common. I strongly discourage using common
variables for any other purposes.

3.5 Densities and Fermi momentum

Given the proton density ρp(r) and the neutron density ρn(r), the local Fermi
momentum is defined by

ρp,n(r) = gp

∫
d3pp,n
(2π)3

θ(pFp,n − pp,n)

=
p3Fp,n(r)

3π2
(137)

where gp = 2 is the spin degeneracy factor. Equivalently,

pFp,n(r) =
(
3π2ρp,n(r)

)1/3
(138)

The scalar density is then defined by

ρS(r) = gpmp(r)

∫
d3pp
(2π)3

1

Epp
θ(pFp − pp) + gnmn(r)

∫
d3pn
2(π)3

1

Epn
θ(pFn − pn)(139)

where gp = gn = 2 are the spin degeneracy factor and

mp,n(r) = mp,n − gσ(r) (140)

and

Epp,n =
√

p2
p,n +mp,n(r)2 (141)

The scalar density integrals can be analytically worked out

2m

∫
d3p

(2π)3
1

Ep
θ(pF − p) =

m

π2

∫ pF

0

dp
p2

Ep

=
m3

π2

∫ θF

0

dθ sinh2 θ (142)

35

with p = m sinh θ and E =
√
p2 +m2 = m cosh θ. Using

sinh2 θ =
(eθ − e−θ)2

4

=
e2θ + e−2θ − 2

4

=
cosh 2θ − 1

2
(143)

we get

2m

∫
d3p

(2π)3
1

Ep
θ(pF − p) =

m3

π2

∫ θF

0

dθ sinh2 θ

=
m3

2π2

∫ θF

0

dθ (cosh 2θ − 1)

=
m3

2π2

(
sinh 2θF

2
− θF

)
(144)

with

θF = sinh−1(pF/m) (145)

Note that

sinh 2θ = 2 sinh θ cosh θ (146)

Hence

2m

∫
d3p

(2π)3
1

Ep
θ(pF − p) =

m3

2π2

(
pFEF
m2

− θF
)

(147)

The ArcSine function is not readily available in may computer languages.
We can use

eθ = sinh θ + cosh θ

= sinh θ +
√

1 + sinh2 θ (148)

Taking the logarithm and letting x = sinh θ

θ = ln(x+
√

1 + x2) = sinh−1(x) (149)

Hence finally

2m

∫
d3p

(2π)3
1

Ep
θ(pF − p) =

m3

2π2

(
pFEF
m2

− ln

(
pF + EF

m

))
(150)

36

3.6 Chemical potential

In the Thomas-Fermi approximation, the highest energy that a particle can
have is composed of the kinetic energy EpF and the potential energies. The
potential energies are provided by the scalar field σ, and the vector fields A0,
ω0 and ρ00.

From Von-Eiff and Weigel we follow, this is given by

µp = EpFp (r) + eA0(r) + gρρ
0
0(r) + gωω

0(r) (151)

µn = EpFn (r)− gρρ00(r) + gωω
0(r) (152)

The way this is interpreted is this: Given µp,n, calculate the densities. That
is, given µp,n we get the Fermi energy

EpF,p(r) = µp − eA0(r)− gρρ00(r)− gωω0(r) (153)

EpFn (r) = µn + gρρ
0
0(r)− gωω0(r) (154)

then we can get the Fermi momentum through

EF =
√
p2F +m2 (155)

and once we know Fermi momentum, we can calculate the density

ρ =
p3F
3π2

(156)

In all this, the mass used is always the effective mass

mp,n(r) = mphys
p,n − gσσ(r) (157)

The chemical potentials must satisfy

Z = 4π

∫ ∞
0

dr r2 ρp(r) (158)

(A− Z) = 4π

∫ ∞
0

dr r2 ρn(r) (159)

The initial σ field is given by

σ(r) = gσρS(r)/m2
σ (160)

37

where the scalar density is defined to be

ρS(r) = 2

∫
d3pp
(2π)3

m∗p(r)

Epp
θ(pFp(r)− pp) + 2

∫
d3pn
(2π)3

m∗n(r)

Epn
θ(pFn(r)− pn)

=
m∗p(r)

3

2π2

(
pFp(r)EFp(r)

m∗p(r)
2
− ln

(
pFp(r) + EFp(r)

m∗p(r)

))
+
m∗n(r)3

2π2

(
pFn(r)EFn(r)

m∗n(r)2
− ln

(
pFn(r) + EFn(r)

m∗n(r)

))
(161)

where

pFp,n(r) = (3π2ρp,n(r))1/3 (162)

and

EFp,n =
√
pFp,n(r)2 +m∗p,n(r)2 (163)

and

m∗p,n(r) = mp,n − gσσ(r) (164)

So the idea here is that given ρp(r) and ρn(r), we use the iteration scheme

σ(n+1)(r) = (gσ/m
2
σ)ρ

(n)
S (r) (165)

where ρ
(n)
S (r) is calculated with

m∗p,n(r) = mp,n − gσσ(n)(r) (166)

38

	Day 1 - Introduction to the transport theory
	Units
	Uncertainty relations
	1 and 2 body mechanics
	The Vlasov equation

	Day 2
	Quantum mechanical transition rate
	Thermal equilibrium
	Boltzmann-Uehling-Uhlenbeck model
	Numerical Test of thermalization
	How to solve the Boltzmann equation

	Day 3
	Relativistic Thomas Fermi Approximation
	Iteration to solve for the nuclear densities
	Units
	Input parameters
	Densities and Fermi momentum
	Chemical potential

