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1 Lecture I, IT : General aspects of CFT

1.1 Classical aspects of CFT

1.1.1 Classical Poincare invariant field theory

Ref :
Book "Classical Theory of Gauge fields" By Valery Rubakov

Poincare transformations on D-dimensional Minkowski space-time RMP~1 (D > 2),

RUVP=E = {a# = (20,2, ..., 2P~D)},  with metric

1.1
ds® = ndat'de” = —(da®)® + (dz')® + ... + (dzP71)?. (1.1)

are transformations a# — z#(z) such that

0xP 0z’

D 0107 = 12

So, it is nothing but isometry on the Minkowski space-time. Infinitesimal poincare trans-
formations, ## = x* + e#(x) + o(€?), satisfy

Opev(x) + Opeu(x) =0. (1.3)



The general solutions are
'(x) =a' + AN2¥, with Ay, =—Ay, . (1.4)
Finite transformations are

exp(a”P,) :=exp(at0,) : z! — " = 2" + " (translation),

exp(A" L,,) = exp(Ah,x"0,) : ot — 2 = exp(A)h,x” (rotation and Lorentz boost).

(1.5)
Example : Consider a single real scalar field
¢ RWP7L LR, (1.6)
Its Poincare invariant action is
S[¢] = / dPxL(¢,04), where
1 0o oo , (1.7)
L£(6,0u0) = —50u00"6 = D Y gmnd®" (060" 9)" . (901 =0)
m=0n=0
Probelem 1.1.1-1: Show that the action is invariant under the following Poincare
transformation
— ¢, where
Qf ¢ (1.8)

(#(2) = o), (z) =¥ + @ + exp(A)ia? .

Noether Theorem Suppose that the Lagrangian is invariant under a infinitesimal trans-
formation, ¢ — & + d,¢, up to a total divergence

5a£(¢7 8¢) = 8,“‘le; . (19)
Then, there is a associated conserved current j4
oL
jt= dap — FE . 1.10
ja 8(6M¢) a¢ a ( )
Problem 1.1.1-2:  Show that the above current are conserved, d,j4 = 0, modulo clas-
sical equation of motion.
Stress-energy tensor :  The conserved current for translation symmetry, 6, : x* —
¥ = z# + a¥, can be written as
(Ja)u =a"Ty, . (1.11)
The tensor T}, is called stress-energy tensor. Tyg is Hamiltonian and Tp;(i = 1,...,D — 1)

is momentum along ¢-th direction.

Problem 1.1.1-3  Show that the stress-energy tensor T),, for the theory in (1.7) with

Imn>1 = 0 s

Ty = 0,00, ¢ + M L (1.12)



1.1.2 Conformal field theory

Ref:
"Lectures on Confomral Field Theory" arXiv:1511.04074, By Joshua D. Qualls

Conformal transformations are transformations z#* — ##(x) such that
0z 0z°
Dk Dav P

Infinitesimal conformal transformations, ## = z* + e#(z) + o(€?), satisfy

= Q*(x)n , for some Q. (1.13)

Opev(x) + Opeu(x) = Ma)nu , for some A . (1.14)

The general solutions for D > 2 are z?

e (x)0, = (a" + b’ (2w 2t — 226) + A a” + cx”)d), , with Ay, = Ay, .

-
= azhz,

(1.15)
=a"P, + V'K, +AN"L,, +cD.
Problem 1.1.2-1:  Show that infinitesimal conformal transformation form a SO(2, D)
algebra.
Its finite transformations are
exp(atP,) : ¥ — ¥ = 2" + " (translation) ,
exp(A"Lyy,) : ot — 2 = exp(A)h,z" (rotation and Lorentz boost) ,
exp(cD) : zt — T# = ez (dilatation) , (1.16)
aH — pZph
exp(b'K,) : 2t = 2t = o0 1)+ (special conformal).
Sometimes, we also consider a discrete inversion symmetry:
I: 2t — % . (1.17)
x
Using the inversion, the special transformation can be rewritten as
% = g +0. (1.18)

Example Conformally invariant Lagragian for a single scalar field is
1 2D
£(6,0u6) = ~50u00"6 — 9§77 . (1.19)
Note that the Lagrangian is analytic only when D = 3,4 and 6.

Probelem 1.1.2-2: Show that the action is invariant under the following conformal
transformation

é— ¢, where
B@(w)) = |det 2|55 p(a) () = (expla” By + Ko+ A Ly D] - 2}
(1.20)



1.1.3 Conformal field theory on conformally flat Euclidean space-time

Wick rotation to R? Let zp := izo and the Eucledian action is
_ D—1
Sk = —/drd 2L(6.90)| 5 9—i0ps - (1.21)
After the Wick rotatin, the ¢ is considered to be a function on R? with Eucleadian metric
ds? = dpdz®da® = (dzt)? + ... + (dzP)? . (1.22)

Conformal group on conformally flat space Conformal transformations on general
Euclidean metric gqp is a transformation x — Z(z) such that

oxc 9

%@‘%d = Yab - (123)

For flat Euclidean metric, ga = dgp, the conformal transformations form SO(1,D + 1)
group. More generally, the conformal group for a conformally flat metric

Gap = Kk(2)*qp , for some K (1.24)
is SO(1,D +1).1

Problem 1.1.3-1: Show that the usual round metrics on SP and R x SP~1 are confor-

mally flat.

Conformal mapping of CFT From a conformally invariant field theory on R”, there is
a canonical way called ‘conformal mapping’ to construct conformally invariant field theory
on a conformally flat Eucleadian space. Let’s demonstate the conformal mapping using the
conformally invariant scalar theory in (1.19). After Wick-rotation, the Euclidean action
becomes

Sy = / d%(%éabaawbqb 1 geta ). (1.25)

The action can be interpreted as conformally invariant action on a conformally flat space
with metric gq, = k264, with proper rescaling of Lagrangian density

SE :/dD:E\/gﬁE, where

1 1 2D
- ﬁ(5ab§8a¢8b¢+g4¢ﬁ ), VG = V/det(g)a = K7

(1.26)
Lg

!Unlike conformal group, generally the isometry group of conformally flat metric is different from the
isometry group of flat metric



Then, we redefine the field ¢ — k(P~2/2¢ to have a canonical kinetic term. The resulting
Lagrangian is
1 5w 20 1 _pogpsy D=2, D=2 o 1 o
Lr ==k 00,0000 + gadDP-2 + -k~ 70%0yk 2 Opr 2 ¢° + —(total derivative) ,
2 2 NG
D -2

_}ab 1
= 59" 0u0006 + 5(—

2/, .—4 ab 2 22 1 S
V(K gP 0akOpk)d* + ga + \[(total derivative) ,
g

) POpd + 1, 2=2 R$? + gsoD 2 + = (total derivative)
_Z s -2 4 — rivative) .
9¥ GaPRCT Y 4D 1) 94 NG
(1.27)
Here we use the fact that
R(scalar curvature of metric g) = (D — 1)(D — 2)x~4g®0,kdyk . (1.28)

Problem 1.1.3-2:  Check the above.

Note that after the conformal mapping, there appears a mass-like term, % X 4(DD121)R¢2,

from coupling to the curvature of background metric.
1.2 Quantum aspects of CFT
1.2.1 QFT as RG between CFTs

Ref:
Lecture note on "The renormalization group" By David Tong,
(http://www.damtp.cam.ac.uk /user /tong/sft /three.pdf)

RG in QFT To specify the quantum theory, we need to introduce a cut-off Ag

z= / (Do) pj<nge” *Ftol?) (1.29)

The Euclidean action is

SEn 8] = / APz LEny(6,0¢), where

1 e _
L5:00(6,0,0) = 50606 + D D~ 90, A7 O (905, =0) (130

m=0n=0

Omn = ¢*™(0,00°®)" ,  [Omn] :=m(D —2) +nD .

Here we introduce dimensionless coupling constants g, . [O] denotes the mass-dimension
of the operator O.

In measurement of physical quantities, there is characteristic energy-scale A (such as
momenta of external particles in scattering procedure). For the QFT to be valid at the
energy scale A, we need to assume that

A< Ag. (1.31)



The physics at the energy scale A can be described by an effective action Sg a[¢pa] obtained
by integrating fastly oscillating modes @5 5,). Let

"“x):/ G(p)e”™ = pp(x) + dang(x), where
|p|<Ao

(1.32)
= 5 ip-z = 5 ip'w .
Pa(w) : /|p<A ()", diang) /Ag|p<A0 o(p)e

Then,

SEAo[P] = SEne[PA] + SEN[P(A,A0)] + Sint[Pn, D(a,A0)] - (1.33)
Problem 1.2.1-1:  Show that Syt [, d(a,a4)] = O for free theory (go = 0 for all O except
O10)-

Finally, we define the effecitve action at the scale at A < Ag as

SEAOA] == SE Ay [OA] — 10g/[D¢(A,AO)]A§|pI<A06SE,A()[¢(A,AO)]Sint[¢A,¢(A7AO)} . (1.34)

By definition,

2 = [1D8lpenge 55 = [1Don]jene S5l (1.35)

The effective action can be generally written as

SE;A[¢A] = /dDmEE;A(¢A>8¢A) )
£E;A((z)A7 6¢A) = ZA2(A)(9“¢A8M¢A + Z ZXlADi[Om’”]g@n’m (A)On,m(x) , (136)

m,n
Onm () = O3 (0020 o)™, [Opm] =m(D —2) +nD .
Z 1s the wavefunction renormalization. Beta-function is defined as

dgo(A) — 9go(A)

bo oA Odlog A (1.37)
The beta-function for the dimensionless couplings takes the form
Bo = B5™(9) + 56" (9) = (0] = D)go(A) + B5™ (9) - (1.38)

The first classical term simply comes from dimension analysis of operators O, ,,,. The second
term, on the other-hand, comes from interaction terms S;,; and can be perturbatively
computed using Feynmann diagram. The 83" depends on all the coupling constants.

According to their mass dimension, we classify local operators O, ,, into 3 categories

relevant , [O] < D
O is called { irrelevant , [O] > D (1.39)
marginal , [O] = D



When the coupling constants g are small, the quantum corrections S3'*" are negligible and

thus

stronger , for relevant O
go gets ¢ weaker , for irrelevant O (1.40)

7?7, for marginal O

as we decrease the energy scale A (IR limit). The scale transformation (dilatation) x — bx
in the conformal symmetry acts on A as

1
Scale transformation : A — EA . (1.41)

So, the true meaning of scale invariance in quantum field theory is
Quantum scale invariance : fo =0 VO . (1.42)

Note that the classically conformally invariant theory (go = 0 except for O = O, _ D ,n=0)
satisfy the ﬁ%assmal = 0. But the quantum effect 399" generically breaks the scale invari-
ance. Free massless theories (go = 0 for all O) is a quantum scale invariant theory since
there is no quantum effect.

From these quantum analysis, we may conclude that there is no CFT other than free
massless theories. The hasty conclusion turns out to be wrong in two ways. First, for
quantum field theories with higher enough supersymmety quantum corrections are milder
and there are infintely many interacting CFTs with supersymmetry. One famous example
is D = 4 maximally supersymmetric (N = 4) Yang-Mills theory. Secondly, CFT could arise

as an end point of RG running.

CFT at the end of RG  On the space of couplings {go}, RG flow (in decreasing A)
can be thought as a transformation generated by following vector field

0

RG vector field : ;B@ 990" (1.43)
At the fixed point where Sp = 0 for all O, the theory stop running under the RG and
becomes a scale-invariant theory. In QFT, the scale-invariance usually (almost all cases)
leads to full conformal-invariance. So, we expect to have an interacting CFT as end of
RG running if we tuned the intial coupling constants {go(Ayy )} properly. One most well-
studied examle is so-called Wilson-Fisher fixed point in D = 3. The starting UV theory is
the 3D ¢* theory whose Lagrangian is given by

L= —% L OM D — gad® — gad* . (1.44)

The qualitative description of the RG vector field in the space of (g2,94) is given in the
figure 1. The qualitative feature of the RG vector field have been supported from various
computations, such as perturbative expansion in small g4, € expansion in D = 4 — ¢ and
1/N-expansion regarding the theory as scalar O(/N) model with N = 1. In the RG analysis,
we ignore the infintely many coupling constants corresponding to irrelevant operators since
they all finally vanish in the IR limit, A — 0.



GF 9

Figure 1. Schematic RG vector field for 3D ¢*-theory. There are two fixed point, one is Gaus-
sian fixed point (GF, free theory) at g2,¢94 = 0 and the other is Wilson-Fisher fixed point (WF,
interacting).

QFT as RG between CFTs In the above RG analysis, there are two fixed points,
Gaussian fixed point and Wilson-Fisher fixed point. For each fixed point, there is an
associated CFT. Two CFTs are related by a RG flow (GF—WF) triggered by an deformation
SL = —g2¢? — ga¢* on the UV CFT (GF) with finely tuned coefficients go < 0 and g4 > 0.

GF + (deformed by 6L = — g2 — ga¢* with fined tuned 92/94)

(1.45)
— L WF.
Other deformations lead to following IR phases
GF + (deformed by irrelevant operators 6L = Z 9:0; with [O;] > 3)
L} GF ,
GF + (deformed by 6L = —go¢® — gs¢* with |go| >> |g4] and gy > 0) (1.46)

— R&  Mass gap with unbroken Z, ,

GF + (deformed by 6L = —go¢? — gap* with |ga| >> |g4| and go < 0)

— B& . Mass gap with spontaneously broken Zs .
Physics near the phase transition between two mass gapped theories are described by the
WF fixed point. Regarding IR fixed point of the mass gapped theory as a trivial CFT?, RG
always ends at a CFT. Generally we may consider QFT as a study on RG running betweem
CFTs. There are in general two ways of triggering RG from a UV CFT.

1) Gauging of flavor symmetry of UV CFT (1.47)
2) By adding relevant (spin 0) primary operators in UV CFT to Lagrangian '

The gauging operation is only possible when the UV CFT has an non-trivial flavor symme-
try. For odd spacetime dimension (D = 3,5), we can add also CS interactions in addition

2CFT with no dynamical local degree of freedom, i.e. no local operator. But it could have non-local
operator. We sometimes further distinguished trivally gapped phase (described by a CFT with a single
ground state and no non-local oeprators) from topological phase (gapped CFT with degenerate vacua
parametrized by VEV of non-local operators, described by a topological quantum field theory).



to the gauge kinetic term in the gauging procedure. In general CFT, a (scalar) primary
operator O with a conformal dimension A is defined to be a local operator such that

exp(t'K,] - O(x =0) = O(x =0), forall v/,

c (1.48)
(O(2)0(0)) = EEN
The conformal dimension A is a generalization of mass dimension [O)] in free field theory
and we define

relevant , A(O) < D
O is {irrelevant , A(O) > D (1.49)
marginal , A(O) =D

In conventional QFT textbook, the starting UV CFT is chosen as a free massless theories
(free scalars or free fermions). But, we may choose an interacting CFT, such as WF, as
starting UV CF'T. These QFTs, studying RG between an interacting CF'T and another CF'T,
are usually called non-Lagrangian QFTs. At WF point, there are two relevant operators,
Oy, Op2. The Oy is odd under the Zy symmetry in the WF theory and orginated from an
local operator ¢ in the UV GF theory. Its conformal dimension is given by

1
A(Oy) = 3 + 74 , where

1 alogZA‘
T

(1.50)
@ WF .

Here vy is called anomalous dimension. The currently known most precise way of computing
the anomalous dimension is so-called conformal bootstrap method (reviwed by Junchen’s
Lectures). The numerical value is

A(Oy4) = 0.5182(3) (1.51)

The Zs-even operator Oy2 comes from a mixing of operators ¢? and ¢* in the UV GF
theory under the RG. From the mixing, we have two scalar primary operators Oy (with
smaller A) and Oys (with bigger A) in the WF theory whose conformal dimensions are

A(Oz) =1413(1), A(Oy) = 3.84(4) , (1.52)

Note that Oy is relevant while Oy is irrelevant. The deformation on WE CF'T triggered
by the two operators corresponds to blue-line (for Oy2) and red-line (for Oy4) in the figure
1. From the figure, we see that

WF + (deformed by 6L = Oy2)

RS Mass gap .

WF + (deformed by 6L = Oya)

— R¢ L wF.

(1.53)



1.2.2 Radial quantization

Note that R x SP~! is conformally flat since

d 2
O ds?(sPY)

1
ﬁdSQ(RD) .

ds*(R x SP71) = dr? + ds*(SP71) =
(1.54)

= %(er +r2ds?(SP1)) =
,

and thus we can uniquely put the theory on the manifold by requiring invariance under the
full conformal symmetry, SO(1, D +1). Under the conformal mapping, the radial direction
r on RP is related to a time coordinate 7 on R x SP~1! by a relation r = e”.

0 0

D=r—=—. 1.55

or Ot ( )
Considering the 7-direction as time direction, we can construct Hilbert space associated to
the constant time slice, 7 = 7y (fixed). The quantization is called radial quantization since
we use the SP~1 at fixed radius rg = €™ as constant time-slice in the quantization. For
CFT in arbitary dimension D, there is an isomorphism between

(Space of local operators {O} on RY)

: . : D1 D1 (1.56)
~ (Radially quantized Hilbert-space H(S™ ") = {|O)} on R x S¥7) .
Under the isomorphism,
(Conformal dimension A of O) = (Energy E of the state |O)) . (1.57)

Example : free massless scalar theory The Lagrangian for free massless scalar theory
on general conformally flat space-time is given in (1.27). Using the fact that the scalar cur-
vature R(SP~1) of unit round (D — 1)-dimensional sphere is (D —1)(D —2), the Lagrangian
becomes

Spld] = / deQDl( (0:0)" — 30V, 6+ 5 (0o >¢2> (1.58)

Here dQ2p_; is the measure \/det(g;;) HZD:EI dz’ where =P ~1 are coordinates on SP~!
and g;; is the metric on SP=1 In the above expression, we use

det(g)gij8i¢8j¢ = —p0i(v/ det(g)gij(?jqﬁ) + (total divergence)

1.59
— 3,0 )

g is the metric tensor on SP~1 and V%Dfl is the Laplacian operator acting on scalar on
SP=1. Let us expand the scalar field in terms of harmonics on SP~1,

o(1,Q2p-1) Z¢€m )Yem(Qp-1) ,
(1.60)

YV, Yim = —w +D = 2)Yim .

~10 -



More explicitly, the spherical harmonics can be represented as

D
Yom(Qpo1) =m ™ “ya, .. ya, (S0 ) y2 =1) where

pary (1.61)
m* - ig (properly normalized) symmetric and traceless tensor .

The system can be treated as 1D QM with infinitely many decoupled harmonic oscillators

(HOs)

1 1 . D -2
Spl¢] = Z/dT <2(8T¢z,m)2 + 2W§,m¢zm> ,  with Wz?,m = ({+ 7)2 . (L.62)
m

Quantizaing the infintely many HOs, the Hamiltonian is given by
1

I’j[ = ng,m(azmag,m + 5) s
bm (1.63)

= g wgyma}’magym +€g -

m

Here azm and ay,, are the usual creating and annhilating operators respectively for each
harmonic modes. General states in the radially quantized Hilbert spaces H(SP~1) are of

the form

H(azm)Nf*m‘@ (Neym > 0) , whose energy is
lm
(1.64)

D -2
E = Z./\/'gm(f + T) , (we choose ¢g = 0) .

lm

Here the vacuum |0) is chosen such that

agm|0) =0, forall (/,m). (1.65)
The state corresponds to following local operator on RP
H(@ﬁlqﬁ)/\[’-’vm , whose scailing dimension is
tm
1.66
A:%N&m(uD;%. -
Here
8f;¢ =m0y, q,¢, where a; =1,..., D and (1.67)

m® % are symmetric and traceless tensor

- 11 -



Problem 1.2.2-1:  Why do we need to impose the traceless condition?

So we confirm the isomorphism (1.56) for a free massless real scalar theory in general
space-time dimension D.

The above discussion can be easily generalized to a free massless complex scalar ® case,
d = %(gbl + i¢2), by doubling the oscillatory modes

(a,a’) = {(a1,al), (az,ad)} . (1.68)
In the case, the thoery has u(1) flavor symmetry whose charge F is
F@)=1, F@)=-1. (1.69)

So, it is better to introduce

1 , 1 .
ap = E(al —iaz), ag= E(al +iag) ,

1 ) 1 )
a:fb = E( ]; —i—m;) ) c% = E(GJ{ - w%) ) (1.70)

These complexified quanta have following u(1)-charges

.F(a];,,ag) =1, F(a%, ag) =1

Basis of the radially quantized Hilbert-space H(SP~1) for the free complex scalar field
theory is

N"L M m
> (ag )N (‘%,e,m) “m 0y

£m

D—_9 (1.71)
E = ;<M,m + M)+ =5), F= ;m,m - M) -
Problem 1.2.2-2:  Confirm that the partiton function
Zfree @(qa U) = TFH(SDfl)qEU}— , (1.72)
is given by
1
Ztree 'ID((LU) = H . (1.73)

o (1= g2 u) (1 — ¢+ u )

States in gauged HO For later use (will be used in the study of monopole operators in
3d Chern-Simons matter theories), let construct Hilbert-space for gauged HO system which
is described by following 1D Euclidian action

SplA, {®,}] :/dTZ(|(aT+AT)q>a|2+wqu>a|2)+qext/A. (1.74)

«a

- 12 —



Before the gauging, the Hilbert-space for two-dimensional HO is spanned by (ep = > wa)

H(afba)/\fa (Q%Q)Ma‘(» with E = Zwa(-/\/a + My) + e and F = Z(/\fa -~ M,) .

(1.75)

and the ptn Trg%u”

1

Zbefore gauging
(1 = g¥eu)(1 — g@eu=t)

=q° (1.76)

«

After gauging (and introducing external charge term gexs [ A), we need to impose the
following condition for gauge invariance

Z(Na — Ma) + gext = 0 (guage-invariance) . (1.77)

«

The term gext f A introduce an external charged particle of charge gext and the vacuum |0)
has charge gext. The gauge charge shold be cancelled by exciting oscillatory modes. So the
Hilbert-space of the gauged HO is spanned by

«

[L(ah = (ak )M[0) with Y~ (N = Ma) + gext =0 - (1.78)

67

So the ptn after gauging is

Zafter gauging(q) _ f du

luj=1 2TiU

du 1
— €0 gy 9ext )
1 j{u_l 27riuu 1;[ (1 — gwou)(1 — gwou—1)
Problem 1.2.2-3:  Derive the ptn from following Fucledian path-integral

after gauging(q) _ / [DA] Ha[D(I)a]efSE[A,{qMH ,
(gauge) (1.80)
Periodic b.c. : A-(7+B) = Ar, Po(7+ 8) = Pu(7)

7 dext Zbefore gauglng(q u)

(1.79)

Here ¢ is related to the radius (%) of the thermal circle as follows
g=e" (1.81)

Step I : Show that

—SOUH{®a}] _ e
/HD(I) 2 = ¢ 1_qu2,

o

where S%[{®,}] = /dTZ 10-®0 |2 + w|®u|? (1.82)

67

with periodic b.c : ®(7) = &(7 + ) .

~13 -



Step II : Show that (|u| = 1)

1
Dd —S%[{Cba — €0
/1;[[ a]e q - 1 - q"qu 1 _ qwau—l)

where S[{®,)] = / 3 10,0l 2| Ra? (1.83)

with twisted b.c : ®(7) = u®(7 + 3) .

logu
Step IIT : Show that (hint : redefine ® — ¢~ 7 "® and related to the computation in Step
I1.)

_tog 1
(DD, e SbU@DA="500] _ o ,
/H (1 — g¥eu)(1 — g¥eu=t)

where S%[{(I)CY}7A] = /dTZ ’(87' + A’T)(I)Oz‘z +w2’¢)a’2 and (184)
with periodic b.c : ®(7) = ®(7 + ) .

Step IV : Show that

DA Dd,| _ . ..
/[ (]gl;[ag[e) ]e SEH{®a} Al gext [ A (with periodic b.c : A(T) = A(T + )
u

= Y D® —S9[{®a},A="1%" dr]
%u|: 27Tiuu /1;[[ ale

(hint : Using gauge transformation we can always make A, = log“ for |u| = 1. Then,

residual gauge transformation on thermal circle Sé (with radius %) make logu as 2mi-

(1.85)

periodic variable. See (2.8))

2 Lecture III, IV : 3d CFT from 3d gauge theory

2.1 Pure Chern-Simons interaction

Ref:
"Remarks on the canonical quantization of the Chern-Simons-Witten theory" by S. Elitzur,
G. Moore, A. Schwimmer and N. Seiberg

The general action (with Poincare invariance and gauge invariance) for pure (without mat-
ter) u(1) gauge theory on Euclidean 3 dimensional manifold M is

1 ,
SMaxweH—CS action [A] = ?Smaxw [A] - Z]CCS[A] s where
SmAXWIA] = / dANdA = / VIFLF® (2.1)
M

CS[A] =~ /M AdA = % /M € A, 0p A,
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The action is invariant under the following gauge transformation

A — A+ dA, where

er M —u(l). 22)

Problem 2.1-1:  In the Maxwell-CS theory, show that the gauge field has mass propor-
tional to ¢k .

The Maxwell term is irrelevent [F,,F*’] = 4, i.e. g> — oo as A — 0, and the term
drop out in the IR and we only have

ik
Sesldl =~ | Ada, (2.3)

in the IR. When the gauge field is not coupled to any matter field, the theory is called pure
CS theory and does not depend on metric of space-time. These metric-independent theories
are called topological quantum field theory (TQFT). All physical observables of TQFT are
topological invariants of the 3-manifold M. Every TQFTs have vanishing stress-energy
tensor

T =0. (2.4)

The pure Chern-Simons theory is a trivial local CFT. The only local operator in the theory
is identity operator. Note that F),, is gauge-invariant but e.o.m requires that

dScs[A]
0A

=0 = F,=0. (2.5)
Hilbert-space on a torus T? We put the u(1); CS theory on M = R; x T?
Ry x T2 = {(t,601,609) : 61~ +1, 0y~ 60y +1}. (2.6)
General solutions to the e.o.m, F},, = 0, on M modulo gauge tansformation are
A = iadfy + iaodbs (2.7)
where the variable a; are periodic variables due to the following large gauge transformation

A eQTrin191 +2ming by

Large gauge transformation e = : (o, a0) ~ (a1 + 2mng, ag + 21n2) .

(2.8)

Here ny,no are chosen to be integers for the gauge tranformation e is well-defined on T2.
For zero-modes on T? given in (2.7), the CS theory becomes a simple 1d QM described by
following action

k :
ﬂ:% /dtO{lOéQ (29)
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The sign depends on the choice of orientation of the R; x T2. We choose an orientation
such that the sign becomes +1. From the action, we see that a; and ay are canonically
conjugate to each other.

0Scs k
Py=——=—as. 2.10
T Say  2r (2.10)
Quantizing the QM system, we get following quantum commutation relation
A A 271
X, P] = % . (2.11)
We choose X = a3 and P = ay. To construct the Hilbert-space, we introduce a position
basis |X) on which the quantum operators act as
N - 2
XIX) = X|X), <)Xy = |X + %> . (2.12)
Since the (X, P) are 2m-periodic variables, we need to impose following conditions on the
basis
(€¥a% — 1)|X) = |X +27) — |X) =0,

) " | (2.13)
(3% —1)|X) = (K —1)[X) = (¥ —1)|x) = 0.
By imposing the two conditions, we see that the resulting Hilbert-space is finite-dimensional

2
H(TQ)ZSPaHﬂX:ﬂ) :n=0,...[k -1},

k (2.14)

dimH(T?) = |k| .

As a topological theory, all states in the Hilbert-space have zero-energy and thus these are
vacua of the theory. For the consistency of the quantization, we need impose that

keZ. (2.15)

Unlike the usual quantum field theory, these vacua are characterized by the VEV of non-
local operators called Wilson loops. The Wilson for abelian gauge theory is defined by

WelA] = expﬁA (2.16)

The operator is supported on a closed curve C.

Problem 2.1-2:  Show that the Wilson loop is invariant under gauge transformations.

On the vacua, the Wilson loop for C = {(t,01,62) = (0,5,0)}._, takes following VEV

2 2
(X = —mewcp( - —2”"> — exp z% a0y ) = exp (72 (2.17)
2 2 Tk i

The analys can be extended to the case M = R; x ¥, with a 2d Riemann of genus g and
the result is

dimH(5,) = |k[9 . (2.18)
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2.2 Topological u(1) symmetry

For u(1) gauge theory (either with CS interaction or not) coupled to matter fields in 3d
space-time, there is gauge-invariant conserved current, Jt’f)p, made of field strength of the
gauge field

JE = ielwﬂp

top = 5 vo s Ouiop =0 (2.19)

Op:

For pure Chern-Simons theory case, the F' vanishes by e.o.m and there is no conserved
current. From the Noether theorem, the existence of the conserved current is equivalent
to the existence of a wu(1) flavor symmetry whose conserved charged is the jfop. We call
the u(1) symmetry associated to the dyanmical u(1) gauge field is called ‘topological u(1)
symmetry’ which is usually denoted as u(1)iop.

2.3 Witten’s SL(2,Z) action

Ref:
het-th/0307041 "SL(2,Z) Action on Three-Dimensional Conformal Field Theories With
Abelian Symmetry" by E. Witten

Let T be a 3d CFT with a u(1) flavor symmetry. We can deform the theory by gaug-
ing the u(1) flavor symmetry with CS level k. Let denote the resulting 3d CFT be

(ST*) . T := (a 3d CFT obtained by gauging u(1) with CS level k) . (2.20)

Under the gauging, the number of u(1) symmetry is preserved since gauging u(1) flavor
symmetry introduce a topological u(1) symmetry whose charge is given by field strength
of the u(1) gauge field. So, we can act the gauging operation successively and consider
following theory

o (8Tk) . (STH2) . (ST™) - T (2.21)
Witten proved that
(ST)-(ST)-(ST)- T=T, §-S-T=C-T, S§-S-58-T=T. (2.22)

Here C is a charge conjugation operation, C2 = 1, and S is considered to be ST*=0. So, the
field-theoretic action form a SL(2,Z) group.

Problem 2.3-1: Check the SL(2,Z) by reading the Witten’s paper (which is quite read-
able).

2.4 Monopole operator

Ref :
ArXiv:1710.00654, "Monopole Operators in U(1) Chern-Simons-Matter Theories" by S.
Chester, L. lliesiu, M. Mezei and S. Pufu.
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For u(1) CS matter theory, there is an u(1) topological symmetry associated to the dy-
namical u(1) gauge field. One natural question one may ask is what local operators are
charged under the u(1)¢p? Operators charged under the topological symmetry are called
monopole operator. The local operator can not be written in a simple way using elemen-
tary fields in the theory. The (conceptually and computationally) best way to see these
monopole operators is using the radial quantization introduced in (1.2.2). We will study
the CS matter theory on R x S? with a deformation by a Maxwell-term parameterized by
A. The A = 0 corresponds to the case, we are interested while we can solve (find spectrum
of states in) the system in the A — 0 limit. After solving the A — oo limit first, then
we will interpolate the spectrum of states to A = 0. Under the continous interpolation,
discrete quantum numbers (such as Lorentz spin (j,m) or charge @ under u(1) topological

symmetry) are invariant and we can say exactly on these quantum number.3

Monopole operators in u(1) CS theory coupled to a complex scalar The Euclidean
action on R? for the CS matter theory is

Sp[®, A :/RB d3x\/§<|(8+A)<I>\2> +4’jm./R3 AdA . (2.23)

The theory is at least classically conformal. After radial quantization, the theory is mapped
to on R, x S2,

k

SE[<I>,A]—/ d3x\/§<|(8+A)¢>|2+1]¢>|2) +,/ AdA (2.24)
RxS2 4 4 RxS2

The ptn for the theory can be computed using path-integral

Z(q) = Trys2)q°

:/[DA][D(I)]€SE[<I>,A}
(gauge)

2.25
(with periodic b.c 7 ~ 7 + 3) where ¢ = ¢ " . (2.25)

Now we put the theory on Sé x S? by imposing periodic boundary condition. The path-
integral is hard to perform for fixed k since there is no tunable parameter. To have a control
over the path-integral, we introduce an additional parameter, say A, as follows

Z(q,\) = TrHA(Sz)qA
_/[DA][D@]
(gauge)

Smaxw[ 4] — /F/\*F.

e*SE[‘I),A}f)\SgaXW[A] , Where (2 26)

T~T+S

The maxwell-term is gauge-invariant and poincare-invariant (isometry on R, x S?) but not
conformally invariant. When A — 0, the deformed theory on Sé x S2 becomes the original
radially quantized theory and recover the classical conformal invariance. The spectrum
{A, (j,m),Q} of the Hilbert-space H(S?) depends on the parameter A where A is energy

3Some states in A — oo could disapper when X\ — 0 if the energy of the state diverges in the limit. For
simplicity, let us ignore the subtle possiblity.

~ 18 —



and (j,m) is a Lorentz spin on S? and @ is the charge for the w(1)top symmetry.* We will
first perform the path-integral, or equivalently construct the Hilbert-space #H,(S?), in an
asymptotic limit where A — oo. Then, we will interpolate the spectrum to A — 0. In the
interpolation, discrete quantum numbers ((j,m) and @) are expected to be intact under
the continuous deformation and we can read off the spectrum of these quantum numbers
in the original theory (A = 0).
To perform the path-integral in the asymptotic limit A — oo, we first expand gauge

field as follows

A= AN ) 1 \}AMN , (2.27)
where the AS‘N) (u) is the classical configuration (modulo gauge transformation) extremizing
the Maxwell action

JSmaxwiA]

=0. 2.28
0A A:A£N>(1L) ( )

The general solutions for the classical e.o.m for the Maxwell theory on S}; x S? are

1 N
AM () A, = Blogu . Fppdd A d = T-sind0 A do . (2.29)
The charge @ of u(1)top is (see (2.19))
1
= dQJ] = — F=N. 2.30
Q /7—7—0 2<top o1 J g2 ( )

The classical solutions are parametrized by

N € Z , (Dirac quantization) (2.31)
logu ~logu + 27, |u| =1, (Large gauge transformation, (2.8)) '

Problem 2.4-1:  Suppose that the scalar field has u(1) guage charge ggauge- Then, how
should the Dirac quantization condition be modified?

Then, the path-integral simplify as follows in the limit A — oo
Zg=eP X = )

7{ [N [DIAMNDD] (4= AL )+ o an]-ASE [A=AL) )+ o]

au e
classmal solutions g &

Z 7{ du___sgpoow (A )] +ikCSAN) ()] [Ix[DSAM][D O] —SoH{sAM} @1+o(F5)
Ju|=1 omiu" (residual gauge)

where So[{0AM)}, @] := | (9 + A(N)( @ + Z|<I>‘2 + |9(6AN))|?
(2.32)

“Note that the deformation does not break any symmetry associated to these quantum numbers. Oth-
erwise, we can consider these quantum numbers in non-zero A

~19 —



The actions for the classical solutions are

o ASE (AN (u)]+ikCSIAN ()] _ —272 NN N (2.33)

So, the path-integral becomes

Z(g=eP XA = 0)

:Z€_4W2N2)\7{ d?% ukN/[D(I)]e—SO[@H‘O(\%) (2.34)
N

\u|:1 2miu

where Sy[®] := /deQg(|(8T + élogu)¢'|2 @*(VNQQ i)@) .

Here we ignore an overall factor (independent on w and N) comming from integrtaion of
the AN, V?\,,QQ is the Laplacian on S? in monopole background with monopole charge
N (F = % sin #dfd¢). By expanding the ® by monopole harmonics on S,

(1, Q) = Y Pm(T)Yaem(2)
Z:%,m (235)

N| |N
Ve, Ynem = =L+ 1)YNpm f:|2‘,|2|+1,... om=—l,—0+1,....0.

the ptn can be computed as

Z(g=ce -8 A — 00) 26_2W2N2/\% du kN/H D® N m Z[A,m Sol{® N .,m }] :
~ lu|=1 2riu

Sol{®nem}] = /dr\(aT +

1
= log )@ N ¢.m|* + Wi | PN,

B
(2.36)

Note that for fixed N, the system is equivalent to the gauged QM system studied in Problem
1-3.4 with a — (N, £,m) and gexy = kN. From (1.78), our Hilbert-space H o (S?) is given
by

HA—mo(SQ) = @?:_OOHN(SQ) ,  where

HN(SQ) N Span{ H(a’l‘{)N,Z,m )NN‘[’m (a%NZ m)M"’va|N> : f = Z(N’N,E7m - MN,&"”) + kN =0
£m H lm

|N') is the vacuum in the topological sector with monopole charge N,

N
Ady | N) = agN’£7m|N> =0, foral/l= |2| +Zspoand meZ (jm| <¥). (2.38)

The spectrum of monopole operators are summarized in the Table below.
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u(1) gauge charge F | Topologica u(1) charge @ | Lorentz-spin (j,m)
aT{)N o> N1 +1 0 (& m)
> m
.I.
a- -1 0 (¢, m)
(I)Nﬁéz@ﬁm
R kN | N | 0,0) |

Table 1. H,(S?). We computed the spectrum in A — oo but it is expected to work even for

A =0 case. |N) (bare monopole state) corresponds to the semi-classical monopole configuration in

(2.29). The configuration is symmetric on S? and the state does not carry Lorentz spin. Due to a CS

action, the bare monopole state has non-zero gauge charge 7 = kN. Only gauge-invariant operators

have physical meaning. To obtain gauge-invariant operator we need to excite the oscillatory modes
T

(aé,ag) around the monpole background. The modes always carry non-zero Lorentz spin when

N #£0.

2.5 3d IR dualities

Ref :
arXiv:1606.01989, "A Duality Web in 2+1 Dimensions and Condensed Matter Physics" by
S. Seiberg, T. Senthil, C. Wang and E. Witten

IR duality : Two different UV theories that flow to the same IR fixed point.
Example :  The following gauge theory

TYV . u(1) gauge field coupled to a complex scalar (of gauge charge +1)

. : o (2.39)
with CS level +1 and quartic potential |®|* .
is claimed to flow to a free massless complex Dirac fermion theory in IR
TIR . §— / BT (170, (2.40)

As an zeroth order check of duality, we can see that both theories have same flavor symmetry
u(1). For the UV theory, the flavor symmetry is realized as topological u(1) symmetry while
it appears as conventional flavor symmetry (rotating elementary field) in the IR theory. As
an next, check we can compare some lowest gauge-invariant operators. The non-identity
lowest (with smallest A) operators in the free-fermion theory are

U and ¥ with (A,7,Q) = (1,1/2,1) and (1,1/2,—1). (2.41)

Here @ is the charge under the u(1l) flavor symmetry. On the other-hand, the lowest
operators in the UV CS matter-theory is

ag NV =1) with (A,7,Q) = (7,1/2,1), and
R (2.42)
ag 1 |N = _1> with (A7j7 Q) = (77 1/27 _1)

N=-1.¢=%
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Since the conformal dimensioni A is a continuous quantum number and it is very difficult
to compute it from the UV description. Except the undetermined the conformal diemsnion,
the lowest operator spectrum nicely matches in both sides of duality. The duality predicts
that the gauge-invariant operator should have conformal dimension 1.

Problem 2.5-1:  Check other exmples of IR dualities proposed in arXiv:1606.01989
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