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1 Lecture I, II : General aspects of CFT

1.1 Classical aspects of CFT

1.1.1 Classical Poincare invariant �eld theory

Ref :

Book "Classical Theory of Gauge �elds" By Valery Rubakov

Poincare transformations on D-dimensional Minkowski space-time R1,D−1 (D > 2),

R1,D−1 = {xµ = (x0, x1, . . . , xD−1)} , with metric

ds2 = ηµνdx
µdxν = −(dx0)2 + (dx1)2 + . . .+ (dxD−1)2 .

(1.1)

are transformations xµ → x̃µ(x) such that

∂x̃ρ

∂xµ
∂x̃σ

∂xν
ηρσ = ηµν . (1.2)

So, it is nothing but isometry on the Minkowski space-time. In�nitesimal poincare trans-

formations, x̃µ = xµ + εµ(x) + o(ε2), satisfy

∂µεν(x) + ∂νεµ(x) = 0 . (1.3)
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The general solutions are

εµ(x) = aµ + Λµνx
ν , with Λµν = −Λνµ . (1.4)

Finite transformations are

exp(aµPµ) := exp(aµ∂µ) : xµ → x̃µ = xµ + aµ (translation),

exp(ΛµνLµν) := exp(Λµνx
ν∂µ) : xµ → x̃µ = exp(Λ)µνx

ν (rotation and Lorentz boost).

(1.5)

Example : Consider a single real scalar �eld

φ : R1,D−1 → R . (1.6)

Its Poincare invariant action is

S[φ] =

∫
dDxL(φ, ∂φ) , where

L(φ, ∂µφ) = −1

2
∂µφ∂

µφ−
∞∑
m=0

∞∑
n=0

gm,nφ
2m(∂µφ∂

µφ)n , (g0,1 = 0)
(1.7)

Probelem 1.1.1-1: Show that the action is invariant under the following Poincare

transformation

φ→ φ̃ , where

φ̃(x̃(x)) = φ(x) , x̃µ(x) = xµ + aµ + exp(Λ)µνx
ν .

(1.8)

Noether Theorem Suppose that the Lagrangian is invariant under a in�nitesimal trans-

formation, φ→ φ+ δaφ, up to a total divergence

δaL(φ, ∂φ) = ∂µFµa . (1.9)

Then, there is a associated conserved current jµa

jµa :=
∂L

∂(∂µφ)
δaφ−Fµa . (1.10)

Problem 1.1.1-2: Show that the above current are conserved, ∂µj
µ
a = 0, modulo clas-

sical equation of motion.

Stress-energy tensor : The conserved current for translation symmetry, δa : xµ →
x̃µ = xµ + aµ, can be written as

(ja)µ = aνTνµ . (1.11)

The tensor Tµν is called stress-energy tensor. T00 is Hamiltonian and T0i(i = 1, . . . , D− 1)

is momentum along i-th direction.

Problem 1.1.1-3 Show that the stress-energy tensor Tµν for the theory in (1.7) with

gm,n≥1 = 0 is

Tµν = ∂µφ∂νφ+ ηµνL (1.12)
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1.1.2 Conformal �eld theory

Ref:

"Lectures on Confomral Field Theory" arXiv:1511.04074, By Joshua D. Qualls

Conformal transformations are transformations xµ → x̃µ(x) such that

∂x̃ρ

∂xµ
∂x̃σ

∂xν
ηρσ = Ω2(x)ηµν , for some Ω . (1.13)

In�nitesimal conformal transformations, x̃µ = xµ + εµ(x) + o(ε2), satisfy

∂µεν(x) + ∂νεµ(x) = λ(x)ηµν , for some λ . (1.14)

The general solutions for D > 2 are x2 := xµxµ

εµ(x)∂µ = (aµ + bν(2xνx
µ − x2δµν ) + Λµνx

ν + cxµ)∂µ , with Λµν = −Λνµ .

:= aµPµ + bµKµ + ΛµνLµν + cD .
(1.15)

Problem 1.1.2-1: Show that in�nitesimal conformal transformation form a SO(2, D)

algebra.

Its �nite transformations are

exp(aµPµ) : xµ → x̃µ = xµ + aµ (translation) ,

exp(ΛµνLµν) : xµ → x̃µ = exp(Λ)µνx
ν (rotation and Lorentz boost) ,

exp(cD) : xµ → x̃µ = ecxµ (dilatation) ,

exp(bµKµ) : xµ → x̃µ =
xµ − x2bµ

1− 2(b · x) + b2x2
(special conformal).

(1.16)

Sometimes, we also consider a discrete inversion symmetry:

I : xµ → xµ

x2
. (1.17)

Using the inversion, the special transformation can be rewritten as

xµ

x2
=
x̃µ

x2
+ b . (1.18)

Example Conformally invariant Lagragian for a single scalar �eld is

L(φ, ∂µφ) = −1

2
∂µφ∂

µφ− gφ
2D
D−2 . (1.19)

Note that the Lagrangian is analytic only when D = 3, 4 and 6.

Probelem 1.1.2-2: Show that the action is invariant under the following conformal

transformation

φ→ φ̃ , where

φ̃(x̃(x)) = | det
∂x̃

∂x
|−

D−2
2D φ(x) , x̃µ(x) = (exp[aµPµ + bµKµ + ΛµνLµν + cD] · x)µ .

(1.20)
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1.1.3 Conformal �eld theory on conformally �at Euclidean space-time

Wick rotation to RD Let xD := ix0 and the Eucledian action is

SE = −
∫
dτdD−1xL(φ, ∂φ)

∣∣
∂0φ→i∂Dφ

. (1.21)

After the Wick rotatin, the φ is considered to be a function on RD with Eucleadian metric

ds2 = δabdx
adxb = (dx1)2 + . . .+ (dxD)2 . (1.22)

Conformal group on conformally �at space Conformal transformations on general

Euclidean metric gab is a transformation x→ x̃(x) such that

∂x̃c

∂xa
∂x̃d

∂xb
gcd = gab . (1.23)

For �at Euclidean metric, gab = δab, the conformal transformations form SO(1, D + 1)

group. More generally, the conformal group for a conformally �at metric

gab = κ(x)2δab , for some κ (1.24)

is SO(1, D + 1).1

Problem 1.1.3-1: Show that the usual round metrics on SD and R× SD−1 are confor-

mally �at.

Conformal mapping of CFT From a conformally invariant �eld theory on RD, there is
a canonical way called `conformal mapping' to construct conformally invariant �eld theory

on a conformally �at Eucleadian space. Let's demonstate the conformal mapping using the

conformally invariant scalar theory in (1.19). After Wick-rotation, the Euclidean action

becomes

SE =

∫
dDx

(1

2
δab∂aφ∂bφ+ gφ

2D
D−2

)
. (1.25)

The action can be interpreted as conformally invariant action on a conformally �at space

with metric gab = κ2δab with proper rescaling of Lagrangian density

SE =

∫
dDx
√
gLE , where

LE =
1
√
g

(
δab

1

2
∂aφ∂bφ+ g4φ

2D
D−2

)
,
√
g :=

√
det(g)ab = κD .

(1.26)

1Unlike conformal group, generally the isometry group of conformally �at metric is di�erent from the

isometry group of �at metric
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Then, we rede�ne the �eld φ→ κ(D−2)/2φ to have a canonical kinetic term. The resulting

Lagrangian is

LE =
1

2
κ−2δab∂aφ∂bφ+ g4φ

2D
D−2 +

1

2
κ−Dδab∂aκ

D−2
2 ∂bκ

D−2
2 φ2 +

1
√
g

(total derivative) ,

=
1

2
gab∂aφ∂bφ+

1

2
(
D − 2

2
)2(κ−4gab∂aκ∂bκ)φ2 + g4φ

2D
D−2 +

1
√
g

(total derivative) ,

=
1

2
gab∂aφ∂bφ+

1

2
× D − 2

4(D − 1)
Rφ2 + g4φ

2D
D−2 +

1
√
g

(total derivative) .

(1.27)

Here we use the fact that

R(scalar curvature of metric g) = (D − 1)(D − 2)κ−4gab∂aκ∂bκ . (1.28)

Problem 1.1.3-2: Check the above.

Note that after the conformal mapping, there appears a mass-like term, 1
2 ×

D−2
4(D−1)Rφ

2,

from coupling to the curvature of background metric.

1.2 Quantum aspects of CFT

1.2.1 QFT as RG between CFTs

Ref:

Lecture note on "The renormalization group" By David Tong,

(http://www.damtp.cam.ac.uk/user/tong/sft/three.pdf)

RG in QFT To specify the quantum theory, we need to introduce a cut-o� Λ0

Z =

∫
[Dφ]|p|<Λ0

e−SE;Λ0
[φ] (1.29)

The Euclidean action is

SE;Λ0 [φ] =

∫
dDxLE;Λ0(φ, ∂φ) , where

LE;Λ0(φ, ∂µφ) =
1

2
∂aφ∂

aφ+
∞∑
m=0

∞∑
n=0

gOm,nΛ
D−[Om,n]
0 Om,n , (gO0,1 = 0)

Om,n := φ2m(∂aφ∂
aφ)n , [Om,n] := m(D − 2) + nD .

(1.30)

Here we introduce dimensionless coupling constants gm,n. [O] denotes the mass-dimension

of the operator O.
In measurement of physical quantities, there is characteristic energy-scale Λ (such as

momenta of external particles in scattering procedure). For the QFT to be valid at the

energy scale Λ, we need to assume that

Λ < Λ0 . (1.31)
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The physics at the energy scale Λ can be described by an e�ective action SE,Λ[φΛ] obtained

by integrating fastly oscillating modes φ(Λ,Λ0). Let

φ(x) =

∫
|p|<Λ0

φ̃(p)eip·x = φΛ(x) + φ(Λ,Λ0)(x) , where

φΛ(x) :=

∫
|p|<Λ

φ̃(p)eip·x , φ(Λ,Λ0) :=

∫
Λ≤|p|<Λ0

φ̃(p)eip·x .

(1.32)

Then,

SE;Λ0 [φ] = SE;Λ0 [φΛ] + SE;Λ0 [φ(Λ,Λ0)] + Sint[φΛ, φ(Λ,Λ0)] . (1.33)

Problem 1.2.1-1: Show that Sint[φΛ, φ(Λ,Λ0)] = 0 for free theory (gO = 0 for all O except

O1,0).

Finally, we de�ne the e�ecitve action at the scale at Λ < Λ0 as

SE,Λ[φΛ] := SE,Λ0 [φΛ]− log

∫
[Dφ(Λ,Λ0)]Λ≤|p|<Λ0

e−SE,Λ0
[φ(Λ,Λ0)]−Sint[φΛ,φ(Λ,Λ0)] . (1.34)

By de�nition,

Z =

∫
[Dφ]|p|<Λ0

e−SE;Λ0
[φ] =

∫
[DφΛ]|p|<Λe

−SE;Λ[φΛ] (1.35)

The e�ective action can be generally written as

SE;Λ[φΛ] =

∫
dDxLE;Λ(φΛ, ∂φΛ) ,

LE;Λ(φΛ, ∂φΛ) =
ZΛ(Λ)

2
∂µφΛ∂µφΛ +

∑
m,n

ZmΛ ΛD−[Om,n]gOn,m(Λ)On,m(x) ,

On,m(x) = φ2n
Λ (∂µφΛ∂

µφΛ)m , [On,m] = m(D − 2) + nD .

(1.36)

ZΛ is the wavefunction renormalization. Beta-function is de�ned as

βO = Λ
∂gO(Λ)

∂Λ
=
∂gO(Λ)

∂ log Λ
. (1.37)

The beta-function for the dimensionless couplings takes the form

βO = βclass
O (g) + βquant

O (g) = ([O]−D)gO(Λ) + βquant
O (g) . (1.38)

The �rst classical term simply comes from dimension analysis of operatorsOn,m. The second
term, on the other-hand, comes from interaction terms Sint and can be perturbatively

computed using Feynmann diagram. The βquant
O depends on all the coupling constants.

According to their mass dimension, we classify local operators On,m into 3 categories

O is called


relevant , [O] < D

irrelevant , [O] > D

marginal , [O] = D

(1.39)
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When the coupling constants g are small, the quantum corrections βquant
O are negligible and

thus

gO gets


stronger , for relevant O
weaker , for irrelevant O
?? , for marginal O

(1.40)

as we decrease the energy scale Λ (IR limit). The scale transformation (dilatation) x→ bx

in the conformal symmetry acts on Λ as

Scale transformation : Λ→ 1

b
Λ . (1.41)

So, the true meaning of scale invariance in quantum �eld theory is

Quantum scale invariance : βO = 0 ∀O . (1.42)

Note that the classically conformally invariant theory (gO = 0 except for O = Om= D
D−2

,n=0)

satisfy the βclassical
O = 0. But the quantum e�ect βquant generically breaks the scale invari-

ance. Free massless theories (gO = 0 for all O) is a quantum scale invariant theory since

there is no quantum e�ect.

From these quantum analysis, we may conclude that there is no CFT other than free

massless theories. The hasty conclusion turns out to be wrong in two ways. First, for

quantum �eld theories with higher enough supersymmety quantum corrections are milder

and there are in�ntely many interacting CFTs with supersymmetry. One famous example

is D = 4 maximally supersymmetric (N = 4) Yang-Mills theory. Secondly, CFT could arise

as an end point of RG running.

CFT at the end of RG On the space of couplings {gO}, RG �ow (in decreasing Λ)

can be thought as a transformation generated by following vector �eld

RG vector �eld : −
∑
O
βO

∂

∂gO
. (1.43)

At the �xed point where βO = 0 for all O, the theory stop running under the RG and

becomes a scale-invariant theory. In QFT, the scale-invariance usually (almost all cases)

leads to full conformal-invariance. So, we expect to have an interacting CFT as end of

RG running if we tuned the intial coupling constants {gO(ΛUV )} properly. One most well-
studied examle is so-called Wilson-Fisher �xed point in D = 3. The starting UV theory is

the 3D φ4 theory whose Lagrangian is given by

L = −1

2
∂µφ∂

µφ− g2φ
2 − g4φ

4 . (1.44)

The qualitative description of the RG vector �eld in the space of (g2, g4) is given in the

�gure 1. The qualitative feature of the RG vector �eld have been supported from various

computations, such as perturbative expansion in small g4, ε expansion in D = 4 − ε and
1/N -expansion regarding the theory as scalar O(N) model with N = 1. In the RG analysis,

we ignore the in�ntely many coupling constants corresponding to irrelevant operators since

they all �nally vanish in the IR limit, Λ→ 0.
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Figure 1. Schematic RG vector �eld for 3D φ4-theory. There are two �xed point, one is Gaus-

sian �xed point (GF, free theory) at g2, g4 = 0 and the other is Wilson-Fisher �xed point (WF,

interacting).

QFT as RG between CFTs In the above RG analysis, there are two �xed points,

Gaussian �xed point and Wilson-Fisher �xed point. For each �xed point, there is an

associated CFT. Two CFTs are related by a RG �ow (GF→WF) triggered by an deformation

δL = −g2φ
2 − g4φ

4 on the UV CFT (GF) with �nely tuned coe�cients g2 < 0 and g4 > 0.

GF + (deformed by δL = −g2φ
2 − g4φ

4 with �ned tuned g2/g4)

RG−−−−−−−−−→WF .
(1.45)

Other deformations lead to following IR phases

GF + (deformed by irrelevant operators δL =
∑
i

giOi with [Oi] > 3)

RG−−−−−−−−−→ GF ,

GF + (deformed by δL = −g2φ
2 − g4φ

4 with |g2| >> |g4| and g2 > 0)

RG−−−−−−−−−→ Mass gap with unbroken Z2 ,

GF + (deformed by δL = −g2φ
2 − g4φ

4 with |g2| >> |g4| and g2 < 0)

RG−−−−−−−−−→ Mass gap with spontaneously broken Z2 .

(1.46)

Physics near the phase transition between two mass gapped theories are described by the

WF �xed point. Regarding IR �xed point of the mass gapped theory as a trivial CFT2, RG

always ends at a CFT. Generally we may consider QFT as a study on RG running betweem

CFTs. There are in general two ways of triggering RG from a UV CFT.

1) Gauging of �avor symmetry of UV CFT

2) By adding relevant (spin 0) primary operators in UV CFT to Lagrangian
(1.47)

The gauging operation is only possible when the UV CFT has an non-trivial �avor symme-

try. For odd spacetime dimension (D = 3, 5), we can add also CS interactions in addition

2CFT with no dynamical local degree of freedom, i.e. no local operator. But it could have non-local

operator. We sometimes further distinguished trivally gapped phase (described by a CFT with a single

ground state and no non-local oeprators) from topological phase (gapped CFT with degenerate vacua

parametrized by VEV of non-local operators, described by a topological quantum �eld theory).
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to the gauge kinetic term in the gauging procedure. In general CFT, a (scalar) primary

operator O with a conformal dimension ∆ is de�ned to be a local operator such that

exp[bµKµ] · O(x = 0) = O(x = 0) , for all bµ ,

〈O(x)O(0)〉 =
c

|x|2∆
.

(1.48)

The conformal dimension ∆ is a generalization of mass dimension [O] in free �eld theory

and we de�ne

O is


relevant , ∆(O) < D

irrelevant , ∆(O) > D

marginal , ∆(O) = D

(1.49)

In conventional QFT textbook, the starting UV CFT is chosen as a free massless theories

(free scalars or free fermions). But, we may choose an interacting CFT, such as WF, as

starting UV CFT. These QFTs, studying RG between an interacting CFT and another CFT,

are usually called non-Lagrangian QFTs. At WF point, there are two relevant operators,

Oφ, Oφ2 . The Oφ is odd under the Z2 symmetry in the WF theory and orginated from an

local operator φ in the UV GF theory. Its conformal dimension is given by

∆(Oφ) =
1

2
+ γφ , where

γφ = −1

2
Λ
∂ logZΛ

∂Λ
| @ WF .

(1.50)

Here γφ is called anomalous dimension. The currently known most precise way of computing

the anomalous dimension is so-called conformal bootstrap method (reviwed by Junchen's

Lectures). The numerical value is

∆(Oφ) = 0.5182(3) (1.51)

The Z2-even operator Oφ2 comes from a mixing of operators φ2 and φ4 in the UV GF

theory under the RG. From the mixing, we have two scalar primary operators Oφ2 (with

smaller ∆) and Oφ4 (with bigger ∆) in the WF theory whose conformal dimensions are

∆(Oφ2) = 1.413(1) , ∆(Oφ4) = 3.84(4) , (1.52)

Note that Oφ2 is relevant while Oφ4 is irrelevant. The deformation on WF CFT triggered

by the two operators corresponds to blue-line (for Oφ2) and red-line (for Oφ4) in the �gure

1. From the �gure, we see that

WF + (deformed by δL = Oφ2)

RG−−−−−−−−−→ Mass gap .

WF + (deformed by δL = Oφ4)

RG−−−−−−−−−→WF .

(1.53)
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1.2.2 Radial quantization

Note that R× SD−1 is conformally �at since

ds2(R× SD−1) = dτ2 + ds2(SD−1) =
dr2

r2
+ ds2(SD−1)

=
1

r2
(dr2 + r2ds2(SD−1)) =

1

r2
ds2(RD) .

(1.54)

and thus we can uniquely put the theory on the manifold by requiring invariance under the

full conformal symmetry, SO(1, D+ 1). Under the conformal mapping, the radial direction

r on RD is related to a time coordinate τ on R× SD−1 by a relation r = eτ .

D = r
∂

∂r
=

∂

∂τ
. (1.55)

Considering the τ -direction as time direction, we can construct Hilbert space associated to

the constant time slice, τ = τ0 (�xed). The quantization is called radial quantization since

we use the SD−1 at �xed radius r0 = eτ0 as constant time-slice in the quantization. For

CFT in arbitary dimension D, there is an isomorphism between

(Space of local operators {O} on RD)

' (Radially quantized Hilbert-space H(SD−1) = {|O〉} on R× SD−1) .
(1.56)

Under the isomorphism,

(Conformal dimension ∆ of O) = (Energy E of the state |O〉) . (1.57)

Example : free massless scalar theory The Lagrangian for free massless scalar theory

on general conformally �at space-time is given in (1.27). Using the fact that the scalar cur-

vature R(SD−1) of unit round (D−1)-dimensional sphere is (D−1)(D−2), the Lagrangian

becomes

SE [φ] =

∫
dτdΩD−1

(
1

2
(∂τφ)2 − 1

2
φ∇2

ΩD−1
φ+

1

2
(
D − 2

2
)2φ2

)
. (1.58)

Here dΩD−1 is the measure
√

det(gij)
∏D−1
i=1 dxi where xi=1,...,D−1 are coordinates on SD−1

and gij is the metric on S
D−1. In the above expression, we use√

det(g)gij∂iφ∂jφ = −φ∂i(
√

det(g)gij∂jφ) + (total divergence)

= −φ∇2
ΩD−1

φ .
(1.59)

g is the metric tensor on SD−1 and ∇2
ΩD−1

is the Laplacian operator acting on scalar on

SD−1. Let us expand the scalar �eld in terms of harmonics on SD−1,

φ(τ,ΩD−1) =
∑
`,m

φ`,m(τ)Y`,m(ΩD−1) ,

∇2
ΩD−1

Y`,m = −`(`+D − 2)Y`,m .

(1.60)
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More explicitly, the spherical harmonics can be represented as

Y`,m(ΩD−1) = ma1...a`ya1 . . . ya` (SD−1 :
D∑
a=1

y2
a = 1) where

ma1...a` is (properly normalized) symmetric and traceless tensor .

(1.61)

The system can be treated as 1D QM with in�nitely many decoupled harmonic oscillators

(HOs)

SE [φ] =
∑
`,m

∫
dτ

(
1

2
(∂τφ`,m)2 +

1

2
ω2
`,mφ

2
`,m

)
, with ω2

`,m = (`+
D − 2

2
)2 . (1.62)

Quantizaing the in�ntely many HOs, the Hamiltonian is given by

Ĥ =
∑
`,m

ω`,m(a†`,ma`,m +
1

2
) ,

=
∑
`,m

ω`,ma
†
`,ma`,m + ε0 .

(1.63)

Here a†`,m and a`,m are the usual creating and annhilating operators respectively for each

harmonic modes. General states in the radially quantized Hilbert spaces H(SD−1) are of

the form ∏
`,m

(a†`,m)N`,m
∣∣0〉 (N`,m ≥ 0) , whose energy is

E =
∑
`,m

N`,m(`+
D − 2

2
) , (we choose ε0 = 0) .

(1.64)

Here the vacuum |0〉 is chosen such that

a`,m|0〉 = 0 , for all (`,m) . (1.65)

The state corresponds to following local operator on RD∏
`,m

(∂`mφ)N`,m , whose scailing dimension is

∆ =
∑
`,m

N`,m(`+
D − 2

2
) .

(1.66)

Here

∂`mφ = ma1...a`∂a1...a`φ , where ai = 1, . . . , D and

ma1...a` are symmetric and traceless tensor
(1.67)
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Problem 1.2.2-1: Why do we need to impose the traceless condition?

So we con�rm the isomorphism (1.56) for a free massless real scalar theory in general

space-time dimension D.

The above discussion can be easily generalized to a free massless complex scalar Φ case,

Φ = 1√
2
(φ1 + iφ2), by doubling the oscillatory modes

(a, a†)→ {(a1, a
†
1), (a2, a

†
2)} . (1.68)

In the case, the thoery has u(1) �avor symmetry whose charge F is

F(Φ) = 1 , F(Φ) = −1 . (1.69)

So, it is better to introduce

aΦ =
1√
2

(a1 − ia2) , aΦ =
1√
2

(a1 + ia2) ,

a†Φ =
1√
2

(a†1 + ia†2) , a†
Φ

=
1√
2

(a†1 − ia
†
2) ,

These complexi�ed quanta have following u(1)-charges

F(a†Φ, aΦ) = 1 , F(a†
Φ
, aΦ) = 1

(1.70)

Basis of the radially quantized Hilbert-space H(SD−1) for the free complex scalar �eld

theory is ∑
`,m

(a†Φ,`,m)N`,m(a†
Φ,`,m

)M`,m |0〉 ,

E =
∑
`,m

(N`,m +M`,m)(`+
D − 2

2
) , F =

∑
`,m

(N`,m −M`,m) .
(1.71)

Problem 1.2.2-2: Con�rm that the partiton function

Zfree Φ(q, u) := TrH(SD−1)q
EuF , (1.72)

is given by

Zfree Φ(q, u) =
∏
`,m

1

(1− q`+
D−2

2 u)(1− q`+
D−2

2 u−1)
. (1.73)

States in gauged HO For later use (will be used in the study of monopole operators in

3d Chern-Simons matter theories), let construct Hilbert-space for gauged HO system which

is described by following 1D Euclidian action

SE [A, {Φα}] =

∫
dτ
∑
α

(
|(∂τ +Aτ )Φα|2 + ω2

α|Φα|2
)

+ qext

∫
A . (1.74)
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Before the gauging, the Hilbert-space for two-dimensional HO is spanned by (ε0 =
∑

α ωα)∏
α

(a†Φα)Nα(a†
Φα

)Mα |0〉 with E =
∑
α

ωα(Nα +Mα) + ε0 and F =
∑
α

(Nα −Mα) .

(1.75)

and the ptn TrqEuF is

Zbefore gauging = qε0
∏
α

1

(1− qωαu)(1− qωαu−1)
. (1.76)

After gauging (and introducing external charge term qext

∫
A), we need to impose the

following condition for gauge invariance∑
α

(Nα −Mα) + qext = 0 (guage-invariance) . (1.77)

The term qext

∫
A introduce an external charged particle of charge qext and the vacuum |0〉

has charge qext. The gauge charge shold be cancelled by exciting oscillatory modes. So the

Hilbert-space of the gauged HO is spanned by∏
α

(a†Φα)Nα(a†
Φα

)Mα |0〉 with
∑
α

(Nα −Mα) + qext = 0 . (1.78)

So the ptn after gauging is

Zafter gauging(q) =

∮
|u|=1

du

2πiu
uqextZbefore gauging(q, u) ,

= qε0
∮
|u|=1

du

2πiu
uqext

∏
α

1

(1− qωαu)(1− qωαu−1)
.

(1.79)

Problem 1.2.2-3: Derive the ptn from following Eucledian path-integral

Zafter gauging(q) =

∫
[DA]

∏
α[DΦα]

(gauge)
e−SE [A,{Φα}] ,

Periodic b.c. : Aτ (τ + β) = Aτ , Φα(τ + β) = Φα(τ)

(1.80)

Here q is related to the radius ( β2π ) of the thermal circle as follows

q = e−β (1.81)

Step I : Show that ∫ ∏
α

[DΦα]e−S
0
E [{Φα}] = qε0

∏
α

1

(1− qωα)2
,

where S0
E [{Φα}] =

∫
dτ
∑
α

|∂τΦα|2 + ω2|Φα|2 ,

with periodic b.c : Φ(τ) = Φ(τ + β) .

(1.82)
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Step II : Show that (|u| = 1)∫ ∏
α

[DΦα]e−S
0
E [{Φα}] = qε0

∏
α

1

(1− qωαu)(1− qωαu−1)

where S0
E [{Φα}] =

∫
dτ
∑
α

|∂τΦα|2 + ω2
α|Φα|2 ,

with twisted b.c : Φ(τ) = uΦ(τ + β) .

(1.83)

Step III : Show that (hint : rede�ne Φ→ e
− log u

β
τ
Φ and related to the computation in Step

II.) ∫ ∏
α

[DΦα]e
−S0

E [{Φα},A= log u
β
dτ ]

= qε0
∏
α

1

(1− qωαu)(1− qωαu−1)
,

where S0
E [{Φα}, A] =

∫
dτ
∑
α

|(∂τ +Aτ )Φα|2 + ω2|Φα|2 and

with periodic b.c : Φ(τ) = Φ(τ + β) .

(1.84)

Step IV : Show that∫
[DA]

∏
α[DΦα]

(gauge)
e−S

0
E [{Φα},A]+qext

∫
A (with periodic b.c : A(τ) = A(τ + β))

=

∮
|u|=1

u

2πiu
uqext

∫ ∏
α

[DΦα]e
−S0

E [{Φα},A= log u
β
dτ ]

(1.85)

(hint : Using gauge transformation we can always make Aτ = log u
β for |u| = 1. Then,

residual gauge transformation on thermal circle S1
β (with radius β

2π ) make log u as 2πi-

periodic variable. See (2.8))

2 Lecture III, IV : 3d CFT from 3d gauge theory

2.1 Pure Chern-Simons interaction

Ref:

"Remarks on the canonical quantization of the Chern-Simons-Witten theory" by S. Elitzur,

G. Moore, A. Schwimmer and N. Seiberg

The general action (with Poincare invariance and gauge invariance) for pure (without mat-

ter) u(1) gauge theory on Euclidean 3 dimensional manifold M is

SMaxwell-CS action[A] =
1

g2
Smaxw[A]− ikCS[A] , where

Smaxw[A] :=

∫
M
dA ∧ dA =

∫
M

√
gFabF

ab ,

CS[A] :=
1

4π

∫
M
AdA =

1

4π

∫
M
εabcAa∂bAc

(2.1)
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The action is invariant under the following gauge transformation

A→ A+ dΛ , where

eΛ : M → u(1) .
(2.2)

Problem 2.1-1: In the Maxwell-CS theory, show that the gauge �eld has mass propor-

tional to g2k .

The Maxwell term is irrelevent [FµνF
µν ] = 4, i.e. g2 → ∞ as Λ → 0, and the term

drop out in the IR and we only have

SCS [A] = − ik
4π

∫
M
AdA , (2.3)

in the IR. When the gauge �eld is not coupled to any matter �eld, the theory is called pure

CS theory and does not depend on metric of space-time. These metric-independent theories

are called topological quantum �eld theory (TQFT). All physical observables of TQFT are

topological invariants of the 3-manifold M . Every TQFTs have vanishing stress-energy

tensor

Tµν = 0 . (2.4)

The pure Chern-Simons theory is a trivial local CFT. The only local operator in the theory

is identity operator. Note that Fµν is gauge-invariant but e.o.m requires that

δSCS [A]

δA
= 0 ⇒ Fµν = 0 . (2.5)

Hilbert-space on a torus T2 We put the u(1)k CS theory on M = Rt × T2

Rt × T2 = {(t, θ1, θ2) : θ1 ∼ θ1 + 1 , θ2 ∼ θ2 + 1} . (2.6)

General solutions to the e.o.m, Fµν = 0, on M modulo gauge tansformation are

A = iα1dθ1 + iα2dθ2 , (2.7)

where the variable αi are periodic variables due to the following large gauge transformation

Large gauge transformation eΛ = e2πin1θ1+2πin2θ2 : (α1, α2) ∼ (α1 + 2πn1, α2 + 2πn2) .

(2.8)

Here n1, n2 are chosen to be integers for the gauge tranformation eΛ is well-de�ned on T2.

For zero-modes on T2 given in (2.7), the CS theory becomes a simple 1d QM described by

following action

± k

2π

∫
dtα̇1α2 (2.9)
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The sign depends on the choice of orientation of the Rt × T2. We choose an orientation

such that the sign becomes +1. From the action, we see that α1 and α2 are canonically

conjugate to each other.

Pα1 =
δSCS
δα̇1

=
k

2π
α2 . (2.10)

Quantizing the QM system, we get following quantum commutation relation

[X̂, P̂ ] =
2πi

k
. (2.11)

We choose X = α1 and P = α2. To construct the Hilbert-space, we introduce a position

basis |X〉 on which the quantum operators act as

X̂|X〉 = X|X〉 , eiεP̂ |X〉 = |X +
2πε

k
〉 . (2.12)

Since the (X,P ) are 2π-periodic variables, we need to impose following conditions on the

basis

(e2π ∂
∂X − 1)|X〉 = |X + 2π〉 − |X〉 = 0 ,

(e2π ∂
∂P − 1)|X〉 = (e−ikX̂ − 1)|X〉 = (e−ikX − 1)|X〉 = 0 .

(2.13)

By imposing the two conditions, we see that the resulting Hilbert-space is �nite-dimensional

H(T2) = span
{
|X =

2πn

k
〉 : n = 0, . . . , |k| − 1

}
,

dimH(T2) = |k| .
(2.14)

As a topological theory, all states in the Hilbert-space have zero-energy and thus these are

vacua of the theory. For the consistency of the quantization, we need impose that

k ∈ Z . (2.15)

Unlike the usual quantum �eld theory, these vacua are characterized by the VEV of non-

local operators called Wilson loops. The Wilson for abelian gauge theory is de�ned by

WC [A] = exp

∮
C
A (2.16)

The operator is supported on a closed curve C.

Problem 2.1-2: Show that the Wilson loop is invariant under gauge transformations.

On the vacua, the Wilson loop for C = {(t, θ1, θ2) = (0, s, 0)}1s=0 takes following VEV

〈X =
2πn

k
|WC |X =

2πn

k
〉 = exp

(
i

∮
C

2πn

k
dθ1

)
= exp

(
i
2πn

k

)
. (2.17)

The analys can be extended to the case M = Rt × Σg with a 2d Riemann of genus g and

the result is

dimH(Σg) = |k|g . (2.18)
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2.2 Topological u(1) symmetry

For u(1) gauge theory (either with CS interaction or not) coupled to matter �elds in 3d

space-time, there is gauge-invariant conserved current, Jµtop, made of �eld strength of the

gauge �eld

Jµtop :=
1

2π
εµνρFνρ , ∂µJ

µ
top = 0 . (2.19)

For pure Chern-Simons theory case, the F vanishes by e.o.m and there is no conserved

current. From the Noether theorem, the existence of the conserved current is equivalent

to the existence of a u(1) �avor symmetry whose conserved charged is the jµtop. We call

the u(1) symmetry associated to the dyanmical u(1) gauge �eld is called `topological u(1)

symmetry' which is usually denoted as u(1)top.

2.3 Witten's SL(2,Z) action

Ref:

het-th/0307041 "SL(2,Z) Action on Three-Dimensional Conformal Field Theories With

Abelian Symmetry" by E. Witten

Let T be a 3d CFT with a u(1) �avor symmetry. We can deform the theory by gaug-

ing the u(1) �avor symmetry with CS level k. Let denote the resulting 3d CFT be

(ST k) · T := (a 3d CFT obtained by gauging u(1) with CS level k) . (2.20)

Under the gauging, the number of u(1) symmetry is preserved since gauging u(1) �avor

symmetry introduce a topological u(1) symmetry whose charge is given by �eld strength

of the u(1) gauge �eld. So, we can act the gauging operation successively and consider

following theory

... · (ST k3) · (ST k2) · (ST k1) · T (2.21)

Witten proved that

(ST ) · (ST ) · (ST ) · T = T , S · S · T = C · T , S · S · S · S · T = T . (2.22)

Here C is a charge conjugation operation, C2 = 1, and S is considered to be ST k=0. So, the

�eld-theoretic action form a SL(2,Z) group.

Problem 2.3-1: Check the SL(2,Z) by reading the Witten's paper (which is quite read-

able).

2.4 Monopole operator

Ref :

ArXiv:1710.00654, "Monopole Operators in U(1) Chern-Simons-Matter Theories" by S.

Chester, L. lliesiu, M. Mezei and S. Pufu.
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For u(1) CS matter theory, there is an u(1) topological symmetry associated to the dy-

namical u(1) gauge �eld. One natural question one may ask is what local operators are

charged under the u(1)top? Operators charged under the topological symmetry are called

monopole operator. The local operator can not be written in a simple way using elemen-

tary �elds in the theory. The (conceptually and computationally) best way to see these

monopole operators is using the radial quantization introduced in (1.2.2). We will study

the CS matter theory on R× S2 with a deformation by a Maxwell-term parameterized by

λ. The λ = 0 corresponds to the case, we are interested while we can solve (�nd spectrum

of states in) the system in the λ → 0 limit. After solving the λ → ∞ limit �rst, then

we will interpolate the spectrum of states to λ = 0. Under the continous interpolation,

discrete quantum numbers (such as Lorentz spin (j,m) or charge Q under u(1) topological

symmetry) are invariant and we can say exactly on these quantum number.3

Monopole operators in u(1) CS theory coupled to a complex scalar The Euclidean

action on R3 for the CS matter theory is

SE [Φ, A] =

∫
R3

d3x
√
g

(
|(∂ +A)Φ|2

)
+

k

4πi

∫
R3

AdA . (2.23)

The theory is at least classically conformal. After radial quantization, the theory is mapped

to on Rτ × S2,

SE [Φ, A] =

∫
R×S2

d3x
√
g

(
|(∂ +A)Φ|2 +

1

4
|Φ|2

)
+

k

4πi

∫
R×S2

AdA (2.24)

The ptn for the theory can be computed using path-integral

Z(q) := TrH(S2)q
∆

=

∫
[DA][DΦ]

(gauge)
e−SE [Φ,A] (with periodic b.c τ ∼ τ + β) where q = e−β .

(2.25)

Now we put the theory on S1
β × S2 by imposing periodic boundary condition. The path-

integral is hard to perform for �xed k since there is no tunable parameter. To have a control

over the path-integral, we introduce an additional parameter, say λ, as follows

Z(q, λ) := TrHλ(S2)q
∆

=

∫
[DA][DΦ]

(gauge)

∣∣∣∣
τ∼τ+β

e−SE [Φ,A]−λSmaxw
E [A] , where

Smaxw
E [A] =

∫
F ∧ ∗F .

(2.26)

The maxwell-term is gauge-invariant and poincare-invariant (isometry on Rτ ×S2) but not

conformally invariant. When λ→ 0, the deformed theory on S1
β × S2 becomes the original

radially quantized theory and recover the classical conformal invariance. The spectrum

{∆, (j,m), Q} of the Hilbert-space Hλ(S2) depends on the parameter λ where ∆ is energy

3Some states in λ → ∞ could disapper when λ → 0 if the energy of the state diverges in the limit. For

simplicity, let us ignore the subtle possiblity.

� 18 �



and (j,m) is a Lorentz spin on S2 and Q is the charge for the u(1)top symmetry.4 We will

�rst perform the path-integral, or equivalently construct the Hilbert-space Hλ(S2), in an

asymptotic limit where λ → ∞. Then, we will interpolate the spectrum to λ → 0. In the

interpolation, discrete quantum numbers ((j,m) and Q) are expected to be intact under

the continuous deformation and we can read o� the spectrum of these quantum numbers

in the original theory (λ = 0).

To perform the path-integral in the asymptotic limit λ → ∞, we �rst expand gauge

�eld as follows

A = A
(N)
∗ (u) +

1√
λ
δAN , (2.27)

where the A
(N)
∗ (u) is the classical con�guration (modulo gauge transformation) extremizing

the Maxwell action

δSmaxw[A]

δA

∣∣∣∣
A=A

(N)
∗ (u)

= 0 . (2.28)

The general solutions for the classical e.o.m for the Maxwell theory on S1
β × S2 are

A
(N)
∗ (u) : Aτ =

1

β
log u , Fθφdθ ∧ dφ =

N

2
sin θdθ ∧ dφ . (2.29)

The charge Q of u(1)top is (see (2.19))

Q =

∫
τ=τ0

dΩ2J
τ
top =

1

2π

∫
S2

F = N . (2.30)

The classical solutions are parametrized by

N ∈ Z , (Dirac quantization)

log u ∼ log u+ 2πi , |u| = 1 , (Large gauge transformation, (2.8))
(2.31)

Problem 2.4-1: Suppose that the scalar �eld has u(1) guage charge qgauge. Then, how

should the Dirac quantization condition be modi�ed?

Then, the path-integral simplify as follows in the limit λ→∞

Z(q = e−β, λ→∞)

=
∑

classical solutions

∮ ∏
N [DδA(N)][DΦ]

(gauge)
e
−SE [Φ,A=A

(N)
∗ (u)+ 1√

λ
δAN ]−λSmaxw

E [A=A
(N)
∗ (u)+ 1√

λ
δAN ]

=
∑
N

∮
|u|=1

du

2πiu
e−λS

maxw
E [A

(N)
∗ (u)]+ikCS[A

(N)
∗ (u)]

∫ ∏
N [DδA(N)][DΦ]

(residual gauge)
e
−S0[{δA(N)},Φ]+o( 1√

λ
)

where S0[{δA(N)},Φ] := |(∂ +A
(N)
∗ (u))Φ|2 +

1

4
|Φ|2 + |∂(δA(N))|2 .

(2.32)

4Note that the deformation does not break any symmetry associated to these quantum numbers. Oth-

erwise, we can consider these quantum numbers in non-zero λ
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The actions for the classical solutions are

e−λS
maxw
E [A

(N)
∗ (u)]+ikCS[A

(N)
∗ (u)] = e−2π2N2λukN . (2.33)

So, the path-integral becomes

Z(q = e−β, λ→∞)

=
∑
N

e−4π2N2λ

∮
|u|=1

du

2πiu
ukN

∫
[DΦ]e

−S0[Φ]+o( 1√
λ

)

where S0[Φ] :=

∫
dτdΩ2

(
|(∂τ +

1

β
log u)Φ|2 − Φ∗(∇2

N,Ω2
− 1

4
)Φ
)
.

(2.34)

Here we ignore an overall factor (independent on u and N) comming from integrtaion of

the δA(N). ∇2
N,Ω2

is the Laplacian on S2 in monopole background with monopole charge

N (F = N
2 sin θdθdφ). By expanding the Φ by monopole harmonics on S2,

Φ(τ,Ω2) =
∑

`=
|n|
2
,m

Φ`,m(τ)YN,`,m(Ω2) ,

∇2
n,Ω2

YN,`,m = −`(`+ 1)YN,`,m , ` =
|N |
2
,
|N |
2

+ 1, . . . ,m = −`,−`+ 1, . . . , ` .

(2.35)

the ptn can be computed as

Z(q = e−β, λ→∞) =
∑
N

e−2π2N2λ

∮
|u|=1

du

2πiu
ukN

∫ ∏
`,m

[DΦN,`,m]e−
∑
`,m S0[{ΦN,`,m}] ,

S0[{ΦN,`,m}] :=

∫
dτ |(∂τ +

1

β
log u)ΦN,`,m|2 + ω2

N,`,m|ΦN,`,m|2 .

(2.36)

Note that for �xed N , the system is equivalent to the gauged QM system studied in Problem

1-3.4 with α→ (N, `,m) and qext = kN . From (1.78), our Hilbert-space Hλ→∞(S2) is given

by

Hλ→∞(S2) = ⊕∞N=−∞HN (S2) , where

HN (S2) = span

{∏
`,m

(a†ΦN,`,m)NN,`,m(a†
ΦN,`,m

)Mn,`,m |N〉 : F =
∑
`,m

(NN,`,m −MN,`,m) + kN = 0

}
.

(2.37)

|N〉 is the vacuum in the topological sector with monopole charge N ,

aΦN,`,m |N〉 = aΦN,`,m
|N〉 = 0 , for all ` =

|N |
2

+ Z≥0 and m ∈ Z (|m| ≤ `) . (2.38)

The spectrum of monopole operators are summarized in the Table below.
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u(1) gauge charge F Topologica u(1) charge Q Lorentz-spin (j,m)

a†Φ
N,`≥|N|2 ,m

+1 0 (`,m)

a†
Φ
N,`≥|N|2 ,m

−1 0 (`,m)

|N〉 kN N (0, 0)

Table 1. Hλ(S2). We computed the spectrum in λ → ∞ but it is expected to work even for

λ = 0 case. |N〉 (bare monopole state) corresponds to the semi-classical monopole con�guration in

(2.29). The con�guration is symmetric on S2 and the state does not carry Lorentz spin. Due to a CS

action, the bare monopole state has non-zero gauge charge F = kN . Only gauge-invariant operators

have physical meaning. To obtain gauge-invariant operator we need to excite the oscillatory modes

(a†Φ, a
†
Φ

) around the monpole background. The modes always carry non-zero Lorentz spin when

N 6= 0.

2.5 3d IR dualities

Ref :

arXiv:1606.01989, "A Duality Web in 2+1 Dimensions and Condensed Matter Physics" by

S. Seiberg, T. Senthil, C. Wang and E. Witten

IR duality : Two di�erent UV theories that �ow to the same IR �xed point.

Example : The following gauge theory

T UV : u(1) gauge �eld coupled to a complex scalar (of gauge charge +1)

with CS level +1 and quartic potential |Φ|4 .
(2.39)

is claimed to �ow to a free massless complex Dirac fermion theory in IR

T IR : S =

∫
d3xΨ(iγµ∂µ)Ψ . (2.40)

As an zeroth order check of duality, we can see that both theories have same �avor symmetry

u(1). For the UV theory, the �avor symmetry is realized as topological u(1) symmetry while

it appears as conventional �avor symmetry (rotating elementary �eld) in the IR theory. As

an next, check we can compare some lowest gauge-invariant operators. The non-identity

lowest (with smallest ∆) operators in the free-fermion theory are

Ψ and Ψ with (∆, j, Q) = (1, 1/2, 1) and (1, 1/2,−1). (2.41)

Here Q is the charge under the u(1) �avor symmetry. On the other-hand, the lowest

operators in the UV CS matter-theory is

aΦ
N=1,`= 1

2

|N = 1〉 with (∆, j, Q) = (?, 1/2, 1) , and

aΦ
N=−1,`= 1

2

|N = −1〉 with (∆, j, Q) = (?, 1/2,−1)
(2.42)
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Since the conformal dimensioni ∆ is a continuous quantum number and it is very di�cult

to compute it from the UV description. Except the undetermined the conformal diemsnion,

the lowest operator spectrum nicely matches in both sides of duality. The duality predicts

that the gauge-invariant operator should have conformal dimension 1.

Problem 2.5-1: Check other exmples of IR dualities proposed in arXiv:1606.01989
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