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������� Quit[]

������� k[β_, z_] := zβ/2 Hypergeometric2F1�
β

2
,

β

2
, β, z�;

The conformal block:

������� g[Δ_, L_][z_, zb_] := k[Δ + L, z] k[Δ - L, zb] + k[Δ + L, zb] k[Δ - L, z];

������� F[Δϕ_, Δ_, L_][z_, zb_] :=
1

�z zb�Δϕ - �(1 - z) �1 - zb��Δϕ

��(1 - z) �1 - zb��Δϕ g[Δ, L][z, zb] - �z zb�Δϕ g[Δ, L][1 - z, 1 - zb]	;

our functional:

������� vector[h_] := {h[0.5, 0.55] - h[0.5, 0.4], h[0.5, 0.6] - h[0.43, 0.35]};

normalize the vector for better display:

������� normalizeF[Δϕ_, Δ_, L_] := Module�


v = vector[F[Δϕ, Δ, L]],

λ = If�L > 0, 1 - L � 20, 1 - �Δ - L� � 10�
,

λ v � Norm[v]

�;

������� Flist[L_, Δmin_] := Module�{Δϕ = 0.125},

Table�normalizeF[Δϕ, Δ, L],


Δ, Δmin, Δmin + 4, 1 � 20


�

�;

Flist[0, Δmin_] := Module�{Δϕ = 0.125},

Table�normalizeF[Δϕ, Δ, 0],


Δ, Δmin, Δmin + 4, 1 � 100


�

�;

������� stressTensorVector = normalizeF[0.125, 2, 2];



������� Show[ListPlot[{Flist[2, 2], Flist[4, 4], Flist[6, 6], Flist[0, 0.1]},

AxesOrigin → {0, 0}, Joined → True, AspectRatio → 1,

InterpolationOrder → 4, PlotRange → {{-1, 1}, {-1, 1}}],

Graphics[{Dashed, Line[{-2 stressTensorVector, 2 stressTensorVector}]}]]
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������� Show[ListPlot[{Flist[2, 2], Flist[4, 4], Flist[6, 6], Flist[0, 0.2]},

AxesOrigin → {0, 0}, Joined → True, AspectRatio → 1,

InterpolationOrder → 4, PlotRange → {{-1, 1}, {-1, 1}}],

Graphics[{Dashed, Line[{-2 stressTensorVector, 2 stressTensorVector}]}]]
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������� Show[ListPlot[{Flist[2, 2], Flist[4, 4], Flist[6, 6], Flist[0, 0.5]},

AxesOrigin → {0, 0}, Joined → True, AspectRatio → 1,

InterpolationOrder → 4, PlotRange → {{-1, 1}, {-1, 1}}],

Graphics[{Dashed, Line[{-2 stressTensorVector, 2 stressTensorVector}]}]]
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������� Show[ListPlot[{Flist[2, 2], Flist[4, 4], Flist[6, 6], Flist[0, 0.8]},

AxesOrigin → {0, 0}, Joined → True, AspectRatio → 1,

InterpolationOrder → 4, PlotRange → {{-1, 1}, {-1, 1}}],

Graphics[{Dashed, Line[{-2 stressTensorVector, 2 stressTensorVector}]}]]
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������� Show[ListPlot[{Flist[2, 2], Flist[4, 4], Flist[6, 6], Flist[0, 1.1]},

AxesOrigin → {0, 0}, Joined → True, AspectRatio → 1,

InterpolationOrder → 4, PlotRange → {{-1, 1}, {-1, 1}}],

Graphics[{Dashed, Line[{-2 stressTensorVector, 2 stressTensorVector}]}]]

�������
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

������� Show[ListPlot[{Flist[2, 2], Flist[4, 4], Flist[6, 6], Flist[0, 1.03]},

AxesOrigin → {0, 0}, Joined → True, AspectRatio → 1,

InterpolationOrder → 4, PlotRange → {{-1, 1}, {-1, 1}}],

Graphics[{Dashed, Line[{-2 stressTensorVector, 2 stressTensorVector}]}]]
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We can conclude that if a unitary CFT has a scalar operator with scaling dimensionΔϕ = 1 /8, then
there might be another scaling operators in the spectrum, whose scaling dimension is lower that
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1.03.

Two dimensional ising model is solvable using Virasoro algebra. We know exactly the scaling
dimension of the magnetization operator σ to be 1/8, and the scaling dimension of the thermal
operator ϵ to be 1.

The test above shows that using Δϕ = 1 /8 as an input, the bound we obtained is very close to the
exact value.

Notice we have not used Virasoro algebra in the calculation, the conformal blocks that we have
used are fixed by sl(2)⊗sl(2) algebra. In higher dimensions, we do not have Virasoro in our hand, the
above result suggests that this method could be generalized to higher space-time dimensions.
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Short Review onNumerical
Bootstrap Results



2D bootstrap with Z2 symmetry [arXiv:1602.07982]

1. The bounds converge as we increase the derivative truncation parameterΛ
2. All the minimal models appear along a straight line
3. 2D Ising model appear as a kink
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A similar study in 3D gives [arXiv:1203.6064]

3D Ising model again appears as a kink. Notice in 3D we do not have Virasoro algebra. 3D Ising
models is very very very very hard to solve. This is a non perturbative result.
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The same plot in fractional dimension [arxiv: 1309.5089]

Compare with ϵ - expansion
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Feymann loops calculations :

"Critical exponents from seven loop strong coupling
λϕ4 theory in three dimensions" Hagen Kleinert

this requires calculating thousands of Ferymann Diagrams.

Another problem is that the series you get does not converge,
proper resummartion method is necessary.
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[arXiv:1602.07295]

At wider range, the plot intersect withΔ0 ' = 3 at aroundΔ0∼1.04.
This is a general bound for ANY 2nd order phase transition.

There must exist an operator invariant under any global symmetry, and have scaling dimension
Δ>1.04.

In terms of critical exponents, this corresponds to

ν>0.51

Certains lattice simulation results has being excluded by this number.

It is hard for lattice simulation to tells so called weakly first order phase transtion from 2nd order
phase transition.
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[arXiv : 1602.07295]

conformal bootstrap result can be used to constrain symmetry enhancement on lattice.

take Zn→ U(1) as an example

A recent hot topic in condensedmatter physics is the phase transition from Neel phase to so VBS
phase.

which could be studies by simulating so called J-Qmodels using quantumMonte Carlo method, the
models has a IR fixed point with SU (N)×U(1)b symmetry, where the U(1)b is the topological U(1)
flavor symmetry mentioned by Dongmin yesterday.

Depends on the type of latticed used in the simulation, only some subgroup of U(1) is preserved. Z4
on square lattice, Z3 on honey-comb lattice, Z2 on rectangular lattice and so on.

Suppose the CFT contains an operator with U(1) charge q=2 which is relevant (Δ<3), on rectangular
lattice, it requres extra fine tuning to reach the fixed point.

From the bootrap, we notice that, for Zn→ U(1) enhancement to happen,ΔVBS > 1.02. Or in terms of
critical exponents ηVBS > 1.02. (This is a big number).
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A simulation on square lattice was done in [PRL108.137201].

N=2, ηVBS = 0.20 (2)
N=3, ηVBS = 0.42 (3)
N=4, ηVBS = 0.64 (5)

suppose you put these models on rectangular lattice, all of them should undergos 1st order phase
transition.

[PRL108.137201] shows that
N≥4 we have 2nd order phase transtion
which N=2,3 case we have 1st order phase transtion.

The N=4 case is slightly in tenstion with bootstrap result.

It was argued that the SU (2)×U(1)bmodels has IR symmetry enhancement to SO(5). This has been
rules out by another bootsrap study.
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The famous Ising bootstrap island [arXiv:1406.4858] [arXiv:1603.04436]:
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[arXiv : 1603.04436]
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Δσ = 0.5181489 (10)
Δϵ = 1.412625 (10)

Just for fun, let us check this number on “inverse symbolic calculator”.

�������� Feigen2 = 2.502907875095892822283902873218;
π

Gamma�1 � 6�
Feigen2

�������� 1.412624973231575784493604374302

Exercise:
1) Search wiki "the second Feigenbaum constant".
2) Search "Feigenbaum constant + renormalization".

It is not clear to me whether this means a connection between Ising model and chaos.
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How to encode global symmetry

�ϕiϕjϕkϕl
 = 1
x122Δϕ x342Δϕ

ΣI∈V×V P(I)ijkl ΣO∈ I λ2ϕϕO gΔ,ℓ(u, v)

Notice there is an extra summation over the irreps appearing in V×V.

For O(n) group, we have

P(S)ijkl = 1
n δij δkl

P(T)ijkl = 1
2 δik δjl +

1
2 δil δjk -

1
n δij δkl

P(A)ijkl = 1
2 δik δjl -

1
2 δil δjk

which tell us how to decompose reducible reps V×V into irreps. For example,

P(S)ijklϕkϕl

is an O(n) singlet.

One can also check that

P(I)ijkl δik δjl = dim I.

Crossing equation is

1
x122Δϕ x342Δϕ

ΣI∈V×V P(I)ijkl ΣO∈ I λ2ϕϕO gΔ,ℓ(u, v) = 1
x232Δϕ x142Δϕ

ΣI∈V×V P(I)kjil ΣO∈ I λ2ϕϕO gΔ,ℓ(v, u)

RHS is LHS with i<>j, 1<>3 flip. Remember u = x122 x342

x132 x242
,v = x232 x142

x132 x242
.

Let us define a matrix M by

P(R')kjil =∑RMR'R P(R)ijkl

the crossing equation becomes

∑R �P(R)ijkl ΣO∈R λ2ϕϕO vΔϕ gΔ,ℓ(u, v)� =∑R' MR'R P(R)ijkl ΣO∈R' λ2ϕϕO uΔϕ gΔ,ℓ(v, u)

P(R)ijkl� ΣO∈R λ2ϕϕO vΔϕ gΔ,ℓ(u, v) - ∑R'MR'R ΣO∈R' λ2ϕϕO uΔϕ gΔ,ℓ(v, u)� = 0 (1)

we have three independent equations. We have omitted the summation over operators in eqch
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irreps.

The numerical code works with
F±,Δ,ℓ(u, v) = vΔϕ gΔ,ℓ(u, v) ± uΔϕ gΔ,ℓ(v, u).

This is because the derivatives acting on the diagional (u=v) direction vanish for F-. The off dia-
gional (u=- v) direction directive vanish for F+. We need to get rid of these flat directions when doing
numerics, otherwise the numerics becomes instable.

In eqn (1), make the replacement u<>v.

P(R)ijkl� ΣO∈R λ2ϕϕO uΔϕ gΔ,ℓ(v, u) - MR'R ΣO∈R' λ2ϕϕO vΔϕ gΔ,ℓ(u, v)� = 0 (2)

(1)±(2) we get

(ΣO∈R λ2ϕϕO F±,Δ,ℓ(u, v) ∓ ∑R' MR'R ΣO∈R' λ2ϕϕO F±,Δ,ℓ(u, v)) = 0

which would be collectively written as

�1 ∓ MT�.
ΣO∈ S λ2ϕϕO F±,Δ,ℓ (u, v)
ΣO∈ T λ2ϕϕO F±,Δ,ℓ (u, v)
ΣO∈ A λ2ϕϕO F±,Δ,ℓ (u, v)

=0

This is basically the crossing equation.
For O(n)

M =

1
n

1
2

- 1
2

- 2-n-n2

n2
- 2-n

2 n
- -2-n

2 n

- -1+n
n

1
2

1
2

;

IdentityMatrix[3] - Transpose[M] // RowReduce // MatrixForm
IdentityMatrix[3] + Transpose[M] // RowReduce // MatrixForm

1 -2-n
n

1
0 0 0
0 0 0

1 0 - 2 (-1+n)
n

0 1 1
0 0 0

So that we have all together three crossing equations.

( )
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ΣO∈ S λ2ϕϕO
F-,Δ,ℓ(u, v)

0
F+,Δ,ℓ (u, v)

+ ΣO∈ T λ2ϕϕO
0
1

-2-n
n F+,Δ,ℓ(u, v)

+ ΣO∈ A λ2ϕϕO
- 2 (-1+n)

n F-,Δ,ℓ(u, v)
F-,Δ,ℓ (u, v)
F+,Δ,ℓ (u, v)

= 0

Exercise: Derive the crossing equation for SU(N) group, withϕI ∈ Adj.
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[arXiv:1307.6856]
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[arxiv : 1504.07997]

O(2) vector model describes normal phase to superfluid phase transition, red lines are experimen-
tal measurement.
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[arXiv:1211.2810]

∑�∈ϕ×ϕλϕϕ�2 FΔ,ℓ(u, v) = 0

λ�02 FΔ0,ℓ0(u, v) = -F0,0(u, v) -∑�λ�2 FΔ,ℓ(u, v)
where we used the normalization λϕϕ Id = 1

We try to find a linear functional such that
α(FΔ0,ℓ0(u, v)) = 1
α(FΔ,ℓ(u, v)) ≥ 0 for each� in the ∑� ...

If such α exist, then there is an inequality

λ�02 = -α(F0,0(u, v)) -∑�λ�2α(FΔ,ℓ(u, v)) ≤ -α(F0,0(u, v))

Wewant to find the most restrictive bound, which minimize -α(F0,0(u, v)) .

Such that α should satisfy the condition ∑�λ�2α(FΔ,ℓ(u, v)) = 0 .

On a physical theory, the spectrum is discrete. Remember that λ�2 > 0. The only way that the above
eqn. can be satisfied is the α(FΔ,ℓ(u, v))=0 on some discrete choices ofΔ, which correspondss to the
physical spectrum.

This means we can read off the physical spectrumΔ from zeros in α(FΔ,ℓ(u, v)). This is called the
Extremal Functional Method.

4 6 8 10 12 14
Δ

40

50

60

70
ln(α·F)

Spin 0 in [σ]×[σ]
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Zero: 4.000004175, 7.991361449, 8.843618529

The exact value are 4, 8, 9 ...

We can solve 2D Ising model without Virosora algebra!
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[arXiv:1807.04434]

3D supersymmetric Ising model

The models contains Majorana fermions.

It was argued in arXiv:1301.7449 that this models has emergent supersymmetry and could be
realized at the boundary of topological superconductor.
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