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1 Introduction

Let us consider a functional integral involving the spacetime metric gµν and other fields φi

Z =

∫
DgµνDφ eiS[gµν ,φ] (1.1)

where we assume the action to be

S =
S1

GN
+ S2, (1.2)

S1 =

∫
d4x
√
g

(
R+

1

2
∂µφ1∂µφ1 + V (φ1)

)
, (1.3)

S2 =

∫
d4x
√
g

(
1

2
∂µφ2∂µφ2 + V (φ2)

)
. (1.4)

Here the scalar field φ1 in S1 couples to the gravitational field with the coupling constant GN and the
scalar field φ2 in S2 is a purely quantum theory on curved spacetime. When we take GN → 0 limit,
there may exist a saddle point (or multiple saddle points). Around any saddle point ḡ and φ̄, each
field is expanded as

g = ḡ +
√
GNh, φ1 = φ̄1 +

√
GNφ1 (1.5)

where ḡ and φ̄1 satisfy
δS1

δḡµν
= 0,

δS1

δφ̄1
= 0. (1.6)

Then the full quantum gravity action and its functional integral are approximated to

S ' S
(0)
1 [ḡ, φ̄1]

GN
+ S

(2)
1 (ḡ, φ̄1, h, δφ1) + S2(ḡ1, φ2) + · · · , (1.7)

Z ' ei
S

(0)
1 [ḡ,φ̄]

GN

∫
DhµνDδφ1Dφ2 e

i
(
S

(2)
1 [ḡ,φ̄1,hµν ,δφ1]+S2[ḡ,φ2]+···

)
. (1.8)
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In this situation, h and δφ1 in S
(2)
1 can be treated as the same way of the quantum field φ2 in S2. Thus,

even though we do not know yet how to handle the full quantum gravity theory, we can approximately
study the quantum behavior under a gravitational interaction by the semi-classical approximation.

2 Quantization of fields

2.1 In flat spacetimes

Firstly let us review the free scalar field theory in flat spacetimes, ḡµν = η̄µν as follows

S =
1

2

∫
d4x

[
ηαβφ,αφ,β −m2φ2

]
, (2.1)

δφS → ∇2φ+m2φ = 0 (2.2)

and construct the field operator expansion in momentum space

φ̂(t,x) =

∫
d3k

(2π)3/2

1√
2

(
v∗k(t)eik·xâk + vk(t)e−ik·xâ†k

)
. (2.3)

The canonical momenta operator is defined and yielded as

π̂(t,y) =
∂φ̂(t,y)

∂t
=

∫
d3k

(2π)3/2

1√
2

(
v̇∗k(t)eik·yâk + v̇k(t)e−ik·yâ†k

)
. (2.4)

Then we postulate the following commutation relations

[φ̂(t,x), π̂(t,y)] = iδ(x− y), [φ̂(t,x), φ̂(t,y)] = [π̂(t,x), π̂(t,y)] = 0 (2.5)

in terms of the time-independent operators âk and â†k

[âk, â
†
k′ ] = δ(k− k′), [âk, âk′ ] = [â†k, â

†
k′ ] = 0. (2.6)

which are annihilation and creation operators respectively.
Now we check the mode expansion (2.3) satisfies orthonormal condition so that the field operator

φ̂ properly get operator valued. Plugging the field operator (2.3) into the equation of motion (2.2),
the mode functions are required to satisfy

v̈k + ω2
kvk = 0 (2.7)

where w2
k = k2 + m2. The commutation relations with (2.3) and (2.4) are consistent with (2.5) only

when the following normalization condition is satisfied

v̇k(t)v∗k(t)− vk(t)v̇∗k(t) = 2i. (2.8)

This condition is indeed the Wronskian of the independent complex solutions vk(t) and v∗k(t)

W [vk, v
∗
k] = v̇k(t)v∗k(t)− vk(t)v̇∗k(t). (2.9)

On the other hand, if W [x1, x2] = 0 this indicates the matrix(
ẋ1(t) x1(t)
ẋ2(t) x2(t)

)
(2.10)
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is degenerate for each t.
The norm of the field operator is defined by Klein-Gordon inner product of the mode function such

as

(v1, v2) = −i
∫
d3x[v1(t,x)v̇∗2(t,x)− v̇1(t,x)v∗2(t,x)] (2.11)

but this does not produce a genuine inner product space since it can be positive or negative, depending
on values of v1 and v̇1 (or v2 and v̇2). This definition is deeply related to the Klein-Gordon charge
density which is

(φ, φ) = i

∫
d3x

[
φ∗

∂

∂t
φ− φ ∂

∂t
φ∗
]

= Q (2.12)

where Q can be negative. We identify the subspace of positive-energy solutions as the physical space
of state vectors and restrict the Klein-Gordon inner product to this subspace. The general solution
for (2.7) is obtained as

vk(t) =
1
√
ωk

(Ake
iωt +Bke

−iωt), (2.13)

where ω is positive with respect to t, and from (2.8) the constants of integration Ak and Bk must obey

|Ak|2 − |Bk|2 = 1. (2.14)

The Hamiltonian is calculated as

Ĥ =

∫
d3kωk

[
A∗kB

∗
kâkâ−k +AkBkâ

†
kâ
†
−k +

(
|Ak|2 + |Bk|2

)(
â†kâk +

1

2
δ(3)(0)

)]
(2.15)

where AkBk = 0 is required. Together with (2.14), the coefficients are determined as

Ak = eiδk , Bk = 0 (2.16)

where δk can set to be zero, and then the mode function becomes

vk(t) =
1
√
wk
eiωkt. (2.17)

2.2 In curved spacetimes

The free scalar field in curved spacetime is written as

S =
1

2

∫
d4x
√
−ḡ
[
ḡαβφ,αφ,β −m2φ2

]
(2.18)

and the Klein-Gordon inner product is defined as

(u, v) = −i
∫
dΣµ√gΣ [u(t,x)∂µv

∗(t,x)− (∂µu(t,x))v∗(t,x)]. (2.19)

While the mode function in (2.3) is uniquely fixed in flat spacetime as we have seen the result (2.17),
in curved spacetime the mode function is not uniquely determined since there is no canonical choice
to pick positive frequency solutions.
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3 Quantum Vacuum in Minkowski spacetimes

In Minkowski spacetimes, there is a unique Poincare-invariant vacuum |OM 〉 such as

Pµ|OM 〉 = 0, Jµν |OM 〉 = 0 (3.1)

where Pµ is the translation generator and Jµν is Lorentz transformation generator. Let us consider a
mode expansion of a scalar field as follows

φ̂ =
∑
~k

â~ke
−iωt+i~k·~x + c.c., â~k|OM 〉 = 0 (3.2)

where ω is a positive value with respect to t and the annihilation operator â~k defines the Minkowski
vacuum. Under a coordinate transformation x′µ = Λµνxν , the field operator is rewritten as

φ̂ =
∑
~k′

â~k′e
−iω′t′+i~k′·~x′ + c.c. (3.3)

where the new annihilation operator â~k′ satisfies

â~k′ |OM 〉 = U †Λâ~kUΛ|OM 〉 = 0. (3.4)

Thus there exists a unique vacuum in Minkowski spacetimes.

4 Quantum Vacuum in Cosmology

The spatially flat Friedmann universe is conformally equivalent to the Minkowski metric as follows

ds2 = −dt2 + a2(t)δikdx
idxk (4.1)

= a2(η)[−dη2 + δikdx
idxk] = a2(η)ηµνdx

µdxν (4.2)

where the conformal time is introduced as

η(t) ≡
∫ t dt

a(t)
. (4.3)

Let us consider again a free scalar field theory

S =
1

2

∫ √
−gd4x

[
gαβφ,αφ,β −m2φ2

]
(4.4)

and take the spacetime metric (4.2) which is gαβ = a−2ηαβ and
√
−g = a4. Then the action explicitly

takes a form of

S =
1

2

∫
d3xdη a2

[
− φ′2 + (∇φ)2 −m2a2φ2

]
, (4.5)

and if redefining a field
χ ≡ a(η)φ, (4.6)

the action is rewritten as

S =
1

2

∫
d3xdη

[
−χ′2 + (∇χ)2 −

(
m2a2 − a′′

a

)
χ2

]
. (4.7)
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Performing the Fourier Transformation to the momentum space

χ(η,x) =

∫
d3k

(2π)3/2
χk(η)eik·~x, (4.8)

the complex Fourier modes χk(η) is required to satisfy the equation of motion

χ′′k + ω2
k(η)χk = 0 (4.9)

where ω2
k(η) = k2 +m2

eff = k2 +m2a(η)2 − a′′

a and k ≡ |k|. The general solution would take a form of

χk(η) =
1√
2

[
akv

∗
k(η) + a†kvk(η)

]
, (4.10)

and plugging this to (4.8) the field solution yields as

χ(η,x) =
1√
2

∫
d3k

(2π)3/2

[
akv

∗
k(η) + a†−kvk(η)

]
eik·x (4.11)

=
1√
2

∫
d3k

(2π)3/2

[
akv

∗
k(η)eik·x + a†kvk(η)e−ik·x

]
. (4.12)

Inserting this to the equation of motion the mode function should obey the following differential
equation

v′′k + ω2
kvk = 0. (4.13)

For the field solutions to get operator valued, they should satisfy the commutation relation such as
(2.5) and (2.6), and this automatically requires for the mode functions to be

W [vk, v
∗
k] ≡ v′kv∗k − vkv′∗k = 2iIm(v′v∗). (4.14)

Here the Wronskian (4.14) is time-independent and becomes non-zero if and only if vk and v′k are
linearly independent solutions. We take Im(v′v∗) = 1 which can be always chosen if W 6= 0.

Indeed, this normalization condition (4.14) is not enough to determine the solutions. Their linear
combination can also become a solution

uk(η) = αkvk(η) + βkv
∗
k(η) (4.15)

where αk and βk are time-independent complex values and obey the condition

|αk|2 − |βk|2 = 1 (4.16)

that is consistent with the normalization condition for uk(η) to be Im(u′u∗) = 1. Then, with the new
mode functions uk and u∗k the field solution can be written as

χ(η,x) =
1√
2

∫
d3k

(2π)3/2

[
bku
∗
k(η)eik·x + b†kuk(η)e−ik·x

]
. (4.17)

Taking operator values to the field solutions, the annihilation operators âk and b̂k and the creation
operators â†k and b̂†k are related by the following Bogoliubov transformation

âk = α∗k b̂k + βk b̂
†
−k, â†k = αk b̂

†
k + β∗k b̂−k, (4.18)

b̂k = αkâk − βkâ†−k, b̂†k = α∗kâ
†
k − β

∗
k â−k, (4.19)
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where the annihilation operators define each vacuum as

âk|Oa〉 = 0, b̂k|Ob〉 = 0. (4.20)

Let us take a-particle number operator N̂
(a)
k = â†kâk to b-vacuum

〈Ob|N̂
(a)
k |Ob〉 = 〈Ob|â†kâk|Ob〉

= 〈Ob|(αk b̂†k + β∗k b̂−k)(α∗k b̂k + βk b̂
†
−k)|Ob〉

= 〈Ob|(β∗k b̂−k)(βk b̂
†
−k)|Ob〉 = |βk|2δ3(0) (4.21)

where the expectation value for the particle number in mode k is non-zero. To drop the delta function,
we use the mean density of the a-particles in the mode k as follows

nk = |βk|2 (4.22)

and calculate the total mean density of all particles

n =

∫
d3k|βk|2. (4.23)

Two vacua are related to

|Ob〉 =

[∏
k

1

|ak|1/2
exp

(
βk

2αk
â†kâ

†
−k

)]
|Oa〉

=
∏
k

1

|ak|1/2

( ∞∑
n=0

(
βk

2αk

)n
|nak, na−k〉

)
. (4.24)

Physical vacuum can be chosen by the preference set of the mode functions that describe the “actual”
physical vacuum and particles.

Quantum mechanical analogy

This particle creation, the time dependent metric case (4.2), has an analogy with the quantum
mechanics as follows. The equation of motion for the mode function (4.13), which is

d2vk
dη2

+ ω2
kvk = 0,

is compared to the stationary Schrodinger equation for a particle in an one-dimensional potential such
as

d2ψ

dx2
+ (E − V (x))ψ = 0 (4.25)

by replacing vk → ψ, η → x, and ω2
k → E−V (x). Which indicates that the particle creation mechanism

in expanding universe can be understood by quantum-mechanical potential barrier problem. When
an incident wave function meets the potential barrier at some position of x the wave function is split
to the transmission and the reflection part. Normalizing the transmitted wave to unity (T = 1) the
incident wave probability (|α|2) and the reflected wave probability (|β|2) satisfy the conservation of
probability that |α|2 = |β|2 + 1, which is analogous to (4.16). Here the transmitted wave can be
compared to the initial vacuum fluctuation and the reflected wave can correspond to “the particle
creation” that occurs in the expanding universe .
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5 Quantum Vacuum in Black Holes Spacetimes

5.1 Rindler spacetime

Let us start with an observer in the two-dimensional Minkowski spacetime

ds2 = −dt2 + dx2. (5.1)

and consider another constantly accelerating observer with the acceleration α which is defined as

ηABdẍ
AdẍB = α2 (5.2)

in the inertial frame (t, x). The trajectory in the inertial frame is described as

Xµ =
1

α
(sinhατ, coshατ) (5.3)

which means

t(τ) =
1

α
sinhατ, x(τ) =

1

α
coshατ. (5.4)

We would like to find a metric in the accelerating frame whose coordinate is (η, ξ) and takes a form of

ds2 = Ω2(η, ξ)[−dη2 + dξ2]. (5.5)

Then the trajectory can be expressed in terms of η and ξ as follows

t(η, ξ) =
1

a
eaξ sinh aη, x(η, ξ) =

1

a
eaξ cosh aη (5.6)

where α = ae−aξ, and the metric in the accelerated frame is written as

ds2 = e2aξ[−dη2 + dξ2] (5.7)

where −∞ < η <∞ and −∞ < ξ <∞. This metric is known as Rindler spacetime.
In a lightcone coordinate, the Minkowski spacetime and the Rindler spacetime become

ds2 = −dUdV, (5.8)

= −e2aξdudv (5.9)

where

U = t− x = −1

a
e−au, (5.10)

V = t+ x =
1

a
eau, (5.11)

u = η − ξ, (5.12)

v = η + ξ. (5.13)

The Rindler coordinates covers only one quarter of the Minkowski spacetimes, which is U < 0 and
V > 0, see Fig. (1)
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Figure 1: Rindler spactimes covers only one quarter of the Minkowski spacetimes

Rindler spacetime from Black hole spacetime

The Rindler spacetime also can appear near horizon of black hole spacetimes. Let us consider the
Schwarzschild black hole spacetime

ds2 = −
(

1− 2M

R

)
dT 2 +

(
1− 2M

R

)−1

dR2 +R2dΩ2 (5.14)

and change a variable as follows

R− 2M =
X2

8M
. (5.15)

Taking the expansion near the horizon at R ≈ 2M and fixing angular values, the metric takes a form
of

ds2 ≈ −(κX)2dT 2 + dX2, (5.16)

which is the two dimensional Rindler spacetime that is equivalent to (5.7) by a proper coordinate
transformation.

5.2 Unruh Effect

For a massless scalar field in a lightcone coordinate, the standard mode expansion is written as

φ̂ =

∫ ∞
0

dω

(2π)1/2

1√
2ω

[e−iωU âω + eiωU â†ω] + (left-moving) (5.17)

=

∫ ∞
0

dΩ

(2π)1/2

1√
2Ω

[e−iΩub̂Ω + eiΩub̂†Ω] + (left-moving) (5.18)

where the Minkowski vacuum and the Rindler vacuum are defined as âω|OM 〉 = 0 and b̂Ω|OR〉 = 0
respectively. These operators satisfy the commutation relation

[âω, â
†
ω′ ] = δ(ω − ω′), [b̂Ω, b̂

†
Ω′ ] = δ(Ω− Ω′), (5.19)
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and the operators âω, â
†
ω and b̂Ω, b̂

†
Ω are related by Bogoliubov transformation

b̂Ω =

∫ ∞
0

dω[αΩωâω − βΩωâ
†
ω] (5.20)

where the inverse Bogoliubov transformation is not defined since the Rindler spacetime covers only
the quarter of the Minkowski spacetime. Replacing b̂Ω and b̂†Ω in (5.19) with (5.20), the normalization
condition for the Bogoliubov coefficient is obtained∫ ∞

0
dω(αΩωα

∗
Ω′ω − βΩωβ

∗
Ω′ω) = δ(Ω− Ω′). (5.21)

Plugging (5.20) into (5.18) and comparing it with (5.17),

1√
ω
e−iωU =

∫ ∞
0

dΩ′√
Ω′

(αΩ′ωe
−iΩ′u − β∗Ω′ωe−iΩ

′u) (5.22)

and multiplying e±iΩu both side and integrating with respect to u, we obtain∫ ∞
−∞

du
1√
ω
e−iωU±iΩu =

∫ ∞
−∞

du

∫ ∞
0

dΩ′√
Ω′

(αΩ′ωe
i(Ω∓Ω′)u − β∗Ω′ωei(Ω±Ω′)u). (5.23)

Using the following relation ∫ ∞
−∞

ei(Ω−Ω′)udu = 2πδ(Ω− Ω′), (5.24)

the Bogoliubov coefficients take a form of

αΩω =
1

2π

√
Ω

ω

∫ ∞
−∞

du e−iωU+iΩu, (5.25)

β∗Ωω =
1

2π

√
Ω

ω

∫ ∞
−∞

du e−iωU−iΩu. (5.26)

Let us change variables
t ≡ e−au, (5.27)

then (5.26) is yielded as

αΩω =
1

2πa

√
Ω

ω

∫ ∞
0

dt t−
iΩ
a
−1e

iω
a
t =

1

2πa

√
Ω

ω
b−s

∫ ∞
0

dy ys−1e−y, (5.28)

=
1

2πa

√
Ω

ω
e−s ln b

∫ ∞
0

dy ys−1e−y (5.29)

where

b = − iω
a
, s = − iΩ

a
. (5.30)

If we do the analytic continuation

b = − iω
a

+ ε, s = − iΩ
a

+ ε, ε > 0 (5.31)
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we can use the following definition

Γ(s) =

∫ ∞
0

dy ys−1e−y, Re(s) > 0 (5.32)

ln b = ln(|b|eiθ). (5.33)

Then the each coefficients are calculated to

αΩω =
1

2πa

√
Ω

ω
e
iΩ
a

ln|ωa |+ Ωπ
2a Γ

(
− iΩ
a

)
, (5.34)

βΩω = − 1

2πa

√
Ω

ω
e
iΩ
a

ln|ωa |−Ωπ
2a Γ

(
− iΩ
a

)
, (5.35)

and they yield the following relationship

|αΩω|2 = e
2πΩ
a |βΩω|2. (5.36)

Let us take a number operator N̂Ω = b̂†Ωb̂Ω to the Minkowski vacuum

〈N̂Ω〉 = 〈OM |N̂Ω|OM 〉 = 〈OM | b̂†Ωb̂Ω |OM 〉 (5.37)

= 〈OM |
∫ ∞

0
dω[α∗Ωωâ

†
ω − β∗Ωωâω]

∫ ∞
0

dω′[αΩω′ âω′ − βΩω′ â
†
ω′ ]|OM 〉, (5.38)

=

∫
dω|βΩω|2 (5.39)

=
1

e
2πΩ
a − 1

δ(0) (5.40)

where (5.21) and (5.36) were used in the last line. This is the mean number of particles with frequency
Ω observed by the accelerated observer. The mean number density with the frequency Ω is written as

nΩ =
〈N̂Ω〉
V

=
1

e
2πΩ
a − 1

(5.41)

which is the Bose-Einstein distribution with the Unruh temperature

T ≡ a

2π
. (5.42)

5.3 Hawking Pair

Let us consider the Minkowski and Rindler spacetime

ds2 = −dt2 + dx2 = e2aξ(−dη2 + dξ2)

and the action for a massless scalar field

S =
1

2

∫
dtdx

{
−(∂tφ)2 + (∂xφ)2

}
=

1

2

∫
dξdη

{
−(∂ηφ)2 + (∂ξφ)2

}
. (5.43)

Here we suppose the two patches of the Rindler spacetimes, which are denoted by the region “R”
for U < 0, V > 0 and the region “L” for U > 0, V < 0, see Fig(2). The two regions are casually
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Figure 2: Two patches of Rindler spactimes

disconnected. The field operator which cover two regions can be expanded as

φ̂ =
∑
k

BR
k b̂

R
k +BL

k b̂
L
k + c.c (5.44)

where the each mode function is split by the two independent modes depending on the sign of the
momentum, which are the left-moving and right-moving. Namely, for the mode function BR

k

BR
k = eikξ−iωη, (k > 0) −→ e−iω(η−ξ) = e−iωu = B̃R

ω (u) : right-moving (5.45)

(k < 0) −→ e−iω(η+ξ) = e−iωv = BR
ω (v) : left-moving (5.46)

and for the mode function BL
k

BL
k = eikξ−iωη, (k > 0) −→ eiω(η+ξ) = eiωv = BL

ω (v) : left-moving (5.47)

(k < 0) −→ eiω(η−ξ) = eiωu = B̃L
ω (u) : right-moving (5.48)

Then the field operators are expanded as follows

Minkowski : φ̂ =
∑
ω

Aωâω + Ãω ˆ̃aω + Āωâ
†
ω + ¯̃Aω ˆ̃a†ω, (5.49)

Rindler(R,L) : φ̂ =
∑
ω

BR
ω b̂

R
ω + B̃R

ω
ˆ̃
bRω +BL

ω b̂
L
ω + B̃L

ω
ˆ̃
bLω + c.c. (5.50)

for the Minkowski spacetime and the two patches of the Rindler spacetimes respectively. Accordingly,
the each vacuum is defined as

âω|OM 〉 = ˆ̃aω|OM 〉 = 0, (5.51)

b̂L,Rω |OR〉 =
ˆ̃
bL,Rω |OR〉 = 0 (5.52)

and the following mode functions take the positive frequency with respect to T and η

Minkowski : Aω ∼ e−iωV , Ãω ∼ e−iωU (5.53)

Rindler(R,L) : BR
ω ∼ e−iωvΘ(V ), BL

ω ∼ eiωvΘ(−V ) (5.54)

B̃R
ω ∼ e−iωuΘ(−U), B̃L

ω ∼ eiωuΘ(U). (5.55)
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By the Bogoliubov transformation, the annihilation operator in the Minkowski spacetime is expressed
by the linear combination of the operators in the two patches of the Rindler spacetimes

âω =
∑
ω′

αRωω′ b̂
R
ω + β̄Rωω′ b̂

R†
ω + αLωω′ b̂

L
ω + β̄Lωω′ b̂

L†
ω (5.56)

and similarly can be done for ˆ̃aω, b̂ω’s. Thus the Minkowski vacuum can be defined as

âω|Oω〉 −→
∑
ω′

(
αRωω′ b̂

R
ω + β̄Rωω′ b̂

R†
ω + αLωω′ b̂

L
ω + β̄Lωω′ b̂

L†
ω

)
|OM 〉 = 0. (5.57)

Here we would like to find the relation between |OM 〉 and |OR〉. To do so, let us use the following
trick. Pretending the operators to be

b̂R† = x, b̂R =
∂

∂x
, b̂L† = y, b̂L =

∂

∂y
, (5.58)

(5.57) can be written as (
x+

∂

∂x
+ y +

∂

∂y

)
ψ(x, y) = 0. (5.59)

This first order differential equation, however, is not solvable. So we take a different approach as
follows. Our observation is that e−iω

′V is analytic in the lower half plane of V when ω′ > 0 and
V → −i∞. The mode function can be written as

BR
ω = e−iωvΘ(V ) = (aV )−iω

′/a Θ(V ), (5.60)

and let us do the analytic continuation of mode function BR
ω

(aV )−iω
′/a = BR

ω , (V > 0) (5.61)

= (−aV )−iω
′/a = (e−iπaV )−iω

′/a = e−πωae−iωv = e−πaB̄L
ω , (V < 0). (5.62)

Then we can construct a new mode function that covers the half of the Minkowski spacetime which is
U < 0,−∞ < V <∞

FRω = BR
ω + e−πω/aB̄L

ω . (5.63)

Like the same way, other mode functions can be generated. The field operator in the Minkowski
spacetime is expanded to

φ̂ =
∑

FRω b̂
′R
ω + FLω b̂

′L
ω + F̃Rω

ˆ̃
b′Rω + F̃Lω

ˆ̃
b′Lω + c.c. (5.64)

with new annihilation/creation operators and new mode functions, which are

FRω = BR
ω + e−πω/aB̄L

ω , F̃Rω = B̃R
ω + eπω/a ¯̃BL

ω , (5.65)

FLω = BL
ω + e−πω/aB̄R

ω , F̃Lω = B̃L
ω + eπω/a ¯̃BR

ω . (5.66)

Then the Minkowski vacuum can be re-defined as

ˆ̃
b′(L,R)
ω |OM 〉 = 0, b̂′(L,R)

ω |OM 〉 = 0. (5.67)

The new mode function (5.64) refers the bogoliubov transformation of the operator in the following
form

b̂Rω = αω b̂
′R
ω + βω b̂

′L†
ω , (5.68)

13



and due to the normalization condition which are required to satisfying the commutation relation the
new annihilation operators become

b̂Rω =
1√

2 sinh βω
2

(
eβω/4b̂′Rω + e−βω/4b̂′L†ω

)
, (5.69)

b̂′Rω =
1√

2 sinh βω
2

(
eβω/4b̂Rω − e−βω/4b̂L†ω

)
, (5.70)

where we used β = 2π
a . Now we apply the previous same trick again as follows(
b̂Rk − e−

βωk
2 b̂L†k

)
|OM 〉 = 0 −→

(
∂

∂y
− γx

)
ψ(x, y) = 0 (5.71)

where bRk = bRω + b̃Rω and γ = e−
βωk

2 and similarly(
b̂Lk − e−

βωk
2 b̂R†k

)
|OM 〉 = 0 −→

(
∂

∂x
− γy

)
ψ(x, y) = 0. (5.72)

Then two first order differential equations are solved as

ψ(x, y) = const. eγxy. (5.73)

Taking this to the operator values, the Minkowski vacuum can be constructed from the Rindler vacuum
by applying an entangled pair of the creation operators in the R and L regions

|OM 〉 = exp

[∑
k

e−βωk/2(bR†k bL†k )

]
|OR〉 (5.74)

=
∏
k

∞∑
nk=0

e−βωknk/2

nk!
(bR†k )nk(bL†k )nk |OR〉 (5.75)

=
∏
k

∞∑
nk=0

e−βωknk/2|nk, nk〉 (5.76)

=
∑
{nk}

e−β/2
∑
k ωknk |{nk}, {nk}〉 (5.77)

where nLk = nRk
∀k. Thus the entangled pair has the same Hilbert space

|OM 〉 =
∑

all states

e−βEi/2|i〉L|i〉R (5.78)

where

|i〉R =
∏
k

(bR†k )nk√
nk!
|OR〉 (5.79)

|i〉L =
∏
k

(bL†k )nk√
nk!
|OR〉. (5.80)
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5.4 Kruskal Vacuum and Boulware vacuum

Let us consider the Schawrzschild black hole spacetime

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ (5.81)

and change variables

r∗ = r − 2M + 2M ln
( r

2M
− 1
)
. (5.82)

This naturally lead us to the tortoise lightcone coordinates

ds2 =

(
1− 2M

r

)
(−dt2 + dr2

∗) =

(
1− 2M

r

)
dũdṽ (5.83)

where
ũ ≡ t− r∗, ṽ ≡ t+ r∗. (5.84)

In this background spacetime, the action for the massless scalar field is written as

S[φ] =
1

2

∫
d4x
√
−g gαβφ,αφ,β. (5.85)

When considering the asymptotic observer near the infinity, the metric approaches

ds2 → −dũdṽ = −dt2 + dx2, (r →∞) (5.86)

and one of the field solutions takes a form of

φ ∝ e−iΩũ = e−iΩ(t−r∗) (5.87)

which describes a right-moving positive-frequency mode with respect to time t. With the metric (5.86)
the field operator is constructed as

φ̂ =

∫ ∞
0

dΩ

(2π)1/2

1√
2Ω

[
e−iΩũb̂Ω + eiΩũb̂†Ω

]
+ (left moving) (5.88)

and the vacuum for this asymptotic observer is defined as

b̂Ω|OB〉 = 0 (5.89)

which is known as Boulware vacuum.
Now let us introduce new variables

u = −4M exp

(
− ũ

4M

)
, v = 4M exp

(
ṽ

4M

)
, (5.90)

and plug this to the metric (5.83).

ds2 = − 2M

r(u, v)
exp

(
1− r(u, v)

2M

)
dudv (5.91)

which is known as Kruskal-Szekeres coordinates and regular at r = 2M while the the Schawrzschild
metric is singular at r = 2M . Taking the vicinity of the horizon, the metric behaves as

ds2 −→ −dudv = −dT 2 + dR2 (5.92)
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where
u ≡ T −X, v ≡ T +X. (5.93)

With the metric (5.92), the field operator is expanded as

φ̂ =

∫ ∞
0

dω

(2π)1/2

1√
2ω

[
e−iωub̂ω + eiωub̂†ω

]
+ (left moving) (5.94)

and the vacuum for the observer near the event horizon is defined as

âω|OK〉 = 0 (5.95)

which is called Kruskal vacuum.
When the remote observer takes the number operator N̂Ω = b̂†Ωb̂Ω to the Kruskal vacuum, from the

his point of view the Kruskal vacuum contains the particles with the following the thermal spectrum

〈N̂Ω〉 ≡ 〈OK |b̂†Ωb̂Ω|OK〉 =
1

e2πΩ/κ − 1
δ(0), (5.96)

corresponding to the temperature

TH =
κ

2π
=

1

8πM
. (5.97)

This situation has a mathematical similarity with the accelerated observer in the Minkowski space-
time as follows

Accelerated observer Schwarzschild spacetime
Minkowski vacuum |OM 〉 Kruskal vacuum |OK〉
Rindler vacuum |OR〉 Boulware vacuum |OB〉
Acceleration a Surface gravity κ
u = −a−1 exp(−aũ) u = −κ−1 exp(−κũ)
v = a−1 exp(aṽ) v = κ−1 exp(κṽ)

6 Hawking Radiation from black hole formation

will be updated
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